当前位置:首页 » 基础知识 » 初二人教数学知识点归纳
扩展阅读
桩基础临期需要多久 2024-11-27 09:15:34
坐摩天轮吹牛的小知识 2024-11-27 09:08:43

初二人教数学知识点归纳

发布时间: 2024-06-20 22:51:22

㈠ 人教版初二数学知识点总结

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

数据的分析

1、平均数

①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方差或标准差刻画。

③方差是各个数据与平均数差的平方的平均数。

④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

八年级 数学知识点归纳

分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的 方法 分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

学好数学的关键就在于要适时适量地进行 总结 归类,接下来我就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。

全等三角形的性质:全等三角形对应边相等、对应角相等。

全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的'边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

人教版八年级数学全等三角形知识点讲解就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

初二数学 复习方法 总结

一、初中数学中考复习方法:

数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,勤能补拙是良训,一分辛劳一分才。

1.复习一定要做到勤

勤动手:做题不要看,一定要算,不会的知识点写下来,记在 笔记本 上。

勤动口:不会的有疑问的一定要问老师,时间不等人,在没有时间可以浪费。而且学会与同学讨论问题。

勤动耳:老师讲的复习课一定要听,不要认为这道题会,老师讲就可以溜号,须知温故可知新。

勤动脑:善于思考问题,积极思考问题——吸收、储存信息

勤动腿:不要参加过于激烈的运动,防止受伤影响学习,但要运动,每天慢跑30分钟即可,报至状态。

2.初中数学复习还要强调两个要点:

一要:动手,二要:动脑。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知之间的联系,多问几个为什么,多体会考的哪个知识点。

动手就是多实践,多做题,要拳不离手曲不离口。同学就是题不离手,这两个要点大家要记住并且要坚持住。动脑又动手,才能地发挥大脑的效率。这也是老师的 经验 。

3.用心做到三个一遍

上课要认真听一遍:听老师讲的方法知识等。

动手算一遍:按照老师的思路算一遍看看是否融会贯通。

认真想一遍:想想为什么这么做题,考的哪个知识。

4.重视简单的学习过程

读好一本教科书它是教学、中考的主要依据;

记好一本笔记方法知识是教师多年经验的结晶,每人自己准备一本错题集;

做好做净一本习题集它是使知识拓宽;

这些看似平凡简单,但是确实老师亲身的体验,用心观察我们的中考、高考状元,其实他们每天重复的不就是老师刚刚说的吗?

没有宝典神功,只有普普通通。最最难能可贵的是坚持。

资源可以的话,找几套往届的期末考试题,是自己县区的,其他县区也可以(考点差不多一样的),在规定时间内,摸摸底,熟悉每个章节考的的题型,练练自己的做题效率。很多同学第一次做练习出错,如果不及时纠正、 反思 ,而仅仅是把答案改正,那么他没有真正地弄明白自己到底错在什么地方,也就没弄明白如何应用这部分知识,最终会导致在今后遇到类似的问题一错再错。


人教版初二数学知识点总结相关 文章 :

★ 初二数学知识点归纳上册人教版

★ 人教版八年级数学上册知识点总结

★ 初二数学人教版知识点总结归纳

★ 初二数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 人教版初二数学上知识点总结

★ 初二数学上册知识点总结人教版

★ 人教版初二数学上学期知识点总结

★ 初二数学知识点人教版

★ 人教版初二上数学知识点

㈡ 八年级数学的知识点归纳

学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

数学知识点八年级

【统计的初步认识】

1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。

2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。

3、能够看出折线统计图所提供的信息,并回答相关的问题。

补充内容:

1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。

2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。

课后练习

1.统计学的基本涵义是(D)。

A.统计资料

B.统计数字

C.统计活动

D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。

2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。

A.每一个国有工业企业

B.该地区的所有国有工业企业

C.该地区的所有国有工业企业的生产经营情况

D.每一个企业

3.要了解20个学生的学习情况,则总体单位是(C)。

A.20个学生

B.20个学生的学习情况

C.每一个学生

D.每一个学生的学习情况

4.下列各项中属于数量标志的是(B)。

A.性别

B.年龄

C.职称

D.健康状况

初二下册数学知识点 总结

【抽样调查】

(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。

(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。

(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。

(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。

课后练习

1.抽样成数是一个(A)

A.结构相对数B.比例相对数C.比较相对数D.强度相对数

2.成数和成数方差的关系是(C)

A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大

C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大

3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)

A.全面调查B.非全面调查C.一次性调查D.经常性调查

4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)

A.40%B.4.13%C.9.18%D.8.26%

5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)

A.甲产品大B.乙产品大C.相等D.无法判断

数学知识点八年级

菱形的判定定理

1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:

1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图

线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。


八年级数学知识点相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 八年级数学知识点总结

★ 初二数学上册知识点总结

★ 初二数学知识点归纳

★ 初二数学知识点复习整理

★ 八年级数学上知识点归纳

★ 八年级数学上册知识点归纳

★ 八年级上册数学知识点整理

㈢ 初二数学都有哪些知识点

归纳如下:

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)•(a +b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

3.将原多项式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.

(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

(3)初二人教数学知识点归纳扩展阅读:

概念口诀

有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。

合并同类项

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

㈣ 初二数学人教版知识点归纳

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

八年级 数学知识点

数据的收集、整理与描述

一.知识框架

二.知识概念

1.全面调查:考察全体对象的调查方式叫做全面调查.

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.

3.总体:要考察的全体对象称为总体.

4.个体:组成总体的每一个考察对象称为个体.

5.样本:被抽取的所有个体组成一个样本.

6.样本容量:样本中个体的数目称为样本容量.

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.

8.频率:频数与数据总数的比为频率.

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.

初二下册数学知识点 总结

1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

10.列一元一次方程解应用题:

(1)读题分析法:…………多用于"和,差,倍,分问题"

仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法:…………多用于"行程问题"

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

初二数学学习技巧

自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

自信才能自强

在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。


初二数学人教版知识点归纳相关 文章 :

★ 初二数学知识点归纳上册人教版

★ 人教版八年级数学上册知识点总结

★ 初二数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 人教版八年级数学上册知识点归纳

★ 初二数学下册知识点人教版

★ 人教版八年级下册数学复习提纲

★ 新人教版初中数学复习资料

★ 数学八年级上册知识点

★ 数学八年级上册知识人教版

㈤ 八年级数学知识点下册人教版

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二数学下册知识点归纳

第一章一元一次不等式和一元一次不等式组

一、一般地,用符号(或),(或)连接的式子叫做不等式.

能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

不等式组的解集:一元一次不等式组各个不等式的解集的公共部分.

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab,则a+cb+c;2、若ab,c0则acbc若c0,则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac

三、解不等式的步骤:1、去分母;2、去括号;3、移项合并同类项;4、系数化为1.四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集.五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.

六、常考题型:1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.

第二章分解因式

一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形.

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.

四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法.

第三章分式

注:1对于任意一个分式,分母都不能为零.

2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.

3分式的值为零含两层意思:分母不等于零;分子等于零.(中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)

常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.

八年级数学知识点

1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。例1、1、在同一平面内两条直线的位置关系为(相交)和(平行)。2、两条直线相交成直角时,就说这两条直线互相垂直,其…

平行四边形矩形菱形正方形梯形等腰梯形图形两组对边分别平行的四边形。定义用“”表示平行四边形,例如:ABCD,平行四边形ABCD记作有一个角是直角的平有一组邻边相等的平行四边形是菱形有一组邻边相等且…

第十八章平行四边形的认识知识点回顾:平行四边形、特殊平行四边形的特征以及彼此之间的关系1.矩形是特殊的平行四边形,矩形的四个内角都是_____。矩形的对角线___2.菱形是特殊的平行四边形,菱形是四条边都__,它的两条对角线__每条对角线平…

特殊的平行四边形和一元二次方程的知识点归纳

【菱形】

1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2.菱形的性质:

(1)菱形的性质有:①平行四边形的一切性质;②四条边都相等;③对角线互相垂直,并且每一条对角线平分一组对角;④菱形是对称轴图形,它有2条对称轴,分别为它的两条对角线所在的直线。

(2)菱形面积=底×高=对角线乘积的一半。

3.菱形的判定:

(1)用定义判定(即一组邻边相等的平行四边形是菱形)。

(2)对角线互相垂直的平行四边形是菱形。

(3)四条边都相等的四边形是菱形。

综上可知,判定菱形时常用的思路:

四条边都相等菱形

菱形四边形

平行

四边形有一组邻边相等菱形

【矩形】

1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

2.矩形的性质:(1)具有平行四边形的一切性质;(2)矩形的四个角都是直角;

(3)矩形的四个角都相等。

4.矩形的判定方法:

(1)用定义判定(即有一个角是直角的平行四边形是矩形);

(2)三个角都是直角的四边形是矩形;

(3)对角线相等的平行四边形是矩形。

综上可知,判定矩形时常用的思路:

【正方形】

1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(1)边:四条边相等,邻边垂直且相等,对边平行且相等。

1(2)角:四个角都是直角。

(3)对角线:对角线相等且互相垂直平分,每条对角线平分一组对角。

初二 数学学习方法

一该记的记,该背的背,不要以为理解了就行

有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。

因此,数学的定义、法则、公式、定理等一定要记熟,有些能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。

对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。

1、“方程”的思想

数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度.时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。

物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好 其它 形式的方程。

所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

2、“数形结合”的思想

大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。

3、“对应”的思想

“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。

三自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。


八年级数学知识点下册相关 文章 :

★ 八年级下册数学知识点整理

★ 八年级数学下册知识点整理

★ 初二数学下册知识点归纳与数学学习方法

★ 初中八年级数学下册知识点

★ 八年级下册数学知识点

★ 八年级数学知识点整理归纳

★ 八年级下册数学知识点归纳

★ 初二数学下册知识点人教版

★ 八年级下册的数学知识点

★ 初二数学下册知识点

㈥ 人教版八年级数学知识点

学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四 总结 ”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

二、轴对称图形:

一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

1、轴对称:

两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

2、轴对称图形与轴对称的区别与联系:

(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

3、轴对称的性质:

(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

三、用坐标表示轴对称

1、点(x,y)关于x轴对称的点的坐标为(x,-y);

2、点(x,y)关于y轴对称的点的坐标为(-x,y);

3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

四、关于坐标轴夹角平分线对称

点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)

点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)

八年级数学知识点

1、全等三角形的对应边、对应角相等

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5、边边边公理(SSS)有三边对应相等的两个三角形全等

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7、定理1在角的平分线上的点到这个角的两边的距离相等

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

9、角的平分线是到角的两边距离相等的所有点的集合

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13、推论3等边三角形的各角都相等,并且每一个角都等于60°

14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15、推论1三个角都相等的三角形是等边三角形

16、推论2有一个角等于60°的等腰三角形是等边三角形

17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18、直角三角形斜边上的中线等于斜边上的一半

19、定理线段垂直平分线上的点和这条线段两个端点的距离相等

20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

22、定理1关于某条直线对称的两个图形是全等形

23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

初二 数学学习方法 十大技巧

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。


人教版八年级数学知识点相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 八年级数学上册知识点总结人教版

★ 人教版八年级数学上册知识点整理

★ 八年级数学知识点整理归纳

★ 八年级数学知识点整理

★ 人教版八年级上册数学课本知识点归纳

★ 初二数学知识点归纳上册人教版

★ 人教版八年级数学上册知识点

★ 人教版八年级上册数学知识点总结

★ 新人教版八年级数学上册知识点

㈦ 八年级数学必备知识点总结

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四 总结 ”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

八年级上册数学知识点

(一)运用公式法

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

八年级数学重要知识点

【概率初步】

23.1确定事件和随机事件

1.在一定条件下必定出现的现象叫做必然事件

2.在一定条件下必定不出现的现象叫做不可能事件

3.必然事件和不可能事件统称为确定事件

4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性

23.3时间的概率

1.用来表示某事件发生的可能性大小的数叫做这个事件的概率

2.规定用0作为不可能事件的概率;用1作为必然时间的概率

3.事件A的概率我们记作P(A);对于随机事件A,可知0

4.如果一项可以反复进行的试验具有以下特点:

(1)试验的结果是有限个,各种结果可能出现的机会是均等的;

(2)任何两个结果不可能同时出现

那么这样的试验叫做等可能试验

5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n

6.列举法、树状图、列表

23.4概率计算举例


八年级数学必备知识点总结相关 文章 :

★ 八年级数学知识点整理归纳

★ 人教版八年级数学上册知识点总结

★ 初二数学知识点归纳整理

★ 八年级下册数学知识点整理

★ 初中八年级数学知识点总结

★ 初二数学知识点归纳梳理

★ 初二数学基础知识点归纳

★ 初二数学上册知识点总结

★ 初二数学知识点整理归纳

★ 初二数学知识点整理

㈧ 初中八年级数学知识点

各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

轴对称图形:

一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

1、轴对称:

两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

2、轴对称图形与轴对称的区别与联系:

(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

3、轴对称的性质:

(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

三、用坐标表示轴对称

1、点(x,y)关于x轴对称的点的坐标为(x,-y);

2、点(x,y)关于y轴对称的点的坐标为(-x,y);

3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

四、关于坐标轴夹角平分线对称

点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)

点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)

初二数学下册知识点归纳

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

初二数学学习技巧

自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

自信才能自强

在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。


初中八年级数学知识点相关 文章 :

★ 八年级数学知识点整理归纳

★ 人教版八年级数学上册知识点总结

★ 初中八年级上册数学知识点

★ 初中八年级上册数学知识点总结归纳

★ 八年级数学知识点总结

★ 初二数学上册知识点总结

★ 初二数学知识点复习整理

★ 八年级上册数学知识点整理

★ 八年级数学知识点上册

㈨ 八年级数学重点知识点总结

失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

八年级上册数学知识点

1、全等三角形的对应边、对应角相等

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5、边边边公理(SSS)有三边对应相等的两个三角形全等

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7、定理1在角的平分线上的点到这个角的两边的距离相等

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

9、角的平分线是到角的两边距离相等的所有点的集合

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13、推论3等边三角形的各角都相等,并且每一个角都等于60°

14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15、推论1三个角都相等的三角形是等边三角形

16、推论2有一个角等于60°的等腰三角形是等边三角形

17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18、直角三角形斜边上的中线等于斜边上的一半

19、定理线段垂直平分线上的点和这条线段两个端点的距离相等

20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

22、定理1关于某条直线对称的两个图形是全等形

23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

28、定理四边形的内角和等于360°

29、四边形的外角和等于360°

八年级数学知识点 总结

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来

初二数学 学习 经验 心得

1学好初中数学课前要预习

初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。

初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。

2学习初中数学课上是关键

初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,在这里提醒大家,初中数学课上的时候尽量不要记笔记。

你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。

3课后可以适当做一些初中数学基础题

在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。

但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并总结,

数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.


八年级数学重点知识点总结相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 八年级数学知识点归纳总结

★ 初二数学上册知识点总结

★ 八年级下册数学知识点整理

★ 八年级数学知识点总结

★ 八年级数学知识点归纳

★ 八年级数学上知识点总结

★ 八年级数学上知识点归纳

★ 初二数学重点知识归纳整理