当前位置:首页 » 基础知识 » 数学题知识播放
扩展阅读
儿童画画涂料有哪些牌子 2024-11-28 06:37:25
同学们上课了ppt怎么做 2024-11-28 06:31:17
哪个动漫有狐狸熊猫白猫 2024-11-28 06:30:02

数学题知识播放

发布时间: 2024-05-16 01:14:09

⑴ 初中数学知识点及精选试题

精选试题
1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被()整除。
A. 111 B. 1000 C. 1001 D. 1111
解:依题意设六位数为 ,则 =a×105+b×104+c×103+a×102+b×10+c=a×102(103+1)+b×10(103+1)+c(103+1)=(a×103+b×10+c)(103+1)=1001(a×103+b×10+c),而a×103+b×10+c是整数,所以能被1001整除。故选C
方法二:代入法
2、若 ,则S的整数部分是____________________
解:因1981、1982……2001均大于1980,所以 ,又1980、1981……2000均小于2001,所以 ,从而知S的整数部分为90。

3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n个(n≤100)学生进来,凡号码是n的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。
解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。

4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ()
A. m(1+a%)(1-b%)元 B. m•a%(1-b%)元
C. m(1+a%)b%元 D. m(1+a%b%)元
解:根据题意,这批衬衣的零售价为每件m(1+a%)元,因调整后的零售价为原零售价的b%,所以调价后每件衬衣的零售价为m(1+a%)b%元。
应选C
5、如果a、b、c是非零实数,且a+b+c=0,那么 的所有可能的值为 ()
A. 0 B. 1或-1 C. 2或-2 D. 0或-2

解:由已知,a,b,c为两正一负或两负一正。
①当a,b,c为两正一负时:

②当a,b,c为两负一正时:

由①②知 所有可能的值为0。
应选A

6、在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则 的值为 ()
A. B.
C. 1 D.
解:过A点作AD⊥CD于D,在Rt△BDA中,则于∠B=60°,所以DB= ,AD= 。在Rt△ADC中,DC2=AC2-AD2,所以有(a- )2=b2- C2,整理得a2+c2=b2+ac,从而有
应选C

7、设a<b<0,a2+b2=4ab,则 的值为 ()
A. B. C. 2 D. 3
解:因为(a+b)2=6ab,(a-b)2=2ab,由于a<b<0,得 ,故 。
应选A
8.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-ab-bc-ca的值为 ()
A. 0 B. 1 C. 2 D. 3

9、已知abc≠0,且a+b+c=0,则代数式 的值是 ()
A. 3 B. 2 C. 1 D. 0

10、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d可用p表示为_____
解:设该商品的成本为a,则有a(1+p%)(1-d%)=a,解得

11、已知实数z、y、z满足x+y=5及z2=xy+y-9,则x+2y+3z=_______________
解:由已知条件知(x+1)+y=6,(x+1)•y=z2+9,所以x+1,y是t2-6t+z2+9=0的两个实根,方程有实数解,则△=(-6)2-4(z2+9)=-4z2≥0,从而知z=0,解方程得x+1=3,y=3。所以x+2y+3z=8

12.气象爱好者孔宗明同学在x(x为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天。则x等于()
A. 7 B. 8 C. 9 D. 10
选C。设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于x=a+b+c+d=9。

13、有编号为①、②、③、④的四条赛艇,其速度依次为每小时 、 、 、 千米,且满足 > > > >0,其中, 为河流的水流速度(千米/小时),它们在河流中进行追逐赛规则如下:(1)四条艇在同一起跑线上,同时出发,①、②、③是逆流而上,④号艇顺流而下。(2)经过1小时,①、②、③同时掉头,追赶④号艇,谁先追上④号艇谁为冠军,问冠军为几号?
解:出发1小时后,①、②、③号艇与④号艇的距离分别为

各艇追上④号艇的时间为

对 > > > 有 ,即①号艇追上④号艇用的时间最小,①号是冠军。

14.有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若要在2小时内抽干,至少需水泵几台?

解:设开始抽水时满池水的量为 ,泉水每小时涌出的水量为 ,水泵每小时抽水量为 ,2小时抽干满池水需n台水泵,则

由①②得 ,代入③得:
∴ ,故n的最小整数值为23。
答:要在2小时内抽干满池水,至少需要水泵23台

15.某宾馆一层客房比二层客房少5间,某旅游团48人,若全安排在第一层,每间4人,房间不够,每间5人,则有房间住不满;若全安排在第二层,每3人,房间不够,每间住4人,则有房间住不满,该宾馆一层有客房多少间?

解:设第一层有客房 间,则第二层有 间,由题可得

由①得: ,即
由②得: ,即
∴原不等式组的解集为
∴整数 的值为 。
答:一层有客房10间。

16、某生产小组开展劳动竞赛后,每人一天多做10个零件,这样8个人一天做的零件超过200个,后来改进技术,每人一天又多做27个零件,这样他们4个人一天所做零件就超过劳动竞赛中8个人做的零件,问他们改进技术后的生产效率是劳动竞赛前的几倍?
解:设劳动竞赛前每人一天做 个零件
由题意
解得
∵ 是整数∴ =16
(16+37)÷16≈3.3
故改进技术后的生产效率是劳动竞赛前的3.3倍。

⑵ 五四制初中数学教材知识框架总结

初一、初二知识点
有理数
1.1 正数和负数 π是无理数
1.5.1
有理数的乘方
运算顺序:
1)先乘方,再乘除,最后加减
2)同级运算,从左到右进行
3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。



求n个相同的因数的积的运算叫做乘方。
一般地,在 a^n 中,a 取任意有理数,
n 取正整数。
幂的符号法则:
正数的任何次幂都是正数;
负数的奇次幂是负数;
负数的偶次幂是正数;
零的任何次幂都是零。
注意:当底数是负数或分数时,书写时要把整个负数或分数用括号括起来。
知识扩展:

1.5.2 科学记数法
一个大于10的数可以表示成a×10n的形式,即有其中1≤a<10,n是比A的整数部分的位数少1的正整数。这种记数方法叫做科学记数法。
1.5.3 近似数和有效数字
一般的,一个近似数四舍五入到哪一位,就说这个数精确到哪一位;这时从左边第一个不是0的数字起,到末尾数字止,所有的数字都叫这个数的有效数字。
对于科学记数法表示的数,规定它的有效数字就是a中的有效数字。

第二章
一元一次方程
2.1.2 等式的性质
用等号表示相等关系的式子叫做等式。我们用a=b表示一般的等式。
等式性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
等式的补充性质:对称性和传递性
如果a=b,那么b=a;
如果a=b,b=c,那么a=c。
方程:含有未知数的等式。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
将这个数分别带入原方程的左右两边,看这个值能否使方程的两边相等。
一、一元一次方程、等式的概念
二、一元一次方程的解法:
去分母、去括号、移项、合并同类项和系数化一
合并同类项复习
一、 书写要求
数字与数字相乘,用乘号;数字与字母或字母与字母相乘,乘号省略不写
数字与字母或括号相乘时,数字在前
除号写成分数线,分数线有括号作用
带分数应化成假分数
代数式是和或差的形式,并且有单位,代数式应加括号
二、 列代数式
1、 除以a^2+b 的商是5x的数
2、 减少20%后是a的数
3、 三个连续奇数,中间的一个是2n+3,表示这三个数的立方和。
三、 同类项:所含字母相同,相同字母的指数也相同的项。
所有常数项都是同类项。
合并同类项:同类项的系数相加,结果作为系数,字母和字母的指数不变。
4、若4a^(m^2-1)b^2/5与3a^3b^(n-m)能够合并,则m=±2,n=4或0
四、添、去括号
五、化简求值
工程问题:工作总量=工作效率×工作时间
现实生活问题
1、利润问题
(1+提价或降价的百分数) 原价=现价;
利润=售价-进价

2、储蓄问题
本息和=本金+利息
利息=本金 利率 期数(每个期数内的利息与本金的比叫做利率)
从1999年我国开始对利息征收20%的个人所得税,
实得利息=(1-20%) 利息
3、球赛积分问题
4、纳税问题
5、交通问题
6、最优方案问题

3.1.2点、线、面、体
通过两点的直线只有一条
两点之间线段最短
等角的补角等,等角的余角等
过一点有且只有一条直线与已知直线垂直。
垂线段最短
注意问题:
1、 在表示直线、射线、线段时,一定要先写出文字。
2、 注意延伸与延长的区别,延长与反向延长的区别,延长线要用虚线
3、 注意定义的准确性。本章重要定义:两点距离、角、中点、角平分线
4、 注意相似图形的区别:直线与平角,射线与周角
5、 注意点、线、角的表示法,区分大小写及字母顺序
6、 作图要用铅笔尺子。尺规作图要保留痕迹,并写结论。
7、 论述题要写推理步骤:题目中的已知作为因为,由已知推理得到的作为所以。
8、 注意区分中点,角平分线三种形式的选取。
9、 注意分类讨论。依靠图形把情况想全面。
10、图形的折叠与展开可动手实践。
一 平行线的性质定理:
• 两直线平行,同位角相等。
• 两直线平行,内错角相等 。
• 两直线平行,同旁内角互补 。
同位角相等
内错角相等 两直线平行
同旁内角互补
同位角相等
两直线平行 内错角相等
同旁内角互补

如果一个角的两边分别平行于另一角的两边,则这两个角相等或互补

第九章 不等式与不等式组
移项要变号
1、 用不等号连接表示不等关系的式子叫不等式。
2、 不等式的基本性质:
性质1:不等式两边都加上(或减去)同一个数或式子,不等号方向不变。
性质2:不等式两边都乘(或除以)同一个正数,不等号方向不变。
性质3:不等式两边都乘(或除以)同一个负数,不等号方向改变。
互逆行:若a>b,则b<a
传递性:若a>b, b>c,则a>c
3、 使不等式成立的每一个未知数的值叫不等式的解。
不等式的所有解叫不等式的解集。解集是范围,解是具体的数。
4、 解集在数轴上的表示:两定
一定边界点:含于解集为实心点;不含于解集为空心点
二定方向:大于向右,小于向左
5、 一元一次不等式的解法:去分母、去括号、移项变号、合并同类项(化成ax>b或ax<b的形式)、系数化一(当系数是负数时,注意变号)
6、 几个一元一次不等式的解集的公共部分叫一元一次不等式组的解集。
解法:分别解,再求解集。
同大取大;同小取小;大小取中;矛盾无解
注意:解集用小于连接。例:-2<x<3
7、 应用题:
注意超过、不小于、不大于、至少、最多等关键字。
注意隐含条件。
注意设法:不写“至少”
一元一次不等式:
1、不等式的性质(尤其是性质三)
2、会解不等式(组),利用数轴找解集(不等式组要写解集再取整数解,数轴要有原点、箭头),应用题(注意关键字,是否带等号)。

第七章 三角形
一、用不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
二、三角形中的三条重要线段:
1、三角形的角平分线
2、三角形的中线
3、三角形的高线
要求掌握: 定义、书写格式、画法(钝角三角形)、交点结论
三、三角形三边关系定理及推论
两边差<第三边<两边和
三角形具有稳定性,而四边形没有
四、三角形的分类:按边分和按角分
五、三角形内角和
三角形的内角和等于180°。
定理证明、书写、例题(整体思想和方程思想)
在△ABC中,∵∠A+∠B+∠C=180°
六、三角形的外角
1、三角形的一边与另一边的延长线组成的角。
2、三角形的一个外角等于与它不相邻的两个内角的和。
3、三角形的一个外角大于与它不相邻的任何一个内角。
书写:∵∠ADB是△ADC的外角
∴∠ADB=∠C+∠DAC
∴∠C=∠ADB-∠DAC
七、多边形
1、对角线:
2、n边形的内角和等于(n-2)180°
3、多边形的外角和等于360°,与边数无关
4、各个角都相等,各条边都相等的多边形叫正多边形。
八、正多边形中,只有正三角形、正方形、正六边形可以用来镶嵌。
注意:画图用铅笔,要准确,标明字母,写结论
方位角、用三个字母表示角。
辅助线及延长线是虚线。
常用方法:分类讨论思想、方程思想
整体思想、见比设份数

三角形:
1、三角形三边关系定理,第三边的范围。
2、掌握三角形中三条重要线段的定义、推理形式、画法(铅笔、标字母、写结论)。
3、三角形内角和定理,严格推理形式。
4、三角形外角定理及推论,严格推理形式。
5、多边形的内角和及外角和定理,会构造方程。
6、镶嵌:任意三角形、四边形和正六边形可镶嵌。
7、会写四步以内几何推理。不用写理由。

第十章 实数
1、算术平方根:一个正数的平方等于a,即x2=a,那么正数x叫做a的算术平方根。
(算术平方根的取值范围)
(被开方数的取值范围,使式子有意义)
2、平方根:如果一个数的平方等于a,即x2=a,那么x叫做a的平方根。
3、正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
4、求一个数的平方根的运算叫开平方。平方与开平方互为逆运算。
5、立方根:如果一个数的立方等于a,即x3=a,那么x叫做a的立方根。
6、正数有一个正的立方根;负数有一个负的立方根;0的立方根是0。
7、求一个数的立方根的运算叫开立方。立方与开立方互为逆运算。
8、无限不循环小数叫无理数。
三类数:含 的式子;开不尽方根的数;类似循环实际不循环的小数
9、有理数和无理数统称实数。实数还可分为正数、0、负数 注意:分数都是有理数
10、实数与数轴上的点一一对应。
11、实数的绝对值、相反数、倒数的概念与有理数中相同。
12、实数的近似值 。会比较两数大小
会背1到20的平方,1到10的立方

第六章 平面直角坐标系
1、平面直角坐标系的概念:
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上方向为正方向;
两个坐标轴的交点为平面直角坐标系的原点。
2、点的坐标:有序实数对
(1)点p(a,b)到x轴的距离为︱b︱
点p(a,b)到y轴的距离为︱a︱
(2)x轴上的点纵坐标为0
在x轴上方的点纵坐标大于0
在x轴下方的点纵坐标小于0
(3)y轴上的点横坐标为0
在y轴右方的点横坐标大于0
在y轴左方的点横坐标小于0
(4)平行于x轴的直线上的点的纵坐标相同
平行于y轴的直线上的点的横坐标相同
(5)在第一三象限角平分线上的点的横、纵坐标相等
在第二四象限角平分线上的点的横、纵坐标相反
3、用坐标表示平移:
(1)在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x + a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y + b)(或(x,y - b)).
(2)在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向 左(或向右)平移a个单位长度;
在平面直角坐标系内,如果把一个图形各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
4、建立直角坐标系表示点的位置
5、坐标平面内的点与有序实数对一一对应。
注意:建立坐标系要完整。用铅笔画图,画图不整洁要扣分。

图形的这种移动叫平移变换,简称平移。
1、平移的两条基本特征;
2、图形的移动为平移变换的重要标志:
图形在移动的过程中,
自身的形状和大小没有发生变化
自身的方向始终没有发生变化
3、数学与实际生活息息相关。

第十一章 一次函数
1、 常量与变量;(非重点)
2、 函数概念;(非重点)
3、掌握自变量的取值范围:
使解析式有意义:分母不为0;二次根号下的式子有非负性
使实际问题有意义:注意边界点及是否要取整
4、 函数的三种表示方法:解析法、列表法、图像法
5、点在函数图像上(函数图像过这个点) 点的坐标满足函数解析式
6、正比例函数概念:y=kx (k是不为0的常数)
图像:过原点的一条直线
性质:k>0 直线过第一、三象限,y随x的增大而增大
k<0 直线过第二、四象限,y随x的增大而减小
7、一次函数概念:y=kx+b(k,b为常数,k不为0)
正比例函数是特殊的一次函数
图像:一条直线
性质:k>0 ,y随x的增大而增大
k<0 ,y随x的增大而减小
b>0 直线与y轴交于正半轴
b<0 直线与y轴交于负半轴
b=0 直线过原点即为正比例函数
k相同的直线可互相平移得到
(k,b与一次函数图像之间的关系见笔记)
注意:画一次函数图像时,只需找两点即可
步骤:列表、描点、连线
8、用函数分析方程和不等式;
会求函数值,会求两个函数的交点坐标,并会比较两个函数的大小关系(会识图);给出y(或x)的范围会求x(或y)的范围.
9、求函数解析式:用待定系数法求解析式;利用图形找点求解析式
10、会看分段函数图像
重点:变量与函数知识的掌握要突出讨论意识。
函数的概念、性质、应用都应该强调讨论;运用函数图象进行的讨论

《数据》复习
一.本章知识结构
本章共有三小节内容。
第1小节“几种常见的统计图表”主要在已经学过的条形图、折线图和扇形图等统计图的基础上,进一步认识这几种常见的统计图,并引进一种新的统计图——频数分布直方图;
第2小节“用图表描述数据”包含两层含义:根据问题选择适当的统计图来描述数据和学习制作统计图表的方法;
第3小节“课题学习”旨在让学生综合利用已学的统计知识和方法从事统计活动,经理收集、整理、描述和分析数据的基本过程。
二、.课程学习目标
1. 进一步认识条形图、折线图、扇形图,掌握它们各自的特点;
2. 会画扇形图,会用扇形图描述数据;
3. 理解频数的概念,了解频数分布的意义和作用;
4.根据需要对数据进行适当分组;会列频数分布直方图和频数折线图,并会用它们描述数据。
5.感受统计在生产生活中的作用,建立统计观念,培养实事求是的科学态度

 数据收集的过程一般包括:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果。
 表示数据的两种方法:
1、利用统计表
2、利用统计图:条形图、折线图、扇形图

全等三角形
一、课程学习目标
1、了解全等三角形的概念和性质,能够准确的辨认全等三角形的对应元素。
2、探索三角形全等的条件,能利用三角形全等进行证明。
3、会做角的平分线,了解角平分线的性质,会利用角平分线的性质进行证明。
二、知识内容小结
13.1 全等三角形
1、定义: 能够完全重合的两个三角形叫做全等三角形。
相关概念:对应顶点、对应边、对应角
2、全等三角形的性质:
全等三角形的对应边相等
全等三角形的对应角相等
结论:经过平移、翻折、旋转前后的图形全等。
13.2 三角形全等的条件
“边边边”(SSS):
三边对应相等的两个三角形全等
“边角边(SAS):
两边和它们的夹角对应相等的两个三角形全等。
“角边角”(ASA):
两角和它们的夹边对应相等的两个三角形全等。
“角角边”(AAS):
两个角和其中一个角的对边对应相等的两个三角形全等。
“斜边直角边”(HL):
在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等。
13.3 角平分线的性质
角平分线的尺规画法。
角平分线的性质:角的平分线上的点到角的两边的距离相等。
角平分线的判定:到角的两边距离相等的点在角的平分线上。
结论:三角形的三条角平分线相交于一点,该点到三角形三条边的距离相等。
三、复习建议
1、通过证明两个三角形全等从而得到边等、角等的关系是一种常用的方法。在初学证明两个三角形全等时,让学生养成良好的书写习惯是十分必要的。所以我们应要求学生把对应顶点字母写在对应位置上,书写格式一定要规范。
如:已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?

2、用“三找”模式证明三角形全等。
一找已知,最好在图中标注出来;
二找隐含,通过图形语言告诉的已知,如公共角是对应角,公共边是对应边,对顶角是对应角。
三找欠缺,根据题目中的已知条件证明欠缺条件。
3、及时帮助学生进行小结。将零散的知识概念进行整理,形成系统和网络是学生学习过程中很重要的一环,教师要有意识进行引导。如:已知两个三角形全等,除了书上给出的全等三角形的对应边相等;对应角相等以外,能够得到的常用结论有:全等三角形对应边上的中线、高相等;对应角的平分线相等;周长相等;面积相等。
再如判断三角形全等的方法有五个,如何选择这些方法呢?建议教师可以以表格形式给出如下小结:
已 知 可选用的方法
两边对应相等 SAS、SSS
两角对应相等 AAS、ASA
一边和一角对应相等 ASA、AAS、SAS
判断两个直角三角形全等,首先考虑使用HL,除此以外还可以考虑使用SAS、AAS、ASA
4、应重视所学内容在生活中的实际应用,培养学生学以致用的意识。
用三角形全等可以说明实际测量方法的道理,例如,测量池塘两端的距离,测量河两岸相对两点的距离,用卡钳测量工件的内槽宽,还安排了利用三角形全等测量旗杆高度的数学活动。
5、中考创新题。
一、补充条件型;
例:已知AB=AC,如果要判定△ADC≌△AEB,需添加条件__________

二、探索结论型;
例:如图,已知AB∥DE,AB=DE,AF=DC,请问途中有哪几对全等三角形?并任选一对给与证明。

三、编拟命题型
例: 在△AFD和△CEB中,点A,E,F,C在同一条直线上,有下面四个论断:
(1) AD=CB(2)AE=CF(3)∠B=∠D(4)AD∥BC
请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程。
已知:_______________________________________________________
求证:______________________
证明:
四、易错问题及应注意的问题
1、判定两个直角三角形全等时,学生易将HL与SAS弄混。
有不少学生在判断两个直角三角形全等时,只要找到两条边对应相等就认为是HL定理。所以提醒学生注意,分清所找的边是关键。如果找到的是两条直角边对应相等,使用的定理是SAS,一条斜边和一条直角边对应相等,使用的定理才是HL。
2、注意引导学生关注典型反例。
如:有两边和其中一边上的高线对应相等的两个三角形全等。
有两边和第三边上的高线对应相等的两个三角形全等。
这两个命题均为假命题,但学生及易犯错,原因是学生易忽略钝角三角形高在三角形外的情况。
再如: AAA, SSA不成立的反例图:

DE∥BC AD=AC
3、注意角平分线性质性质和判定定理的使用条件,记住典型图形,线段CD或BD为常添辅助线。

4、有多个垂直关系时,常用等角的余角等证明角等。

有一条对称轴——直线
图形沿轴对折(翻转180°)
翻转后和另一个图形重合

整式
幂的乘方
运算顺序:
1)先乘方,再乘除,最后加减
2)同级运算,从左到右进行
3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。



求n个相同的因数的积的运算叫做乘方。
一般地,在 中,a 取任意有理数,
n 取正整数。
幂的符号法则:
正数的任何次幂都是正数;
负数的奇次幂是负数;
负数的偶次幂是正数;
零的任何次幂都是零。
注意:当底数是负数或分数时,书写时要把整个负数或分数用括号括起来。
知识扩展:

分式
分清“且”“或”
约分:约去公因式
分子分母为乘积形式才可约分
分式方程要检验
去分母别漏乘常数项
移项要变号
不能假检验
分式方程应用题要双验

勾股定理
1、勾股定理 注意:前提在直角三角形中
会利用定理进行边的计算 a2+b2 =c2
2、勾股定理的证法 书或课件或新学案43页
3、勾股逆定理 注意:哪个角是直角(最大边所对角)
会用逆定理判定直角三角形
4、会写逆命题:题设与结论与原命题相反
5、常用勾股数:
3k,4k,5k; 5k,12k,13k;
7,24,25; 8,15,17; 9,40,41
6、常用辅助线:构造直角三角形
7、注意勾股定理及逆定理的书写格式
8、 已知直角三角形两边求第三边
(分类讨论)
已知两直角边求斜边上的高
(双垂直图形,等积式)
9、含30º角的直角三角形三边比为 1:2:
等腰直角三角形三边比为 1:1:
10、勾股定理常作为列方程的隐含条件

四边形复习

项目
四边形 对边 角 对角线 对称性
平行四边形
矩形
菱形
正方形
等腰梯形

四边形 条件
平行
四边形 1、定义:两组对边分别平行
2、两组对边分别相等
3、一组对边平行且相等
4、两组对角分别相等
5、对角线互相平分

矩形 1、定义:有一个角是直角的平行四边形
2、三个角是直角的四边形
3、对角线相等的平行四边形

菱形 1、定义:一组邻边相等的平行四边形
2、四条边都相等的四边形
3、对角线互相垂直的平行四边形

正方形 1、定义:一组邻边相等且有一个角是直角的平行四边形
2、有一组邻边相等的矩形
3、有一个角是直角的菱形

等腰梯形 1、两腰相等的梯形 2 、在同一底上的两角相等的梯形 3、对角线相等的梯形(结论)

顺次连接四边形各边中点所得图形为平行四边形
顺次连接对角线相等的四边形各边中点所得图形为菱形
顺次连接对角线互相垂直的四边形各边中点所得图形为矩形
顺次连接对角线相等且垂直的四边形各边中点所得图形为正方形
1、连接对角线
2、构造平行四边形
3、轴对称图形,对称轴上任一点与对称点的连线相等。
4、直角三角形中,有斜边中点,常作斜边中线
5、梯形:做高、平移腰、平移对角线(对角线垂直时)
辅助线要写在证明第一行,用虚线,交代新添字母位置
本章常用定理
等腰三角形三线合一 中垂线定理

反比例函数复习
1、 定义: (k是不为0的常数)
y是x的反比例函数 y与x成反比例 y=kx-1
2、 自变量x≠0 函数y≠0
3、 反比例函数图像是双曲线
4、 当k>0时,图像在第一、三象限,在每一个象限内,y随x的增大而减小;
当k<0时,图像在第二、四象限,在每一个象限内,y随x的增大而增大.
注意:增减性取决于k,与x无关。

K<0
5、 两条双曲线既是中心对称图形(关于原点对称),又是轴对称图形(对称轴是y=x和y=-x)。
两分支无限接近坐标轴,但不与坐标轴相交。
|k|越大,图像离坐标原点越远。
6、 反比例函数 与正比例函数y=k2x
当k1k2同号时,两交点关于原点对成;异号时无交点。
7、实际问题中,自变量取值通常为正,图像通常在第一象限。
8、必会题型:
1) 待定系数法求函数解析式
提醒:设两个函数解析式要区分k
2) 面积问题 S矩形=|k| S三角形= |k|
3) 比较函数值

4)会比较一次函数与反比例函数大小
5)会求一次函数与反比例函数交点坐标
本章约占10分,有一道6分解答题,为一次函数与反比例函数综合题
4)

根据图象写出使反比例函数的值大(小)于一次函数的值的x的取值范围。

中位数定义:
一组数据按大小顺序排列,位于最中间的一个数据

叫做这组数据的中位数

1.求中位数要将一组数据按大小顺序,顾名思义,中位数就是位置
处于最中间的一个数(或最中间的两个数的平均数),排序
时,从小到大或从大到小都可以.
2.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.众数有可能不唯一,注意不要遗漏.
鞋店老板一般最关心众数
公司老板一般以中位数为销售标准
裁判一般以平均数为选手最终得分

3.中位数只需很少的计算,不受极端值的影
响,这在有些情况下是一个优点.

一元二次方程

注意:
1、判断是否为一元二次方程要先化为一般形式再判断。未知数出现在分母或根号中的方程不是一元二次方程。
2、ax2+bx+c=0是否为一元二次方程只与a有关,与b,c无关。
3、各项系数及常数项相对于一般形式而言,而且注意前面符号。
形如 x2=k或a(x-m)2=k的方程可利用开平方法求解。
注意a和k对方程解的影响

一元二次方程根的判别式

应用:不解方程判断根的情况;给出根的情况,求待定系数的值或范围。

注意:1、与几何知识的综合运用
2、注意方程中的字母
这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求

在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形变换叫做图形的旋转.这个定点叫旋转中心.旋转的角度称为旋转角
图形的旋转不改变图形的形状、大小,只改变图形的位置.

旋转中心在对应点连线的垂直平分线上。
性质1 关于中心对称的两个图形是全等形。
性质2 关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。
如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于这一点成中心对称。

⑶ 数学常识

一、 走进生活,用数学眼光去观察和认识周围的事物:
世界之大,无处不有数学的重要贡献。培养学生的数学意识以及运用数学知识解决实际问题的能力,既是数学教学目标之一,又是提高学生数学素质的需要。在教学中,要使学生接触实际,了解生活,明白生活中充满了数学,数学就在你自己的身边。
例如在“比例的意义和基本性质”的导入中,我设计了这样一段:你们知道在我们人体上的许多有趣的比例吗?将拳头翻滚一周,它的长度与脚底长度的比大约是1:1,脚底长与身高长的比大约是1:7……知道这些有趣的比有很多用处,到商店买袜子,只要将袜子在你的拳头上绕一周,就会知道这双袜子是否合适你穿;如果你是一个侦探,只要发现罪犯的脚印,就可以估计出罪犯的身高……这些都是用身体的比组成了一个个有趣的比例,今天我们就来研究“比例的意义和基本性质”;
此外教师还可结合学生年龄特点,设计一些“调查” 、“体验” 、“操作”等实践性强的作业,让学生在活动中巩固所学知识,提高各方面的能力:如教学“单价、数量、总价”三者关系应用题前可布置学生做一回小小调查员,完成下列表格:
品 名 黄瓜 白菜 萝卜 猪肉
单 价(元)
数量(千克)
总 价(元)

这样做,使学生对所学知识有了感性认识,减缓他们在学习上坡度,对他们深刻理解单价、数量、总价三者之间的关系有很大帮助。再如学习了三角形的稳定性后,可让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识后,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?还可以让学生想办法找出锅盖、脸盆的圆心在哪儿;……这样大大丰富了学生所学的知识,让学生真正认识到周围处处有数学,数学就在我们生活中间,并不神秘,同时也在不知不觉中感悟数学的真谛,进而激起从小爱数学、学数学、用数学的情感,促进学生的思维向科学的思维方式发展,培养学生自觉地把所学的知识应用于实际生活的意识。

二、 感悟生活,架构数学与生活的桥梁:
“人人学有用的数学,有用的数学应当为人人所学”成了数学教学改革实验的口号。教学中我联系生活实际,拉近学生与数学知识之间的距离,用具体生动、形象可感的生活事例解释数学问题。
1、 运用生活经验解决数学问题
在上“用字母表示数”一课的内容时,我用CAI课件演示李蕾同学拾金不昧的情景,紧接着播出一则“失物招领启事”:
失 物 招 领
李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。
校少先队大队部
2002.3
学生惊奇于数学课上老师怎么讲起了失物招领的事呢?我和学生通过分析、讨论A元所表示的意义,
师:A元可以是1元钱吗? 生1:A元可以是1元钱,表示拾到1元钱。
师:A元可以是5元钱吗? 生2:可以!表示拾到5元钱。
师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。
师:A元还可以是多少钱呢?生4:还可以是0.5元,表示拾到5角钱。……
师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑!
师:为什么不直接说出拾到多少元,而用A元表示呢?……
由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。
2、 运用数学知识解决实际问题
例如学习了长方形、正方形面积的计算及组合图形的计算后,我尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;接下来我还让学生们回家测算一下自己家的实际居住面积。在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。
如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆?
通过观察、思考、讨论,在我的鼓励指导下,同学们用式子有序地依次表示为:
(1)把100元分解为两个数的和: (2)把100元分解为3个数的和:
50+50=100 40+60=100 30+70=10020+80=100 60+20+20=10050+20+30=10040+40+20=10030+30+40=100
(3)把100元分解为4个数的和 (4)把100元分解为5个数的和 40+20+20+20=100
20+20+20+20+20=100 30+30+20+20=100

学生以发现者的心态去探索、去求新、去寻觅独创性的答案,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”这种图文并茂的应用题,使学生感到不是在解应用题,而是在解生活中的问题,锻炼了学生捕捉信息的能力,增强了应用题的应用味:漫画的形式更贴近于儿童的实际生活,学生从图中获得各种汽车价钱的信息,又从文字中获取“小林花去100元”的信息,由于问题具有现实意义,但又不能刻板地归为哪一种类型,要想解决“买了几辆汽车,是哪几辆?”的问题,联系生活实际,就能得到不同的解法。整个学习活动给学生提供了广阔的思维空间,让学生经历观察、分析、概括和归纳等学习过程。不仅巩固了100以内认识和加法,而且促进数学的交流,学生的分析、解决问题的能力得到培养,有利于因材施教,体现不同的人学习不同层次的数学,使学生感受到数学与生活的密切联系,体验到生活中处处有数学,感受数学的趣味与作用。

三、创造生活,解决生活中的数学问题
两步应用题之后的教学,我让学生“创作”应用题,学生们积极思考,发挥自己的想象力:“一份鸡翅8元,一个汉堡包比它贵4元,我吃了一份鸡翅和一个汉堡包,你们说我用了多少元?”;“我的妈妈上午买了一斤青菜,买的萝卜是青菜的两倍,请问我的妈妈一共买了几斤菜?;《西游记》有62集,《西游记续集》比它多5集,《西游记续集》有多少集?”学生们编应用题时眉飞色舞的神态,夸张的动作,幽默风趣的语言常常引起哄堂大笑。由于题材来自学生所熟知的事物,学生发言积极、语言流畅,思维呈多极化和多元化,得出“雪融化后是春天而不是水”的新思路,因创造而倍感兴奋,更体会到生活中处处有数学。
再如学习了“按比例分配” 的知识后,让学生帮助爸爸妈妈算一算本住宅楼每户应付的水费(电费)是多少;学习了“利息”的知识后,算一算自己在银行存储的钱到期后可以拿多少本息;再如学习完“比例尺”一节的知识后,让学生绘制 “我给未来的校园设计平面图”、“我给生活小区设计平面图”等等,其对图表内容的丰富和社会关注程度令人感叹!
生活是教育的中心,“生活即教育”的理论为小学数学教学的改革开辟了广袤的原野。“让学生在生活中学数学” 使学生对数学有一种亲近感,感到数学与生活同在,增强了学生学习数学的主动性,发展了求异思维,培养了学生理论联系实际的学风和勇于探究、大胆创新、不断进取的精神,让学生亲自体会参与应用所学知识去解决实际问题的乐趣。