① 关于数学的小知识
1,零
在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。
2,数字系统
数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。
3,π
π是数学中最着名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。
π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。
4,代数
代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。
但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。
5,函数
莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。
② 关于数学的知识有哪些
数学的知识如下:
1、平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
2、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。
3、绝对值的意义是数轴上表示某数的点离开原点的距离。
4、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
5、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
③ 大学本科数学专业的,都要学哪些科目
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的。
近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。
另外其他的一些常见的分支包括复变函数、常微分、运筹、最优化,数学模型。
④ 鏁板︾郴澶у︽柊鐢熼渶瑕佹帉鎻″摢浜涙暟瀛﹀熀纭鐭ヨ瘑锛
鏁板︾郴澶у︽柊鐢熼渶瑕佹帉鎻$殑鏁板﹀熀纭鐭ヨ瘑鍖呮嫭浠ヤ笅鍑犱釜鏂归溃锛
1.楂樼瓑鏁板︼细杩欐槸鏁板︾郴镄勫熀纭璇剧▼锛屽寘𨰾寰绉鍒嗐佸氩厓鍑芥暟寰鍒嗗︺侀吨绉鍒嗐佸父寰鍒嗘柟绋嬬瓑銆傝繖浜涚煡璇嗘槸钖庣画瀛︿範鍏朵粬鏁板﹁剧▼镄勫熀纭銆
2.绾挎т唬鏁帮细绾挎т唬鏁版槸镰旂┒钖戦噺绌洪棿鍜岀嚎镐ф椠灏勭殑鏁板﹀垎鏀锛屽寘𨰾鐭╅樀璁恒佸悜閲忕┖闂淬佺嚎镐у彉鎹㈢瓑鍐呭广傝繖浜涚煡璇嗗湪璁$畻链虹戝︺佺墿鐞嗗︾瓑棰嗗烟链夊箍娉涘簲鐢ㄣ
3.姒傜巼璁轰笌鏁扮悊缁熻★细姒傜巼璁轰笌鏁扮悊缁熻℃槸镰旂┒闅忔満鐜拌薄瑙勫緥镐х殑鏁板﹀︾戯纴鍖呮嫭姒傜巼璁虹殑锘烘湰姒傚康銆侀殢链哄彉閲忓强鍏跺垎甯冦佸弬鏁颁及璁°佸亣璁炬楠岀瓑鍐呭广傝繖浜涚煡璇嗗湪閲戣瀺銆佸伐绋嬨佺敓鐗╃瓑棰嗗烟链夐吨瑕佸簲鐢ㄣ
4.绂绘暎鏁板︼细绂绘暎鏁板︽槸镰旂┒绂绘暎缁撴瀯锛埚傞泦钖堛佸浘銆佸簭鍒楃瓑锛夌殑鏁板﹀垎鏀锛屽寘𨰾闆嗗悎璁恒佸浘璁恒佺粍钖堟暟瀛︾瓑鍐呭广傝繖浜涚煡璇嗗湪璁$畻链虹戝︺佷俊鎭璁虹瓑棰嗗烟链夊箍娉涘簲鐢ㄣ
5.瀹炲垎鏋愪笌澶嶅垎鏋愶细瀹炲垎鏋愪笌澶嶅垎鏋愭槸镰旂┒瀹炴暟鍜屽嶆暟涓婄殑鍑芥暟镐ц川镄勬暟瀛﹀垎鏀锛屽寘𨰾瀹炴暟涓庡嶆暟镄勮繛缁镐с佸彲寰镐с佸彲绉镐х瓑鍐呭广傝繖浜涚煡璇嗗湪娉涘嚱鍒嗘瀽銆佸亸寰鍒嗘柟绋嬬瓑棰嗗烟链夐吨瑕佸簲鐢ㄣ
6.鎶借薄浠f暟锛氭娊璞′唬鏁版槸镰旂┒浠f暟缁撴瀯镄勬暟瀛﹀垎鏀锛屽寘𨰾缇よ恒佺幆璁恒佸烟璁虹瓑鍐呭广傝繖浜涚煡璇嗗湪瀵嗙爜瀛︺佺紪镰佺悊璁虹瓑棰嗗烟链夐吨瑕佸簲鐢ㄣ
7.𨰾撴墤瀛︿笌鍑犱綍瀛︼细𨰾撴墤瀛︿笌鍑犱綍瀛︽槸镰旂┒绌洪棿镐ц川鍜岀粨鏋勭殑鏁板﹀垎鏀锛屽寘𨰾镣归泦𨰾撴墤銆佷唬鏁版嫇镓戙佸井鍒嗗嚑浣旷瓑鍐呭广傝繖浜涚煡璇嗗湪鐗╃悊瀛︺佸嚑浣曞︾瓑棰嗗烟链夊箍娉涘簲鐢ㄣ
8.鏁板煎垎鏋愶细鏁板煎垎鏋愭槸镰旂┒鐢ㄦ暟鍊兼柟娉曡В鍐虫暟瀛﹂梾棰樼殑瀛︾戯纴鍖呮嫭鎻掑兼硶銆佹暟鍊煎井绉鍒嗐佹暟鍊艰В甯稿井鍒嗘柟绋嬬瓑鍐呭广傝繖浜涚煡璇嗗湪璁$畻链虹戝︺佸伐绋嬬瓑棰嗗烟链夐吨瑕佸簲鐢ㄣ
⑤ 在数学系上课,你真正学到了什么知识
去想办法构建某个对象
⑥ 数学知识讲座内容
1. 二年级数学小知识讲座
二年级数学小知识讲座 1.小学数学知识整理
小学一年级 九九乘法口诀表。
学会基础加减乘。小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式 一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面1、单价*数量=总价2、单产量*数量=总产量3、速度*时间=路程4、工效*时间=工作总量5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。10、解比例:。
2.小学二年级数学有哪些内容
人教版小学二年级数学
上册目录
1.长度单位
统一长度单位
认识厘米 用厘米量
认识米 用米量
认识线段
画线段
长度单位的合理选用
2.100以内的加法和减法(二)
(1)加法
100以内的数的加法(不进位)
两位数加两位数(进位加)
两位数加两位数(练习课)
(2)减法
两位数减两位数(不退位减)
两位数减两位数(退位减)
两位数减两位数(练习课)
用数学——求比一个数多几的数
用数学——求比一个数少几的数
(3)连加、连减和加减混和
连加、连减
加减混合
综合练习
简单的两步加减法应用题
整理和复习
3.角的初步认识
角的初步认识
直角的初步认识
锐角和钝角
活动课——用三角尺拼角
4.表内乘法(一)
(1)乘法的初步认识
乘法的初步认识(一)
乘法的初步认识(二)
(2)2~6的乘法口诀
5的乘法口诀
5的乘法口诀(练习课)
2、3、4的乘法口诀
乘加、乘减
6的乘法口诀
6的乘法口诀(练习课)
解决问题——惩罚和假发应用题的区别
整理和复习
5.观察物体(一)
观察物体
观察立体图形
观察物体(练习课)
6.表内乘法(二)
7的乘法口诀
7的乘法口诀(练习课)
综合练习(运用2~7的乘法口诀)
8的乘法口诀
8的乘法口诀(练习课)(一)
8的乘法口诀(练习课)(二)
用乘法解决问题
9的乘法口诀
9的乘法口诀(练习课)(一)
9的乘法口诀(练习课)(二)
乘法竖式
用数学(用口诀解决实际问题)
乘法口诀表
整理和复习
量一量比一比
7.认识时间
认识时间(一)
认识时间(二)——用数学
认识时间(练习课)
8.数学广角——搭配(一)
排列
组合
9.总复习
100以内的笔算加法和减法的复习
表内乘法的复习
米和厘米角和直角的复习
观察物体的复习
认识视角的复习
3.小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。(6)数学系上课的知识扩展阅读:整数1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒 参考资料来源:网络-小学数学知识 参考资料来源:网络-小学数学。
4.二年级的数学知识
二年上数学知识点整理 一、乘除法 1、加法与乘法的互换: 一道加法算式可以改写成两道乘法算式,因为交换两个乘数的位置积不变。
如:5+5+5+5=5X4=4X5(这里有一些特殊情况如:3+3+3=3X3这样的加法只能写出一道乘法算式) 一道乘法算式可以改写成两道加法算式,因为一道乘法算式有两种含义。 如:4X6=4+4+4+4+4+4(表示6个4相加) =6+6+6+6 (表示4个6相加) (这里也有一些特殊情况,如:5X5=5+5+5+5+5 这样的乘法算式只能写出一道加法算式。)
2、乘除法各部分名称 5 X 6 = 30 乘数 乘号 乘数 等号 积 30 ÷ 5 = 6 被除数 除号 除数 等号 商 被除数=商*除数 在有余数的除法算式中:被除数=商*除数+余数 积÷一个乘数=另一个乘数 3、乘除法含义 3*2=6 2个3相加的和是6。 3的2倍是6。
3个2相加的和是6。 2的3倍是6。
6÷2=3 把6平均分成2份,每份是3。 6里面有2个3。
6是3的2倍。 把6每2个一份,可以分成3份。
6里面有3个2。 6是2的3倍。
4、乘法口诀:根据一句口诀写出两道乘法算式和两道除法算式。 三四十二 4*3=12 表示3个4相加 3*4=12 表示4个3相加 12÷4=3 表示把12平均分成4分,每份是3. 12÷3=4 也就是12里面有4个3. 表示把12每4个一份,分成了3分 也就是12里面有3个4 乘除法算式的含义要根据题中所给的图形表述,不能死记硬背。
5、乘除法应用题:能正确解答乘除法应用题:把几个相同部分和在一起求总数的时候用乘法计算。把一个整体平均分成若干相等的小份就用除法计算。
6、乘除法算式互换:能进行乘法算式和除法算式的相互改写。在改写的过程中,乘法算式中的积做除法算式中的被除数,而乘法算式中的乘数则做除法算式中的除数和商。
30÷5=6 5*6=30 6*5=30 4*6=24 24÷4=6 24÷6=4 7、倍数问题:先找到关键的句子“ 是 的 倍”。是前边的是大数,是后边的是小数。
也就是大数是小数的 倍。如果求大数就用乘法,求小数就用除法,求倍数也用除法。
(1)“求一个数是另一个数的几倍”用除法计算。 红球有8个,白球有2个,红球的个数是白球的几倍?8÷2=4 (2)“求一个数的几倍是多少”用乘法计算。
红球有8个,白球的个数是红球的2倍。白球有多少个?8*2=16(个) (3)“已知一个数的几倍是多少,求这个数”用除法计算。
红球有8个,是白球个数的2倍。白球有多少个?8÷2=4(个) 8、有余数除法:平均分后有剩余的时候就用有余数的除法算式表示。
34÷5=6……4 读作34除以5等于6余4.其中4叫余数。在有余数的除法算式中,余数一定要比除数小,但是余数不一定比商小。
如:99÷10=9……9 10÷6=1……4 被除数=商*除数+余数 除数=(被除数—余数)÷商 二、观察物体 站在一个角度,最多能看到物体的三个面。(正面、上面、侧面) 侧面分左侧和右侧,在生活中左右两侧看到的物体是不同的。
一个正方体从正面、侧面和上面看到的都是正方形。 能正确画出不同方位看到的平面图形。
三、方向与位置 1、生活中的方向 早晨太阳升起的方向是东,按照顺时针方向依次是东南西北。(要求学生能在生活中找到这四个方向) 当你面向东时,你的后面是西,左面是北右面是南。
当你面向西时,你的后面是东,左面是南右面是北。 当你面向北时,你的后面是南,左面是西右面是东。
当你面向南时,你的后面是北,左面是东右面是西。 2、图纸中的方向:一般图纸都是按照上北下南左西右东绘制的。
在图纸上会有一个向上的箭头标明北。在回答问题前先在图纸上下左右四个方位标上北南西东四个字,然后再回答题中的问题。
如果图纸中出现了其他方向的箭头,请先找到北,并把北面转向上,然后再按照上北下南左西右东的方法找到其他方向,然后再回答问题。 四、时、分、秒 1、钟面上的知识 钟面上有12个数字,12个大格,60个小格。
钟面上时针走1大格是1时。 分针走1小格是1分,分针走1大格是5分。
秒针走1小格是1秒,走1大格是5秒。 时针走1大格分针走1圈,1时=60分。
分针走1小格秒针走1圈,1分=60秒 在1天当中,时针转2圈,分针转24圈。 2、我们学习过的计量单位有: 时间单位:1时=60分 1分=60秒 1日=24时 半小时=30分 1刻钟=15分 1星期=7天 长度单位:1m=100cm 人民币单位:1元=10角 1角=10分 1元=100分 高级单位 低级单位 时 分 秒 M cm 元 角 分 3、单位名称的转换: 单名数 单名数:把高级单位转换成低级单位*进率 把低级单位转化成高级单位÷进率 3m=( )cm 想:1m=100cm 3m就是3个100cm, 100*3=300 所以3m=300cm 50角=( )元 想:10角=1元 50÷10=5,50角里有5个10角,所以50角=5元 单名数 复名数:单名数÷进率=高级单位……低级单位 130分=( )时( )分 想:60分=1时 130÷60=2……10 所以130分=1时10分 205cm=( )m( )cm 想:100cm=1m 205÷100=2……5 所以205cm=2m5cm 65分=( )角( )分 想:10分=1角 65÷10=6……5 所以65分=6角5分 复名数 单名数:高级单位*进率+低级单位 3时55分=( )分 想:1时=60分 3*60+55=235 所以3时55分=235分 2m9cm=( )cm 想:1m=100cm 2*100+9=209 所以2m9cm=209cm 3元4角=( )角 想:1元=10角 3*10+4=34 所以3。
5.小学数学学习经验分享:小学生如何学好数学思维
数学是一门非常重要的学科,在我们的日常生活中给予很多的帮助,对于人类经济以及社会的进步也起到了巨大的促进作用。
因此学好数学对我们是至关重要的。而小学数学是我们数学学习的基础,打好基础有限的极为重要,下面来听听专家的意见吧。
低年级的家长朋友请注意—小朋友如何学好数学思维? 很多家长朋友问我,一、二年级的小孩子需要学数学思维吗,需要上辅导班吗,对他们来说是不是太难了?您有这样的疑问并不奇怪,因为您还不了解一、二年级学的是什么,心中自然有困惑。其实要解决这样的疑问并不难,只要亲身感受一下课堂,一个不是以传授知识为主要目的场所,一个启迪智慧,培养兴趣的好途径。
其实,一、二年级的教学都是以故事、诗歌、谜语为载体来开展教学的,对孩子来说是在娱乐中学习,并没有您想象中的枯燥、乏味。在各大教学点我们会陆续开办免费的公益讲座,希望您能多带孩子来参加,解开心中的疑惑,了解和体会小学生的课堂。
小孩子要学习数学,究竟要怎么做呢,家长朋友又该注意些什么呢?其实,很简单,任何阶段的学习都有这样的特点:反复练习。一遍是远远不够的,温故而知新嘛,更何况对于学的快又忘得快的小家伙呢。
他们的耐性当然是不及成年人,一小会儿可能就厌烦了,这时候就要看家长朋友们的了,陪同他定时定点的学习有助于养成良好的学习习惯,和培养坚持不懈意志品质。这其中学习的形式应该是多样化的,家长与孩子比赛呀,让小朋友当老师作讲解呀,或者一同作益智游戏呀。
家长朋友们对待小朋友一定要宽容,看到这您一定笑我,自己的孩子能不疼吗。虽然如此,但我们的家长往往希望自己的孩子出类拔萃、高人一等,这种望子成龙的心态无可厚非,但不可急于求成,过分强求。
比如,您或许会要求您的孩子上课注意听讲,不要溜号,其实小朋友的心理、生理尚未发育完全,他不可能长时间的集中注意力,这时只要老师抓准孩子精力、注意力集中的黄金时间段,把一堂课的主体内容讲解透彻,其他时间孩子即使会有小小放松也不必紧张,不会影响他的学习效果与质量。 家长朋友要允许孩子们的小马虎,孩子毕竟是孩子,他们不是精密的实验仪器,怎么能够不犯错呢?关键是找出错误的原因,而不是一味的斥责,如果是知识点没掌握,必须要及时地与老师交流反馈,以便重新讲解进而学习。
如果只是偶尔的失误则可以通过适当的练习加强对知识的记忆和理解。再者,家长朋友一定不要拿别人的孩子与自己的孩子比,小孩子自尊心强,不要因激励孩子,反而伤害了他。
只要他相对自己是有进步的,就要夸他,鼓励他!好孩子都是夸出来的! 最后,我想对各位家长说,凡事顺其自然,莫强求;如果孩子有兴趣,就多学一些知识,重要的是让他做自己想做的事,给他快乐的童年!! 12参与越多,收获越多!你可能还感兴趣的相关文章正方形的面积公式在平面几何学中,正方形是具有四条相等的边和四个相等内角的多边形。正方形是正多边形的一种,即正四边形。
若S为正方形的面积,C为正方形的周长,a为正方形的边长,则正方形面积计算公式:S =a*a(即a的2次方或a的平方),或S=对角线*对角线÷2.不可错过的原版数学启蒙读物:Mathstart第3级系列汇总三年级上册数学应用题大全(138题)三年级数学应用题大全(72题)小学三年级数学应用题精选。
6.二年级数学学习内容有哪些
从课前、上课、作业、阅读等几个方面对二年级学生提出应重点培养的学习习惯方面的内容。
1、课前:
学生须将数学课本、课堂练习册、演草本、学习用具等准备好并摆放在课桌上;在老师指导下,合理组建学习小组,并复习与本节课有关的旧知识。
2、上课:
学会倾听别人的发言,边听边想,分清重点、非重点;以一定速度默读,边读边思考;积极回答老师提出的问题,回答问题要完整,学会完整地口述解题思路;能独立思考问题,思考时有条理、有根据,敢于质疑问难;能用较准确的数学语言回答问题。小组内学会发挥集体智慧,理顺总结探究过程,小组之间互提建议,在交流中互相学习。
3、作业:
先复习再作业,看清楚题目要求,弄懂题意;作业整洁,书写工整、规范、美观;按时独立完成作业,无抄袭现象;做作业要专心,不边做边玩;能按要求进行检验,掌握验算的一般方法,中高年级做到自觉验算,能根据实际情况灵活合理地进行验算。
4、阅读:
阅读有详有略,有重点、非重点之分;根据自己的兴趣有选择地阅读自己喜欢的数学课外读物。养成自觉阅读教科书和课外读物的习惯;阅读后同学之间能互相交流,有自己的独到见解,喜欢钻研数学问题。
在实施中,每位数学老师根据本班的实际情况将学生分为上、中、下三类,按照三个层次对他们分别提出不同的要求,使每一个学生的数学学习习惯都得到不同程度的提高。尤其对于后进生,教师要针对其不良的习惯,如,计算不仔细,读题不认真,上课不听讲等做耐心细致的工作,多接触、多辅导、多鼓励他们,从改变不良的习惯入手,以养成良好的习惯为突破口,促进其学习方式的转变和学习成绩的提高。
现从下面几方面对二年级学生数学阅读提出具体的要求:
二年级:
①会看懂课文中的注解、法则、结语,并能用准确的数学术语正确表达计算方法、解题思路。
②在阅读过程中初步体验自己提出问题、自己分析问题、自己解决问题的过程。
③初步养成在阅读课本后试做课后习题的习惯。
④在课堂上初步学会带着问题阅读课文,并学着针对自学提纲展开对例题的讨论。
⑤初步学会默读课文。
⑥初步培养克服学习中困难的意志。
⑦ 数学基础知识有哪些
什么是数学基础知识
众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手. 概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来. 因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法. 一、从概念的产生背景着手,层层深入 对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它. 教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍? 这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题? 紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 . 在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解. 二、从概念的生活背景出发,创设学习情境 很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸. 等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中. 为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念: 阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当......>>
小学数学的基础知识有哪些
小学数学学习概述
数学学习主要是对学生数学思维能力的培养.这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学.
学习类型分析
1.方式性分类
(1)接受学习与发现学习
定义:将学习的内容以定论的形式呈现给学习者的学习方式.
模式:呈现材料—讲解分析—理解领会—反馈巩固
(2)发现学习
定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式.
模式:呈现材料—假设尝试—认知整合—反馈巩固.
2.知识性分类一
(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动.过程:选择—领会—习得——巩固
(2)技能学习
定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程.
过程:演示—模仿—练习—熟练—自动化
(3)问题解决学习
以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动.
提出问题—分析问题—解决问题—反思过程
3.知识性分类二
(1)概念性(陈述性)知识的学习
把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识.
概念学习:同化与形成.
利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成.概念形成是小学生获得数学概念的主要形式.
(2)技能性(程序性)知识的学习
小学数学技能主要是运算技能. 运算技能的形成分为三个阶段:
①认知阶段:“引导式”的尝试错误.从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征.②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确.③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率.
(3)问题解决(策略性知识)的学习
通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习.
小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性
尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一
定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别.
4.任务性分类
(1)记忆操作类学习
如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等.
(2)理解性的学习
如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题.
(3)探索性的学习
如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等.
小学生数学认知学习
一、小学生数学认知学习的基本特征
1.生活常识是小学生数学认知的起点
要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”.
2.小学生数学认知是一个主体的数学活动过程
数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力......>>
小学数学基础知识包括哪几个方面?
数学与计算、量与计量、百分数、比和比例、应用题、代数初步知识、几何初步知识、统计初步知识八大部分
初中数学基础知识点有哪些
初中数学基础知识大全:直角座标系与点的位置
1. 直角座标系中,点A(3,0)在y轴上。
2. 直角座标系中,x轴上的任意点的横座标为0。
3. 直角座标系中,点A(1,1)在第一象限。
4. 直角座标系中,点A(-1,1)在第二象限。
5. 直角座标系中,点A(-1,-1)在第三象限。
6. 直角座标系中,点A(1,-1)在第四象限。
初中数学基础知识大全:特殊三角函数值
1.cos30°=√3/2
2.sin2 60°+ cos2 60°= 1
3.2sin30°+ tan45°= 2
4.tan45°= 1
5.cos60°+ sin30°= 1
初中数学基础知识大全:圆的基本性质
1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
数学的基础理论有哪些
“数与代数”领域中主要是最基本的数、式、方程(及不等式)和函数的内容.
⑴在顾及知识的纵向逻辑结构的前提下,突出重点,适当精简整合.
⑵螺旋上升地呈现重要的概念和思想,不断深化对它们的认识,例如:使方程和函数交替出现,即按一次方程“组”,一次函数,二次方程,二次函数的顺序螺旋上升.
⑶联系实际,体现知识的形成和应用过程,突出建立数学模型的思想.
初三数学基础知识有哪些?
方程,平面几何,概率
⑧ 数学与应用数学专业日常开设哪些课程
一提到数学系,大家都会露出敬佩而又畏惧的表情,毕竟数学曾是大家的噩梦。我向大家介绍一下数学专业的基础课,有:数学分析、高等代数、解析几何,还要上:等等。当然了数学系的学生也是要上公共大课的,比如大一的时候有的学校会安排思修课,军事理论课,心理健康课。大二就会安排大学物理、c语言等等,c语言真的是和核心课程一样烧脑。
大二开设的实变函数据说特别难,我已经预料到我的头发的下场了。(哭泣)