当前位置:首页 » 基础知识 » 九年级上册数学第一章二次函数知识点
扩展阅读
三年级数学小报知识大全 2024-11-27 09:45:40

九年级上册数学第一章二次函数知识点

发布时间: 2024-06-20 07:37:34

1. 初三数学二次函数最全知识点整理

初中数学二次函数是比较难的一部分,下面我为大家整理 二次函数知识点 ,仅供参考。

初中数学二次函数知识点总结

二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

如何提高初中数学成绩

如果平时遇到一道题你就放弃,请问考试中孩子会懂得坚持吗?孩子会理解坚持的意义吗?那么信心也是一个道理,平时遇到问题都有信心解决,考试中遇到难题第一想法是干劲十足,相信自己有办法解决。

再者,平时的难题,一个思路不通孩子会换一个思路想问题,而不爱专研的孩子就是一根筋走到底,他的心里只有一种解决方法,再无其他。何谈灵活运用呢。如果一道题你有五种方法,彼此融会贯通,请问你是否有信心做对类似的题目呢?

书读百遍,其义自现。我父亲常劝导我一句话,“先把课本读厚,再把课本读薄”。其余时间几乎没有在我学习上费过心思,全拼自己的自学自悟。学习也一样,见得题目多了,理解的技巧熟练了,可以避免计算误区和一些弯路。所以必要的计算练习是不可或缺的。有指导性和针对性的训练也是不可或缺的。

2. 初三数学二次函数重要知识点整理

数学的二次函数是非常重要的,下面我就大家整理一下初三数学二次函数重要知识点整理,仅供参考。

二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
二次函数顶点坐标公式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k

[抛物线的顶点P(h,k)]

对于 二次函数 y=ax^2+bx+c

其顶点坐标为 (-b/2a,(4ac-b^2)/4a)

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]

其中x1,2= -b±√b^2-4ac

注:在3种形式的互相转化中,有如下关系:

______

h=-b/2a= (x?+x?)/2 k=(4ac-b^2)/4a 与x轴交点:x?,x?=(-b±√b^2-4ac)/2a
二次函数顶点坐标公式推导
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k

[抛物线的顶点P(h,k)]

对于二次函数y=ax^2+bx+c

其顶点坐标为 (-b/2a,(4ac-b^2)/4a)
二次函数重要考点整理
考点: 函数 以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.

考点:用待定系数法求二次函数的解析式

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.

注意求函数解析式的步骤:一设、二代、三列、四还原.

考点:画二次函数的图像

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.

考点:二次函数的图像及其基本性质

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.

以上就是我为大家整理的初三数学二次函数重要知识点整理。

3. 初三数学二次函数常见知识点整理

想要学好数学知识点是很重要的,下面我就大家整理一下初三数学二次函数常见知识点整理,仅供参考。

二次函数定义
定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。
二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0);

顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k));
二次函数的图像与性质
1 二次函数 的图像是一条抛物线。

2抛物线是轴对称图形。对称轴为直线x=-b/2a。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

3二次项系数a决定抛物线的开口方向。

当a>0时,抛物线向上开口;

当a<0时,抛物线向下开口。

4一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点;

Δ=b^2-4ac=0时,抛物线与x轴有1个交点;

Δ=b^2-4ac<0时,抛物线与x轴没有交点。
二次函数抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

以上就是我为大家整理的初三数学二次函数常见知识点整理。

4. 初三二次函数知识点总结

二次函数是出只能怪数学比较重点的一部分,下面我为大家总结了初三二次函数知识点,薯做仅供大家参考。

二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

(3)当b=c=0时,二次函数y=ax2是最简单的二键腔次函数;

(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.
二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

说明:(1)任何一个 二次函数 通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点
二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.

(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

当a>0时,图象的开口向上,有最低稿手衫点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

(3)抛物线y=ax2+c与y=ax2的关系.

抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

以上就是我为大家总结的初三 数学 二次函数知识点,仅供参考,希望对大家有所帮助。

5. 二次函数的初三数学知识点归纳

1.二次函数的一般形式:y=ax2+bx+c.(a0)



2.关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距,即二次函数图象必过(0,c)点.

3. y=ax20)的特性:当y=ax2+bx+c (a0)中的.b=0且c=0时二次函数为y=ax20);

这个二次函数是一个特殊的二次函数,有下列特性:

(1)图象关于y轴对称;(2)顶点(0,0);

4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值,从而求出解析式-------待定系数法.

5.二次函数的顶点式:y=a(x-h)2+k(a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k.

6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式.

7.二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下:

k值增大=图象向上平移;

k值减小图象向下平移;

(x-h)值增大=图象向左平移;

(x-h)值减小图象向右平移.

8.二次函数y=ax2+bx+c (a0)的图象及几个重要点的公式:

9.二次函数y=ax2+bx+c(a0)中,a、b、c与的符号与图象的关系:

(1)a=抛物线开口向上;0 抛物线开口向下;

(2)c=抛物线从原点上方通过;c=0 抛物线从原点通过;

c=抛物线从原点下方通过;

(3)a, b异号=对称轴在y轴的右侧;a, b同号=对称轴在y轴的左侧;

b=0对称轴是y轴;

(4)b2-4ac=抛物线与x轴有两个交点;

b2-4ac =0=抛物线与x轴有一个交点(即相切);

b2-4ac=抛物线与x轴无交点.

10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.

6. 初三数学二次函数知识点总汇

一、内容综述:

四种常见函数的图象和性质总结 图象
特殊点
性质









与x轴交点

与y轴交点(0,b)
(1)当k>0时,y随x的增大而增大;

(2)当k<0时,y随x的增大而减小.











与x、y轴交点是原点(0,0)。
(1)当k>0时,y随x的增大而增大,且直线经过第一、三象限;

(2)当k<0时,y随x的增大而减小,且直线经过第二、四象限











与坐标轴没有交点,但与坐标轴无限靠近。
(1)当k>0时,双曲线经过第一、三象限,在每个象限内,y随x的增大而减小;

(2) 当k<0时,双曲线经过第二、四象限,在每个象限内,y随x的增大而增大。









与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是 (-,)。
(1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。

(2)当 a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=

注意事项总结:

1.关于点的坐标的求法:

方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。

2.对解析式中常数的认识:

一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。

3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,还应掌握“顶点式”y=a(x-h)2+k及“两根式”y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。当已知图象过任意三点时,可设“一般式”求解;当已知顶点坐标,又过另一点,可设“顶点式”求解;已知抛物线与x轴交点坐标时,可设“两根式”求解。总之,在确定二次函数解析式时,要认真审题,分析条件,恰当选择方法,以便运算简便。

4.二次函数y=ax2与y=a(x-h)2+k的关系:图象开口方向相同,大小、形状相同,只是位置不同。y=a(x-h)2+k图象可通过y=ax2平行移动得到。当h>0时,向右平行移动|h|个单位;h<0向左平行移动|h|个单位;k>0向上移动|k|个单位;k<0向下移动|k|个单位;也可以看顶点的坐标的移动, 顶点从(0,0)移到(h,k),由此容易确定平移的方向和单位。

二、例题分析:

例1.已知P(m, n)是一次函数y=-x+1图象上的一点,二次函数y=x2+mx+n的图象与x轴两个交点的横坐标的平方和为1,问点N(m+1, n-1)是否在函数y=-图象上。

分析:P(m, n)是图象上一点,说明P(m, n)适合关系式y=-x+1,代入则可得到关于m,n的一个关系,二次函数y=x2+mx+n与x轴两个交点的横坐标是方程x2+mx+n=0的两个根,则x1+x2=-m, x1x2=n, 由平方和为1即x12+x22=(x1+x2)2-2x1x2=1,又可得到关于m, n的一个关系,两个关系联立成方程组,可解出m, n,这种利用构造方程求函数系数的思想最为常见。

解:∵P(m,n)在一次函数y=-x+1的图象上,

∴ n=-m+1, ∴ m+n=1.

设二次函数y=x2+mx+n的图象与x轴的两个交点的横坐标为x1,x2,

∴x12+x22=1,

又∵x1+x2=-m, x1x2=n,

∴ (x1+x2)2-2x1x2=1, 即m2-2n=1

由解这个方程组得:或。

把m=-3, n=4代入x2+mx+n=0,

x2-3x+4=0, Δ<0.

∴ m=-3, n=4(舍去).

把m=1, n=0代入x2+mx+n=0,

x2+x=0, Δ>0

∴点N(2,-1),

把点N代入y=-,当x=2时,y=-3≠-1.

∴点N(2,-1)不在图象y=-上。

说明:这是一道综合题,包括二次函数与一次函数和反比例函数,而且需要用到代数式的恒等变形,与一元二次方程的根与系数关系结合,求出m、n值后,需检验判别式,看是否与x轴有两个交点。当m=-3, n=4时,Δ<0,所以二次函数与x轴无交点,与已知不符,应在解题过程中舍去。是否在y=-图象上,还需把点(2,-1)代入y=-,满足此函数解析式,点在图象上,否则点不在图象上。

例2.直线 y=-x与双曲线y=-的两个交点都在抛物线y=ax2+bx+c上,若抛物线顶点到y轴的距离为2,求此抛物线的解析式。

分析:两函数图象交点的求法就是将两函数的解析式联立成方程组,方程组的解既为交点坐标。

解:∵直线y=-x与双曲线y=-的交点都在抛物线y=ax2+bx+c上,

由解这个方程组,得x=±1.

∴当x=1时,y=-1.

当x=-1时,y=1.

经检验:,都是原方程的解。

设两交点为A、B,∴A(1,-1),B(-1,1)。

又∵抛物线顶点到y轴的距离为2,∴ 抛物线的对称轴为直线x=2或x=-2,

当对称轴为直线x=2时,

设所求的抛物线解析式为y=a(x-2)2+k,又∵过A(1,-1),B(-1,1),

∴解方程组得

∴ 抛物线的解析式为y=(x-2)2-

即 y=x2-x-.

当对称轴为直线x=-2时,设所求抛物线解析式为y=a(x+2)2+k,

则有解方程组得,

∴ 抛物线解析式为y=-(x+2)2+

y=-x2-x+.

∴所求抛物线解析式为:y=x2-x-或y=-x2-x+。

说明:在求直线和双曲线的交点时,需列出方程组,通过解方程组求出x, y值,双曲线的解析式为分式方程,所以所求x, y值需检验。抛物线顶点到y轴距离为2,所以对称轴可在y轴左侧或右侧,所以要分类讨论,求出抛物线的两个解析式。

例3、已知∠MAN=30°,在AM上有一动点B,作BC⊥AN于C,设BC的长度为x,△ABC的面积为y,试求y与x之间的函数关系式。

分析:求两个变量y与x之间的函数关系式,就是想办法用x表示y,,BC=x,则想办法先用含x的代数式表示AC。

解:如图

在Rt△ABC中,

∵∠A=30°,∠BCA=90° BC=x,

∴AC=BC=x



说明:在含有30°、45°、60°的直角三角形中,应注意利用边之间的特殊倍数关系(如AC=BC)。

例4、如图,锐角三角形ABC的边长BC=6,面积为12,P在AB上,Q在AC上,且PQ∥BC,正方形PQRS的边长为x,正方形PQRS与△ABC的公共部分的面积为y。
(1)当SR恰落在BC上时,求x,
(2)当SR在△ABC外部时,求y与x间的函数关系式;
(3)求y的最大值。

略解:(1)由已知,△ABC的高AD=4。

∵△APQ∽△ABC,(如图一)

设AD与PQ交于点E∴





(2)当SR在△ABC的外部时, 同样有,

则,即AE=

∴y=ED·PQ=x(4-)=-2+4x()

(3)∵a=-<0,y=-其中,

∴当x=3时,y取得最大值6.

说明:此例将线段PQ的长设为x,正方形PQRS与△ABC的公共部分的面积设为y,寻找它们之间的函数关系.注意自变量的取值范围;在y取最大值时,要注意顶点(3,6)的横坐标是否在取值范围内.

例5.( 潍坊市中考题)某公园草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图一)作成的立柱。为了计算所需不锈钢管立柱的总长度,设计人员利用图二所示的坐标系进行计算。
(1)求该抛物线的解析式; (2)计算所需不锈钢管立柱的总长度。



分析:图中给出了一些数量,并已经过护栏中心建立了平面直角坐标系, 所以求二次函数的解析式关键是找到一些条件建立方程组。因为对称轴是 y轴,所以b=0,可以设二次函数为y=ax2+c.

解:(1)在如图所示坐标中,设函数解析式为y=ax2+c,B点坐标为(0,0.5),C点坐标为(1,0)。

分别代入y=ax2+c得:

,解得

抛物线的解析式为:y=-0.5x2+0.5

(2)分别过AC的五等分点,C1,C2,C3,C4,作x轴的垂线,交抛物线于B1,B2,B3,B4,则C1B1,C2B2,C3B3,C4B4的长就是一段护栏内的四条立柱的长,点C3,C4的坐标为(0.2,0)、(0.6,0),则B3,B4点的横坐标分别为x3=0.2,x4=0.6.
将x3=0.2和x4=0.6分别代入

y=-0.5x2+0.5得y3=0.48,y4=0.32

由对称性得知,B1,B2点的纵坐标:y1=0.32,y2=0.48

四条立柱的长为:C1B1=C4B4=0.32(m)

C2B2=C3B3=0.48(m)

所需不锈钢立柱的总长为

(0.32+0.48)×2×50=80(m)。

答:所需不锈钢立柱的总长为80m。