① 五年级下册数学必背知识点有哪些
五年级下册数学必背知识点如下:
1、一个数的倍数的特征:一个数的倍数的个数是无限的,其中最少的倍数是它本身,没有最大的倍数;如果几个数都是一个数的倍数,那么这几个数的合也是这个数的倍数。
2、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
3、一般的如果a是整数,偶数可以用2a表示。奇数可以用2a+1表示。
4、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫奇数。最小的偶数是0,最小的奇数是1。
5、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);1不是质数,也不是合数。
② 五年级下册数学总结(人教版)
1、数的认识(整数和小数、数的整除、分数百分数)
知识要点包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”“小数、分数、百分数的互化”“约分和通分”等知识点。 重点确定在数的意义概念的理解,数的读写,数的整除。
本部分重点加强数学基本概念和基本性质的理解和掌握。具体通过一系列的练习,如填空题、选择题、判断题为主,适当穿插进行整数和小数的简单计算、约分和通分练习。复习本部分知识教师应该根据学生的实际学习水平灵活处理,对于班级基础较差的学生可适当放慢,万事开头难,本部分知识必须做到教一点使学生会一点,切忌贪多图快。复习题可参考以前的专项复习题或专项复习试卷。
2、四则运算(四则运算的意义与法则、运算定律与简便计算、四则混合运算、简易方程)。
这节重点四则运算和简便运算上。 全面概括四则运算和计算方法,提高计算水平和计算能力,包括“四则运算的意义和法则”、“四则混合运算”。 利用运算定律,掌握简便运算,提高计算效率,包括“运算定律和简便运算”。 结合教材按照先复习(整数、小数、分数)四则运算意义和运算法则,要求教师结合教材必须搞好学生相关的口算训练和基本的四则运算练习,然后再复习(整数、小数、分数)的四则混合运算,教师要加强四则混合运算中运算顺序的教学,在此基础上教师要精心设计练习,提高学生综合计算能力
3、量的计量
本节重点放在名数的改写和实际观念上。
(1)、整理量的计量知识结构,包括“长度、面积、体积单位”、“重量与时间单位”。
(2)、巩固计量单位,强化实际观念,包括“名数的改写”。
(3)、综合训练与应用,练习题可刻印或参考试卷。
4、几何初步知识(线和角、平面图形、立体图形)
本节重点放在对特征的辨析和对公式的应用上。
(1)、强化概念理解和系统化,包括“平面图形的特征”、“立体图形的特征”。
(2)、准确把握图形特征,加强对比分析,揭示知识间的联系与区别,包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
(3)、加强对公式的应用,提高掌握计算方法。能让学生对周长、面积、体积进行的正确计算。
(4)、整体感知、实际应用。
练习题可刻印或参考试卷。
5、比和比例(比的意义和性质、比例的意义和性质、正比例和反比例)
本部分要求学生掌握比和比例意义和性质的同时,必须做到使学生正确辨析概念,加深理解,包括“比和比例”、“正比例和反比例”,会判断简单的正、反比例。重点要求学生掌握求比值、化简比,按比例分配,应用比例尺计算,解比例。在练习中很抓解题训练,提高解方程和解比例的能力,包括“简易方程”、“解比例”。
练习题可刻印或参考试卷。
6、简单的统计
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
(1)、求平均数的方法。
(2)、加深统计图表的特点和作用的认识,包括“统计表”、“统计图”。
(3)、进一步对图表分析和回答问题,包括填图和根据图表回答问题。(本部分是复习的重点)
练习题可参考教材或试卷。
7、应用题解(整数和小数应用题、分数和百分数应用题、列方程解应用题、比和比例应用题)
这部分重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
(1)、简单应用题的分析与整理。 (一步计算)
(2)、复合应用题的分析与整理。 (两步以上)
(3)、列方程解应用题的分析与整理。
(4)、分数应用题的分析与整理。(重点)
(5)、用比例知识解答应用题的分析与整理。
(6)、应用题的综合训练 。
③ 五年级下册数学必背知识点有哪些
五年级下册数学必背知识点有如下:
一、长方形的周长=(长+宽)×2 ,C=(a+b)×2。
二、正方形的周长=边长×4, C=4a。
三、长方形的面积=长×宽 ,S=ab。
四、正方形的面积=边长×边长 ,S=a.a=a^2。
五、三角形的面积=底×高÷2 ,S=ah÷2。
六、平行四边形的面积=底×高, S=ah。
七、梯形的面积=(上底+下底)×高÷2, S=(a+b)h÷2。
八、圆的周长=圆周率×直径=圆周率×半径×2, c=πd=2πr。
九、圆的面积=圆周率×半径×半径πr ^2。
④ 五年级下学期数学知识点归纳
小学的时候,我们只知道玩,并不知道知识点如何总结。为了帮助同学们更好的学习。下面是由我为大家整理的“五年级下学期数学知识点归纳”,仅供参考,欢迎大家阅读。
五年级下学期数学知识点归纳
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
一 、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
二、长方体和正方体
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4??? 正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2
正方体的表面积=棱长×棱长×6?? 用字母表示:S=
6、表面积单位:平方厘米、平方分米、平方米? 相邻单位的进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长×宽×高??? 用字母表示:V=abh?? 长=体积÷(宽×高)宽=体积÷(长×高)
高=体积÷(长×宽)
正方体的体积=棱长×棱长×棱长?? 用字母表示:V= a×a×a
9、体积单位:立方厘米、立方分米和立方米? 相邻单位的进率为1000
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;
把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
13、容积单位:升和毫升(L和ml) 1L=1000ml? 1L=1000立方厘米?? 1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
三 、分数的意义和性质
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的.一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
四、分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
五、打电话
1、逐个法:所需时间最多;
2、分组法:相对节约时间;
3、同时进行法:最节约时间。
拓展阅读:小学语文课文目录
一年级上册目录
一年级下册目录
二年级上册目录
二年级下册目录
三年级上册目录
三年级下册目录
四年级上册目录
四年级下册目录
五年级上册目录
五年级下册目录
六年级上册目录
六年级下册目录
小学数学课文目录
一年级上册目录
一年级下册目录
二年级上册目录
二年级下册目录
三年级上册目录
三年级下册目录
四年级上册目录
四年级下册目录
五年级上册目录
五年级下册目录
六年级上册目录
六年级下册目录
小学英语课文目录
三年级上册目录
三年级下册目录
四年级上册目录
四年级下册目录
五年级上册目录
五年级下册目录
六年级上册目录
六年级下册目录
⑤ 人教版五年级下册数学中有关倍数与因数的知识点都有哪些
因数与倍数重要知识点.....
1. 因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。倍数和因数是相互依存的。
2. 一个数的因数个数是有限的,最小因数是1,最大因数是它本身。一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。 3. 2、3、5倍数的特征。
(1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。
(2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。 (3)个位上是0、5的数都是5的倍数。 4.质数和合数。
(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。最小的质数是2。
(2) 一个数,除了1和它本身还有别的因数,这样的因数叫做合数。最小的合数是4,合数至少有三个因数。 (3)1既不是质数,也不是合数。 5.质因数和分解质因数。
(1)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
(2) 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例:30=2×3×5 6.最大公因数和最小公倍数。
(1) 几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
(2)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
7.互质数:公因数只有1的两个数,叫做互质数。
8. 100以内质数:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、97 9. 13的倍数:26、39、52、65、78、91、104、117 17的倍数:34、51、68、85、102、119、136、153 19的倍数:38、57、76、95、114、133、152、171 因数与倍数专项练习题.......... 一.我会填.
1.一个数是3、5、7的倍数,这个数最小是( 105 ). 2.是3的倍数的最小三位数是( 102).
3.三个数相乘,积是70,这三个数是(2 )( 5 )( 7 )
4.同时是2、3、5的倍数的最小两位数是( 30 ),最大两位数( 90 )最小三位数( 120 )最大三位数( 990 )。
5.用8、5、1、0中三个数组成同时是2、3、5的倍数的最大三位数是( 810 )同时是3、5倍数的最小三位数是( 105 )。 6.100以内6和15的公倍数有(30、60、90)。 7.一个数最小倍数除以它的最大因数,商是( 1 )。
8.既是2的倍数,又是3的倍数,最小的一位数是(6 ),最大的三位数是( 996 )。
9.有两个不同质数的和是22,它们的积是( 85 )。
10.两个数是质数,那么它们的乘积是( 合数 )。
11.一个数是9的倍数,还是72的因数,这个数是( 18或36 )。 12.甲=2×3×5乙=2×3×7,甲和乙的最大公因数是( 6 )。 13.把154分解质因数是( 7 2 11)。
14.有两个连续自然数都是质数,这两个数的和是( 5 ) 15.两个质数得积一定是( 合数 ),两个合数的积一定是( 合数 )。 二.我会选。
1.下列各组数中,两个数只有公因数1的是( C )A.17和51 B.52和91 C.24和25 D.11和22
2.当a是自然数时,2a+1一定是( A )A.奇数 B.偶数 C.质数 D.合数
3.在自然数中,能同时被2、5整除的数一定是( C )A.质数 B.奇数 C.个位上是0的数
4.a是21的因数,a+21的值有( C)个A.2 B.3 C.4 D.5
5.要使四位数4 □27是3的倍数,□内应填( B )A.0、3、6、9 B.2、5、8 C.2、6 D.任何数字
三.我会算(计算最大公因数和最小公倍数) 1.56和42 2.225和15 3.54、72和90
解:7 168 解:15 225 解:18 1080 4. 84和105 5.66、165和231 6.13、26和52
解:21 420 解:33 2310 解:13 52 四.我会列.
1.三个连续自然数的和是72,这三个自然数分别是多少?如果是三个连续的偶数,这三个数又是多少?
解: 三个自然数为 23 24 25 三个连续偶数为 22 24 26 2.一块长45厘米,宽20厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形边长最长是多少厘米? 提示:找45和20的最大公因数 答:所锯成正方形边长最长是5厘米
3. 有一车饮料,如果3箱一数,还剩一箱;如果5箱一数,还剩一箱;如果7箱一数,也剩一箱,这车饮料至少有多少箱? 提示:找3,5,7的最小公倍数,加1即所求结果 答:这车饮料至少有106箱。
5.班级要召开联欢会,同学们剪彩带布置教室,有三根彩带,分别长18分米,24分米,48分米,要把它们剪成同样长的小段,不能有剩余,每段彩带最长多少分米?一共剪几段? 提示:找18,24,48的最大公因数 答:每段彩带最长是6分米,一共剪成15段。
6.一个长60分米,宽35分米的房间内铺同样大小的正方形地砖,铺的时候地砖要完整而没有剩余,地砖边长最大是几分米? 提示:找60,35的最大公因数 答:地砖边长最大是5分米
7.甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次,甲3天去一次,乙4天去一次,丙5天去一次,有一天他们三个恰好在图书馆相会。至少又过多少天他们又在图书馆相会? 提示:找3,4,5的最小公倍数 答:至少过60天他们又在图书馆相会。
8.级三个班分别有24人,36人,42人参加体育活动,要把它们分成人数相等的小组,但各班同学不能打乱,最多每组多少人?每班可以分几组?提示:找24,36,42的最大公因数
答:每组最多6人。每班分别可分4组 ,6组,7组
因数与倍数练习题一
一、判断题
( )1、任何自然数,它的最大因数和最小倍数都是它本身。 ( )2、一个数的倍数一定大于这个数的因数。 ( )3、个位上是0的数都是2和5的倍数。
( )4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。 ( )5、5是因数,10是倍数。
( )6、36的全部因数是2、3、4、6、9、12和18,共有7个。 ( )7、因为18÷9=2,所以18是倍数,9是因数。 ( )9、任何一个自然数最少有两个因数。
( )10、一个数如果是24的倍数,则这个数一定是4和8的倍数。 ( )11、15的倍数有15、30、45。
( )12、一个自然数越大,它的因数个数就越多。 ( )13、两个素数相乘的积还是素数。 ( )14、一个合数至少得有三个因数。
( )15、在自然数列中,除2以外,所有的偶数都是合数。 ( )16、15的因数有3和5。
( )17、在1—40的数中,36是4最大的倍数。 ( )18、1是16的因数,16是16的倍数。 ( )19、8的因数只有2,4。
( )20、一个数的最大因数和最小倍数都是它本身,也就是说一个数的最大因数等于它的最小倍数。
( )21、任何数都没有最大的倍数。 ( )22、1是所有非零自然数的因数。 ( )23、所有的偶数都是合数。 ( )24、素数与素数的乘积还是素数。
( )25、个位上是3、6、9的数都能被3整除。 ( )26、一个数的因数总是比这个数小。
( )27、743的个位上是3,所以743是3的倍数。 ( )28、100以内的最大素数是99。 二、填空。
1、在50以内的自然数中,最大的素数是( ),最小的合数是( )。 2、既是素数又是奇数的最小的一位数是( )。 3、在20以内的素数中,( )加上2还是素数。
4、如果有两个素数的和等于24,可以是( )+( ),( )+( )或( )+( )。
5、一个数的最小倍数减去它的最大因数,差是( )。 6、一个数的最小倍数除以它的最大因数,商是( )。
7、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是()。 8、如果a的最大因数是17,b的最小倍数是1,则a+b的和的所有因数有( )个;a-b的差的所有因数有( )个;a×b的积的所有因数有( )个。 9、比6小的自然数中,其中2是( )的因数,又是( )的倍数。
10、个位上是( )的数,都能被2整除;个位上是( )的数,都能被5整除。
11、在自然数中,最小的奇数是( ),最小的偶数是( ),最小的素数是( ),最小的合数是( )。
12、同时是2和5倍数的数,最小两位数是( ),最大两位数是( )。 13、1024至少减去( )就是3的倍数,1708至少加上 ( )就是5的倍数。 14、素数只有( )个因数,它们分别是( )和( )。
15、一个合数至少有( )个因数,( )既不是素数,也不是合数。 16、自然数中,既是素数又是偶数的是( )。 17、在20至30中,不能分解质因数的数是( )。
18、三个连续偶数的和是186,这三个偶数是( )、( )、 ( )。 19、我是54的因数,又是9的倍数,同时我的因数有2和3。( ) 20、我是50以内7的倍数,我的其中一个因数是4。( ) 21、我是30的因数,又是2和5的倍数。( )
22、我是36的因数,也是2和3的倍数,而且比15小。( )
23、 根据算式25×4=100,( )是( )的因数,( )也是( )的因数;( )是( )的倍数,( )也是( )的倍数。 24、在1—20的自然数中,奇数有( ),偶数有( )素数有( ),合数有( )。
25、 在18、29、45、30、17、72、58、43、75、100中,2的倍数有( );3的倍数有( );5的倍数有( ),既是2的倍数又是5的倍数有( ),既是3 的倍数又是5的倍数有( )。
26、 48的最小倍数是( ),最大因数是( )。最小因数是( )。 27、 用5、6、7这三个数字,组成是5的倍数的三位数是( );组成一个是3的倍数的最小三位数是( )。
28、一个自然数的最大因数是24,这个数是( )。
29、在 27、68、44、72、587、602、431、800中。(共4分) 奇数是: 偶数是:
30、在2、3、45、10、22、17、51、91、93、97中。(共5分) 素数是: 合数是: 31、按要求做。(6~7题共12分)
从0、3、5、7、这4个数中,选出三个组成三位数。 (1)组成的数是2的倍数有: (2)组成的数是5的倍数有: 。 (3)组成的数是3的倍数有: 32、偶数+偶数= 奇数+奇数= 偶数+奇数=
33、幼儿园的大班有36个小朋友,中班有48个小朋友,小班有54个小朋友。按班分组,三个班的各组人数一样多,问每组最多有( )个小朋友。 三、选择题
1、15的最大因数是( ),最小倍数是( )。 ①1 ②3 ③5 ④15
2、在14=2×7中,2和7都是14的( )。 ①素数 ②因数 ③质因数
3、一个数,它既是12的倍数,又是12的因数,这个数是( )。 ①6 ②12 ③24 ④144
4、一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有( )。
①120个 ②90个 ③60个 ④30个
5、自然数中,凡是17的倍数( )。 ①都是偶数 ②有偶数有奇数 ③都是奇数
6、下面的数,因数个数最多的是( )。A 18 B 36 C 40
7、两个素数的和是( )。A 偶数 B 奇数 C奇数或偶数 8、自然数按是不是2的倍数来分,可以分为( )。A奇数和偶数 B素数和合数 C素数、合数、0和1
9、1是( )。A 素数 B 合数 C 奇数 D 偶数
10、甲数×3=乙数,乙数是甲数的( )。A 倍数 B 因数 C 自然数
11、同时是2、3、5的倍数的数是( )。A 18 B 120 C 75 D 810 四、应用题。
1、一个小于30的自然数,既是8的倍数,又是12的倍数,这个数是多少? 2、当a分别是1、2、3、4、5时,6a+1是素数,还是合数?
3、 幼儿园里有一些小朋友,王老师拿了32颗糖平均分给他们,正好分完。小朋友的人数可能是多少?
4、小朋友到文具店买日记本,日记本的单价已看不清楚,他买了3本日记本,售货员阿姨说应付134元,小红认为不对。你能解释这是为什么吗?
因数与倍数练习题二 一、填空。(33%)
(1)6×4=24,6和4是24的( ),24是6的( ),也是4的( )。 (2)24的因数有( )。 (3)下面的数中,把质数划去,留下合数。
2 9 23 27 28 29 31 35 37 39 51
(4)一个数,既是12的倍数,又是12的因数,这个数是( )。 (5)两个都是质数的连续自然数是( )和( )。 (6)在15、18、29、35、39、41、47、58、70、87这些数中: ①是偶数的有( ); ②是奇数的有( ); ③有因数3的是( ); ④5的倍数有( )。 (7)最小的自然数是( ),最小的质数是( )最小的合数是( )。
(8)有因数3,也是2和5的倍数的最小三位数是( )。 (9)在0、1、7、8中选3个数字,组成一个能同时被3、5整除的最小三位数是( )。
(10)三个连续奇数的和是45,这三个奇数分别是( )、( )和( )。 (11)100以内最大的质数与最小的合数的和是( ),差是( )。 (12)是42的因数,又是7的倍数,这些数有( )、( )、( )、( )、。
(13)凡是5的倍数,个位上一定是( )或( )。 (14)既是3的倍数,又是5的倍数的最大两位数是( )。 (14)67至少要加上( )就是3的倍数。
(15)两个质数和为18,积是65,这两个质数是( )和( )。 二、判断题。下列说法正确的在括号里打“√”,错误的打“×”。并订正。(8%) (1)在自然数中与1相邻的数只有2。………………………………………( ) 订正:
(2)3的倍数,一定是9的倍数。……………………………………………( ) 订正:
(3)奇数都比偶数小。…………………………………………………………( ) 订正:
(4)质数的因数只有一个。……………………………………………………( ) 订正:
(5)个数上是3、6、9的数,都是3的倍数。……………………………( ) 订正:
(6)一个数的因数的个数是无限的。………………………………………( ) 订正:
(7)质数一定是奇数,合数一定是偶数。…………………………………( ) 订正:
(8)两个质数的和一定是偶数。……………………………………………( ) 订正:
三、选择题。将正确答案的序号填在题中的括号里。(8%) (1)一个数是3的倍数,这个数各位上数的和( )。 ①大于3 ②等于3 ③是3的倍数 ④小于3 (2)一个合数至少有( )。
①一个因数 ②二个因数 ③三个因数 ④四个因数 (3)87是( );41是( )。
①合数 ②质数 ③因数 ④倍数 (4)既不是质数又不是合数的是( )。 ①1 ②2 ③3 ④4 (5)42÷3=14,我们可以说( )。
①42是倍数 ②3是因数 ③ 42是3的倍数 ④42是3的因数 (6)两个奇数的和( )。
①一定是奇数 ②一定是偶数 ③可能是奇数也可能是偶数 ④一定是质数 (7)几个质数之积一定是( )。
①奇数 ②偶数 ③合数 ④质数 (8)5和7都是35的( )。
①奇数 ②偶数 ③因数 ④倍数 四、解方程。(6%)
(1)X ÷ 36=0.4 (2)8X-9.1=22.9 (3)36+2X=78.6 (4)4×0.9+3X=46.2 五、列方程解文字题。(4%)
(1)一个数的13倍加4与1.7的积,和是162,这个数是多少? (2)一个数的3倍减去5.8,差是13.4,求这个数。 六、按要求完成下列各题。(41%) (1)在圈内写上合适的数。(4%)
60的因数 50以内6的倍数
(2)从四张数字卡片中选出三张,按要求组成三位数。(10%)
①奇数 ②偶数 ③3的倍数 ④5的倍数 ⑤既是2的倍数,又是5的倍数 (3)在括号里填上适当的质数。(8%)
①8=( )+( ) ②12=( )+( )+( ) ③15=( )+( ) ④18=( )+( )+( ) ⑤24=( )+( )=( )+( )=( )+( ) (4)在1~100的自然数中写出9的所有倍数。(4%)
(5)在□里填上一个数字,使这个数成为3的倍数。(写出所有填法)(6%) □8 4□6 2 3□1
(6)写出一些三位数,这些数都同时是2、3、5的倍数。(每种写两个数)(6%)
①有两个数字是质数: ②有两个数字是合数: ③有两个数字是奇数:
(7)1+2+3+……+999+1000+1001的和是奇数还是偶数?请写出理由。(3%)
因数与倍数练习题三 一、填空(30分)
1、像0,1,2,3,4,5,6,……这样的数是( ) 2、像-3,-2,-1,0,1,2,3,……这样的数是( )
3、有一个算式7×8=56,那么可以说( )和( )是( )的因数,( )是( )和( )的倍数。 4、是2的倍数的数叫( )。 5、不是2的倍数的数叫( )。
6、凡是个位上是( )或( )的数,都是5的倍数。一个数既是2的倍数,又是5的倍数,这个数的个位上的数字一定是( )。
7、一个数各个数位上的数字加起来的和是9的倍数,那么这个数也是( )的倍数。如果要让□729成为3的倍数,那么□里可以填( )。 8、一个数只有( )两个因数,这个数叫作质数。
一个数除了( )以外还有( ),这个数叫做合数。合数最少有( )个因数,质数只有( )个因数。 9、要使5□是质数,□可以填( )
10、最小的质数是( ),最小的合数是( )。 11、写出1~20的所有质数是( ),
1~20中共有( )个质数,在1~20中,共有( )个合数。( )既不是质数,也不是合数。
12、有一个比14大,比19小的奇数,它同时是质数,这个数是( )。 13、任何大于6的质数除以6,肯定有余数,余数只会是( )或( )。 14、有一个两位数,它是2的倍数,同时,它的各个数位上的数字的积是12,这个两位数可能是 ( )。 二、判断(6分)
1、大于2的所有的偶数都是合数。 ( ) 2、除2以外,所有的质数都是奇数。 ( ) 3、6的所有倍数都是合数。 ( )
4、一个数是9的倍数,这个数一定也是3的倍数。 ( ) 5、连续的两个自然数相加的和一定是奇数。 ( ) 6、8是因数,12是倍数。 ( )
⑥ 五年级下册数学重要知识点
五年级下册数学重要知识点有哪些呢?感兴趣的同学们快来和我一起看看吧。下面是由我为大家整理的“五年级下册数学重要知识点”,仅供参考,欢迎大家阅读。
五年级下册数学重要知识点
第一单元 方程
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差
一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。
第二单元 确定位置
1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,)第1个数表示第几列(x),第2个数表示第几行(),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行()上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行()上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元 公倍数和公因数
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。
4、两个素数的积一定是合数。举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的.两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5;
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1;
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1;
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1;
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
拓展阅读:五年级上册数学知识点
第一单元 小数乘法
1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)
变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c
减法:减法性质:a-b-c=a-(b+c)
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元 位置
8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。
第三单元 小数除法
10、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。
11、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。
14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32
15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。
第四单元 可能性
16、事件发生有三种情况:可能发生、不可能发生、一定发生。
17、可能发生的事件,可能性大小。把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。
第五单元 简易方程
18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
19、a×a可以写作a·a或a ,a 读作a的平方 2a表示a+a
特别地1a=a这里的:“1“我们不写
20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
21、解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
22、10个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
23、所有的方程都是等式,但等式不一定都是等式。
24、方程的检验过程:方程左边=……
25、方程的解是一个数;解方程式一个计算过程。=方程右边 所以,X=…是方程的解。
第六单元 多边形的面积
26、公式:
正方形:
正方形的面积=边长X边长 S正=aXa=a2;
已知:正方形的面积,求边长;
长方形:
长方形的面积=长X宽;
S长=aXb
已知:长方形的面积和长,求宽;
平行四边形:
平行四边形的面积=底X高;
S平=aXh
已知:平行四边形的面积和底,求高 h=S平÷a;
三角形:
三角形的面积=底X宽高÷2;
S三=aXh÷2
已知:三角形的面积和底,求高;
H=S三X2÷a
梯形:
梯形形的面积=(上底+下底)X高÷2
S梯=(a+b)X2
已知:梯形的面积与上下底之和,求高
高=面积×2÷(上底+下底)
上底=面积×2÷高-下底
组合图形:
当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
27、平行四边形面积公式推导:剪拼、平移
平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
28、三角形面积公式推导:旋转
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;
平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2;
29、梯形面积公式推导:旋转
30、两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2。
⑦ 五年级下册数学内容有哪些
第一单元观察物体考查的比较多内容是画出三个方向的观察图或者是根据三视图判断出来原题什么样形状。
第二单元因数和倍数,这一单元内容比较抽象有些难以理解。质数合数考查的比较多,如何找因数和如何找倍数也是考试中经常出现的内容。
第三单元长方体和正方体,这一单元中考查比较多的是棱长、表面积和体积的计算,一定要灵活运用公式,选择合适的变形式进行计算。
第四单元分数的意义和性质,这一单元内容是最多的、也是最难的部分。真假分数、分数基本性质都是经常考的内容,约分、通分、分数小数的互化是期末考试中的必考内容。
第六单元分数的加法和减法,这一单元中考查的最多的是异分母分数的加减法运算、分数的混合运算,一定要加强孩子的约分能力。
第七八单元都是比较简单的内容,找次品时候要尽可能平均分成3份。
内容简介
《七彩课堂:数学(5年级下册)(人教实验版)》课堂练习:及时讲,及时练,及时掌握知识点。小提示:指出错误的学习习惯、学习方法,提出修改的建议。举一反三:深刻领会相应知识点,提高解题能力,触类旁通培养思维的灵活性和深刻性。
创新题:热点、开方、创新。举例说明:呈现与重要知识点相关的例子,到达“一题领一串”的效果。金点子:知识和技能有机结合,构建完善的知识网络。易错集锦:易错环节的归纳与梳理,深入分析易错的原因总结,总结避免错误的方法。
以上内容参考网络-数学五年级下册
⑧ 五年级下册数学重点
五年级下册数学知识要点:
第一单元:图形的变换
1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。
2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。
3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。
第二单元:因数与倍数
1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。
2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。
3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。
5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。
6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。
8.
四则运算中的奇偶规律:
奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数
偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数
奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数
偶数-奇数=奇数
9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。
10. 1既不是质数,也不是合数。
11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。
12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三单元:长方体和正方体
1. 正方体也叫立方体。
2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。
3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。
5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。
6. 长方体的棱长总和=(长+宽+高)×4
7. 正方体的棱长总和=棱长×12
8. 长方体六个面的面积总和叫做长方体的表面积。
9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。
10. 长方体的表面积=(长×宽+长×高+宽×高)×2
11. 正方体的表面积=棱长2×6
12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4
13. 长方体的侧面积=底面周长×高
14. 物体所占空间的大小,叫做物体的体积。
15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。
16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。
17. 长方体的体积=长×宽×高;用字母表示是V=abh
18. 正方体的体积=棱长3;用字母表示是V=a3
19. 长方体(或正方体)的体积=底面积×高=横截面积×长
20. 在工程上,1立方米简称1方。
21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。
22. 棱长总和相等的长方体或正方体,正方体的体积最大。
23. 1立方米=1000立方分米;1立方分米=1000立方厘米。
24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。
25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。
26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。
27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。
28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。
29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度
30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。
第四单元:分数的意义和性质
1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。
2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。
3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。
4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。
5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。
7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。
8. 分子比分母小的分数叫真分数。真分数小于1。
9. 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。
11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
12. 整数可以看成分母是1的假分数。例如5可以看成是5/1。
13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。
15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。
16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。
17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。
18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。
19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。
20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。
21. 数A×数B=它们的最大公因数×它们的最小公倍数。
22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。
23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。
25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。
27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。
此资料来源于网络。希望对你有帮助。