当前位置:首页 » 基础知识 » 数学知识点怎么掌握透
扩展阅读
美术生动漫怎么画 2024-11-27 17:46:57
经典黑魔鬼多少钱 2024-11-27 17:23:12

数学知识点怎么掌握透

发布时间: 2024-06-09 01:48:39

❶ 数学要怎么才能学的透彻

  1. 深刻理解概念。
    概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。
  2. 多看一些例题。
    细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
    不能只看皮毛,不看内涵。
    我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
    要把想和看结合起来。
    我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。
    各难度层次的例题都照顾到。
    看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显着的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。
  3. 多做练习。
    要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。
    必须熟悉各种基本题型并掌握其解法。
    课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。
    许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
    在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
    数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。
    多做综合题。
    综合题,由于用到的知识点较多,颇受命题人青睐。
    做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。
    “多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。
  4. 如何对待考试
    学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。
    功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。
    应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的,另外,对于试题必须考虑周全,特别是填空题,有的要注明取值范围,有的答案不只一个,一定要细心,不要漏掉。
    考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的

❷ 在学习高中数学的时候,如何才能快速学懂知识点

你好,高中数学的学习,最好能够从基础学起,在课堂上仔细做笔记,把老师讲的重要知识点都记一下,课后的时候,多看看,做题巩固,高中数学的知识点,不是我们学一下就能够会的,是需要我们重复的去学习,重复的去做题,才能把基础知识学好,高中课程很紧张,老师讲课的速度也是很快的,有些时候,同学们可能会跟不上老师讲课的速度,这个时候就需要同学们在课下的时候,多问老师了。
建议你配合着做一个升学规划,有很多的升学方案可以选择,可以根据你的成绩规划出最有利的升学方案。早做规划,在升学时才会更轻松达到升学目标。

❸ 小学数学教学中如何有机渗透数学思想

小学数学教学中如何有机渗透数学思想?数学的思想和数学的意识远比学生获得数学知识来的更有意义。教学中,不仅应重视知识的形成过程,还应努力挖掘学生数学知识的发生、形成、和发展过程中所蕴藏的数学思想方法,今天,朴新小编给大家带来数学教学的方法。

解读教材,在备课中体现数学思想

想在教学中有效渗透数学思想方法,首先应在备课时,完整地分析、研究教材,高屋建瓴,统揽全局,梳理并挖掘教材的主线和脉络,建立知识间联系,归纳、提炼出其知识的特性,有效预设,承上启下,寓教于学。

如北师大版五年级下册《“分数王国”与“小数王国”》一课中,挖掘学生的认知基础,预设将分数与小数互化,再进行比较,由一种形式变换成另一种形式的思想,将未知转化为已知,数本身的大小是不变的,但却可以因此直观进行比较,也为后续学习埋下了基础,这渗透了“转化”的数学思想方法。转化思想是一种解决数学问题的重要策略,学生将经历猜想、推理、研究等数学知识产生过程,是我们数学思维中常用的一张思想方法。

2.强调方法的提炼和指导

解题是学生学习数学的主要方式,也是教师教学的重要手段.因此教师应注意:一是在设计问题时要注意蕴涵化归思想方法;二是在知识形成的过程中,要揭示化归思想方法;三是在例题教学的时候,要突出化归思想方法;四是在解题的训练中要运用化归思想方法;五是在总结知识的同时也要总结化归思想方法.六是在引导学生解决问题时,要让学生从解题的技巧中,发现方法的产生、应用和发展过程,并从中提炼出化归思想方法,理解化归方法的本质.

3.反复再现,逐步渗透

数学知识是逐步深化的,这就导致了在知识发展的各阶段反映出的数学思想方法的层次性.我们在进行问题的解决时会出现多次化归的情形,并且有时化归的方向是不一样的.所以,对于化归方法的应用,我们应该注意其在不同知识阶段的再现和学生共同探索化归方法在不同阶段逐步形成的过程,启发学生的思维,加强对化归思想方法的认识.由于化归思想方法是在启发学生思维过程中逐步形成的,因此,在教学中,要特别强调解决问题后的“反思”,在这个过程中提炼出来的化归方法,对于学生来说较易于体会,易于接受.

数形结合思想有机渗透

一、在概念教学中渗透数形结合思想方法

在小学数学教学中,研究的对象包括数和形两个方面。“数”与“形”是两条主线,贯穿整个中小学数学教材之中,更是小学数学教学的基本内容之一。“数”与“形”相互转化、结合既是数学的重要思想,更是解决问题的重要方法。数形结合思想在小学数学概念教学中的应用尤为重要。

案例:24时计时法

教师:现在是夜里12时,人们一般都在睡觉。到了中午12时,时针走了一圈,一天才过了一半。现在又到夜里12时了,时针走了两圈,这才是一日呢!通过计算机的演示,你都知道了什么?

生1:一天有24小时。生2:一天就是一昼夜。生3:一天里时针转了2圈。生4:时针在走第二圈时,所有的刻度数都要加上12。下午1时,用24时计时法表示是13时。

教师:从0时到中午12时钟面上的12个数都用过了一遍,这刚半日。如果我们继续往下数,该是13时,13时也就是我们说的下午l时。

小结:像这种从0时到24时的计时方法,叫做24时计时法。

“24时计时法”是小学数学教学难点,从三年级学生的年龄特点出发,在认识24时计时法的教学过程中,教师选择了借助信息技术,使分针、时针的转动情况配之夜晚、白天、月亮、太阳的交替变化的画面,将时针运行两圈的情况与线段计时同步延伸运动,曲线变直,直线变曲,展示过程,形象地演示出难以理解的内容。通过曲变直形的变化帮助学生建立1日=24时的概念。体会1日包括白天和黑夜,知道夜里12时是上一天的结束也是新一天的开始,时针走两圈才是1日,1日是24时。体会从时针走的第2圈开始钟面上的数要加12才是24时计时法。

二、在解决问题的过程中渗透数形结合思想方法

以“解决问题”为核心的实际问题的教学,更注重从学生已有的知识经验与生活背景出发,给学生提供具有一定现实意义和趣味性的解决问题素材,为学生创设富有挑战性和开放性的问题情境,使学生的求知欲和探索欲得到满足。

案例:一辆汽车从甲城到乙城,因雨天路滑,速度降低20%。结果推迟1小时到达,原计划多少小时到达?

教师启发、引导学生利用四年级学过的画图策略,用长方形的面积表示出甲、乙两地的路程,长和宽分别表示速度和时间。画出如下的图形:

观察上面的图形,学生很快明白:图中①和③的面积相等,③图形的长是原计划的速度“1”,宽是时间“1小时”,图形③的面积是1×1,根据图形③的面积与图形①的面积相等,求出图形①的长是1-20%=80% 80%÷20%=4(小时),也就是原计划行驶的时间。

这样将抽象的应用题放在直观图形中,在直观图示的导引下,学生能充分理解数量间的关系,根据总数和份数求每份数,以及根据每份数和份数求总数的基本技能。沟通图形、表格及具体数量之间的联系,通过数形结合的训练,提高学生比较、分析和综合的能力。

❹ 怎样才能掌握好数学知识点呢

线的认识

知识点:1、认识直线、线段与射线,会用字母正确读出直线、线段和射线。直线:可以向两端无限延伸;没有端点。读作:直线AB或直线BA。线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)

补充知识点:1、画直线。过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。

2、明确两点之间的距离,线段比曲线、折线要短。3、直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。

平移与平行

知识点:1、感受平移前后的位置关系平行。(在同一平面内,永不相交的两条直线叫做平行线。)

2、平行线的画法。(1)固定三角尺,沿一条直角边先画一条直线。(2)用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺。(3)沿一条直角边在画出另一条直线。

3、能够借助实物,平面图形或立体图形,寻找出图中的平行线。

补充知识点:用数学符号表示两条直线的平行关系。如:AB∥CD。

相交与垂直

知识点:1、相交与垂直的概念。当两条直线相交成直角时,这两条直线互相垂直。(互相垂直:就是直线OA垂直于直线OB,直线OB垂直于直线OA)这两条直线的交点叫做垂足。(两条直线互相垂直说明了这两条直线的位置关系:必须相交,相交还要成直角。)

2、画垂线:(1)过直线上一点画垂线的方法。把三角尺的一条直角边与这条直线重合,直角顶点是垂足,沿着另一条直角边画直线,这条直线是前一条直线的垂线。注意,要让三角尺的直角顶点与给定的点重合。

(2)过直线外一点画垂线的方法。把三角尺的一条直角边与这条直线重合,让三角尺的另一条直角边通过这个已知点,沿着三角尺的另一条直角边画直线,这条直线就是前一条直线的垂线。注意,画图时一般左手持三角尺,右手画线。过直线外一点画一条直线的垂线,三角尺的另一条直角边必须通过给定的这个点。

补充知识点:1、会用数学符号表示两条直线互相垂直的关系。如:OAOB。

2、明确点到直线之间垂线段最短。

旋转与角

知识点:1、角的概念。由一点引出两条射线所组成的图形叫做角。角是由一个顶点和两条边组成的。

2、认识平角、周角。平角:角的两边在同一直线上,(像一条直线),平角等于180,等于两个直角。周角:角的两边重合,(像一条射线),周角等于360,等于两个平角,四个直角。

3、角的分类:小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;等于180度的角叫做平角;大于180度小于270度叫做优角(此为补充内容);等于360度的角叫做周角。

4、动手画平角、周角。

角的度量

知识点:1、认识度。将圆平均分成360份,把其中的1份所对的角叫做1度,记作1,通常用1作为度量角的单位。

2、认识量角器。量角器是把半圆平均分成180份,一份表示1度。量角器上有中心点、0刻度线、内刻度线、外刻度线。

3、量角器的使用方法。两合一看,两合是指中心点与角的顶点重合;0刻度线与角的`一边重合。一看就是要看角的另一边所对的量角器的刻度。4、看角的度数时要注意是看外刻度还是内刻度。交的开口向左看外刻度线,角的开口向右看内刻度线。

画角

知识点:1、用量角器画指定度数的角的方法。画一条射线,中心点对准射线的端点,0刻度线对准射线(两合),对准量角器相应的刻度点一个点(一看),把点和射线端点连接,然后标出角的度数。

2、30度、60度、90度、45度、75度、105度、135度、120度和150度用三角板比较方便。补充知识点:因为角是由两条射线和一个顶点组成的,所以在连线时,不能两点相连,而要冲过一点或不连到那一点。

❺ 怎样才可以把数学学的透彻并能灵活运用

怎样学好数学的是十三种好习惯
方法
1、认真“听”的习惯。
为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

2、积极“想”的习惯。
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

3、仔细“审”的习惯。
审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲银物脊、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

4、独立“做”的习惯。
练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

5、善于“问”的习惯。
俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。

6、勇于“辩”的习惯。
讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。

7、力求“断”的习惯。
民族的创新能力是综合蚂帆国力的重要表现,因此新大纲强调在数学教学中应重视培养学生的创新意识。教师应积极鼓励学生思考问题时不受常规思路局限,乐于和善于发现新问题,能够从不同角度诠释数学命题,能用不同方法解答问题,能创造性地操作或制作学具与模型。

8、提早“学”的习惯。
从小学生认识规律看,要获得良好的学习成绩,必须牢牢抓住预习、听课、作业、复习四个基本环节。其中,课前预习教材可以帮助学生了解新知识的要点、重点、发现疑难,从而可以在课堂内重点解决,掌握听课的主动权,使听课具有针对性。随着年级的升高、预习的重要性更加突出。

9、反复“查”的习惯。
培养学生检查的能力和习惯,是提高数学学习质量的重要措施,是培养学生自觉性和责任感的必要过程,这也是新大纲明确了的教学要求。练习后,学生一般应从“是否符合题意,计算是否合理、灵活、正确,应用题、几何题的解答方法是否科学”等几个方面反复检查验算。

10、客观“评”的习惯。
学生客观地评价自己和他人在学习活动中的表现,本身就是一种高水平的学习。只有客观地评价自己、评价他人,才能评出自信,评出不足,从而达到正视自我、不断反思、追求进步的目的,逐步形成辩证唯物主义认识观。

11、经常“动”的习惯。
数学知识具有高度的抽象性,小学生的思维带有明显的具体性,所以新大纲强调应重视从学生的生活经验中学习理解数学,加强实践能力的培养。在教学中,教师应强调学生手脑并用,以动促思,对难以理解的概念通过举实例加以解决,对较复杂的应用题通过画图找到正确的解答方法,对模糊的几何知识通过剪剪拼拼或实验达到投石问路的目的。

12、有心“集”的习惯。
学生在学习活动中犯错锋渗并不可怕,可怕的是同一问题多次犯错。为避免同一错误经常犯,有责任民的教师在教室里布置了错会诊专栏,有心计的学生建立错误的知识档案,将平时练习或考试中出现的错题收集在一起,反复警示自己,值得提倡。

13、灵活“用”的习惯。
学习的目的在于应用,要求学生在课堂上学到的知识加以灵活运用,既能起到巩固和消化知识的作用,又有利于将知识转化成能力,还能达到培养学生学习数学的兴趣的目的。

❻ 怎么才能把数学知识点背会

数学学习方法
这里我们讲一下数学学习的方法.这是我们应用国外的快速学习方法,根据数学学科特点提出来的.由于代数学习法和几何学习法的不同,我们分别进行讨论.
一、代数学习法.
抄标题,浏览定目标.
阅读并记录重点内容.
试作例题.
快做练习,归纳题型.
回忆小结
二、几何学习四大步.
1.①书写标题,浏览教材
②自我讲授,写出目录
2.①按目录,读教材
②自我讲授几何概念及定理
3.①阅读例题,形成思路
②写出解答例题过程
4.①快做练习.
②小结解题方法.
三.数学概念学习方法.
数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度.数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式.一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断.这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习.
下面我们归纳出数学概念的学习方法:
阅读概念,记住名称或符号.
背诵定义,掌握特性.
举出正反实例,体会概念反映的范围.
进行练习,准确地判断.
四、学公式的学习方法
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数.有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里.教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式.
我们介绍的数学公式的学习方法是:
书写公式,记住公式中字母间的关系.
懂得公式的来龙去脉,掌握推导过程.
用数字验算公式,在公式具体化过程中体会公式中反映的规律.
将公式进行各种变换,了解其不同的变化形式.
将公式中的字母想象成抽象的框架,达到自如地应用公式.
五、数学定理的学习方法.
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题.
下面我们归纳出数学定理的学习方法:
背诵定理.
分清定理的条件和结论.
理解定理的证明过程.
应用定理证明有关问题.
体会定理与有关定理和概念的内在关系.
有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行.
六、初学几何证明的学习方法.
在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展.
看题画图.(看,写)
审题找思路(听老师讲解)
阅读书中证明过程.
回忆并书写证明过程.
七 .提高几何证明能力的化归法.
在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧.这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的.
化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束.此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程.
提高几何证明能力的化归法:
1.审题,弄清已知条件和求证结论.
2.画图,作辅助线,寻找证题途径.
3.记录证题途径的各个关键步骤.
4.总结证明思路,使证题过程在大脑中形成清淅的印象.
八、波利亚解题思考方法.
预见法
收集资料,进行组织.
辨认与回忆,充实与重新安排.
分离与组合.
回顾
解答问题法.
弄清问题.
拟定问题.
实现计划.
回顾.
解题过程自问法.
我选择的是怎样的一条解题途径.
我为什么作出这样的选择?
我现在已进行到了哪一阶段?
这一步的实施在整个解题过程中具有怎样的地位?
我目前所面临的主要困难是什么?
解题的前景如何?
九 、数学学习的基本思维方法.
1. 观察与实验
2.分析与综合
3.抽象与概括
4.比较与分类
5.一般化与特殊化
6.类比联想与归纳猜想
十、理解、巩固、应用、系统化四步学习法
1.理 内容,标志,阶段,过程.
2.巩 固:透彻理解,牢固记忆,多方联想,合理复习.
3.应 用:理论,实践,具体,综合.
4.系统化: ①明确系统内部各要素的属性.
②使各要素之间形成多方的联系.
③概括各要素的各种属性,形成整体性.
④同化于原知识系统之中.
十一、高效学习方法在数学学习中的应用
超级学习方法

请采纳,谢谢