当前位置:首页 » 基础知识 » 防疫知识的数学应用350字
扩展阅读
宝宝学数学知识视频 2024-11-28 08:16:20
电钢琴零基础买什么牌子 2024-11-28 07:59:07

防疫知识的数学应用350字

发布时间: 2024-05-13 03:01:56

1. 数学小知识手抄报简单(数学小知识手抄报内容一两百字)

1.数学小知识手抄报内容 一两百字
可以写一些数学家的故事、应用题小常识

■简历:

1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。

■主要成果:

1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。

陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等着作。

陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。着有《数学趣味谈》、《组合数学》等。

■巨星的陨落 :

1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。

1996年3月19日,着名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。

这是数学家陈景润的,你可以选其中一段
2.数学手抄报内容 资料
第一写关于数学的名言 罗素说:“数学是符号加逻辑” 毕达哥拉斯说:“数支配着宇宙” 哈尔莫斯说:“数学是一种别具匠心的艺术” 米斯拉说:“数学是人类的思考中最高的成就” 培根(英国哲学家)说:“数学是打开科学大门的钥匙” 布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论” 黑格尔说:“数学是上帝描述自然的符号” 魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化” 柏拉图说:“数学是一切知识中的最高形式” 考特说:“数学是人类智慧皇冠上最灿烂的明珠” 第二写关于数学的意义 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。

它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。

第三写关于数学的小故事 数学名人小故事-康托尔 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。

他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。

康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。

来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。

1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。

1918年1月6日,康托尔在一家精神病院去世。 最后,可以写关于数学的笑话 小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."。
3.怎么做数学手抄报简单
方法/步骤

1

一般来说,制作手抄报使用的纸张都是素描纸。

素描纸可以在文具店买到,一般使用的大小是4开或者8开,不过,4开的手抄报太大,会给制作手抄报带来很大难度。

相比之下,8开正好16开太小,建议购买8开的素描纸,质量稍好一点的,就可以开始制作了。

2

第一个小窍门就是加边。

有过制作手抄报经验的人都知道,我们要在一张8开大小的素描纸上忙活好久,很多时候,一张手抄报做完,那张素描纸的边缘已经变得不成样子了。解决这个问题的方法就是加边。

笔者的小学老师建议加两厘米,笔者试过以后觉得太宽,八毫米已经足够。而且这个宽度可以用普通的胶带来衡量,如果将普通的胶带绑在素描纸的边上,会对你的素描纸起到极大地保护作用。并且,在整张手抄报完成之后,会使手抄报显得非常清爽、整洁。

3

通常来说,制作手抄报,无论是数学手抄报也好,语文手抄报也罢,都需要制作人去查阅有关的书籍资料,以充做手抄报的内容。

这里也给个小建议,千万不要选择太长的故事。在现在的书籍上,我们能看到的字都是很小号的,让我们用手把它抄写出来,会显得很多,很长。如果一不小心选择了一个漫长的故事,那可就悲催了呀。

4

查阅好资料之后就要开始排版。这个步骤可以和上一个步骤交替进行。

毕竟在排版的时候,我们会发现,有的故事过长,有的故事过短,或者在替换之后,会有更好的效果。两个步骤,相互协调,最后确定大概的排版。

如果是要制作一张数学手抄报,可以选择一些数学图案的由来、数学家的小故事、关于数学的名言、关于数学的小笑话,等等。

这个时候的排版可以在草稿纸上进行!

5

开始制作手抄报的时候,不要一上来就用无法修改的水笔,或者钢笔,也不要使用彩铅或者油画棒。

最佳的选择是使用铅笔,打一个大概的轮廓,明确素描纸的每一个部分大概要写的内容,然后补充上各种各样分隔线,比如直线、波浪线、虚线、s型线等等,之后在大概的分隔线上添加一些花边,或者小图案,或者是文本框一样的卷轴。

在需要填充文字的文本框里可以选择用铅笔尺子打上格子,格子的宽窄由制作人来决定,但是同一个小故事的宽窄要相似。如果不想写那么多字的话,就把字写大一点,把格子画宽一点。

以上内容,最好都用铅笔完成。

6

接下来就是要添加文字内容了。

因为之前所做的所有工作都是用铅笔完成的,而一旦有了铅笔的轮廓之后,就可以放心大胆地,用不褪色的水笔或者钢笔在上面写字了。

同一张手抄报上可以有不同颜色的笔写出来的字。比如说左上角选择用黑笔,右下角可以选择用蓝笔。相邻板块的颜色,也最好选择不相似。除非整个布局有特殊的含义。

但是需要提醒的一件事情是,不要用红笔在上面写字。因为无论从哪个方面来说,用红笔制作的手抄报,都显得很不妥。

7

刚抄写完文字部分之后,手抄报的格局已经定下来了,接下来所剩下来的就是修饰。修饰步骤,建议使用彩铅,和有颜色的水笔。

毕竟水粉、油画什么的,用于制作手抄报,还真的不是一般人能够hold得住的。如果只用黑色的单调的水笔,大概显得比较压抑,如果使用铅笔素描的话,这张手抄报很容易就会模糊。

8

将原有的铅笔痕迹,一点一点地擦除,再换上水笔和彩铅描绘精心描绘的图案。

一定要将铅笔痕迹擦除才能用彩铅描绘,不然会把纸张弄得非常脏哦。

在一些不明显的地方,如果需要画得更清新明亮一点,就可以使用红色,蓝色,或者黑色的水笔,其实已经足够了。

还记得原来我们话在文字下方的横线吗?那些横线你可以选择用水笔重新描一遍,也可以选择将它们全部擦除。如果你将它们全部描一遍,然后再用橡皮擦去铅笔的痕迹,会得到意想不到的奇妙结果哦!

9

记得在完成整张手抄报之后,一定要加以适当的调整,这样会使你的手抄报看上去更加的美观。

这些调整包括:错别字的修改、多余铅笔线的擦除、添加部分小插画、填充空白且突兀的地方、精心描绘分隔线……

对啦,要在右下角写上你的大名和制作日期哦,日后回来看,很有纪念意义的!
4.小学数学手抄报的知识
师大版小学数学五年级(下册)知识点一单元:《分数乘法》分数乘法(一)知识点:1、理解分数乘整数的意义。

分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。 2、分数乘整数的计算方法。

分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。

3、计算时,可以先约分在计算。分数乘法(二)知识点:1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算。

2、能够求一个数的几分之几是多少。 3、理解打折的含义。

例如:九折,是指现价是原价的十分之九。分数乘法(三)知识点:1、分数乘分数的计算方法,并能正确进行计算。

分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。

2、比较分数相乘的积与每一个乘数的大小。 真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。

二单元:《长方体(一)》长方体的认识知识点:1、认识长方体、正方体,了解各部分的名称。 2、长方体、正方体各自的特点。

顶 点 面 棱 个 数 个 数 形 状 大小关系 条数 长度关系 8 6 都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形。 相对的面是完全一样的长方形。

12 可以分为三组,相对的棱平行且相等。 8 6 都是正方形。

每个面都是正方形。 12 长度都相等。

3、知道正方体是特殊的长方体。4、能计算长方体、正方体的棱长总和。

长方体的棱长总和=(长+宽+高)*4或者是长*4+宽*4+高*4正方体的棱长总和=棱长*12灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长。展开与折叠知识点:1、认识并了解长方体和正方体的平面展开图。

2、了解正方体平面展开图的几种形式,并以此来判断。长方体的表面积知识点:1、理解表面积的意义。

是指六个面的面积之和。2、长方体和正方体表面积的计算方法。

3、能结合生活中的实际情况,计算图形的表面积。露在外面的面知识点:1、在观察中,通过不同的观察策略进行观察。

如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。 2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。

三单元:《分数除法》倒数知识点:1、发现倒数的特征并理解倒数的意义。 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。

倒数是对两个数来说的,并不是孤立存在的。 2、求倒数的方法。

把这个数的分子和分母调换位置。 3、1的倒数仍是1;0没有倒数。

0没有倒数,是因为在分数中,0不能做分母。分数除法(一)知识点:1、分数除以整数的意义及计算方法。

分数除以整数,就是求这个数的几分之几是多少。分数除以整数(0除外)等于乘这个数的倒数。

分数除法(二)知识点:1、一个数除以分数的意义和基本算理。一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。

2、掌握一个数除以分数的计算方法。 除以一个数(0除外)等于乘这个数的倒数。

3、比较商与被除数的大小。 除数小于1,商大于被除数; 除数等于1。

商等于被除数; 除数大于1,商小于被除数。分数除法(三)知识点:1、列方程“求一个数的几分之几是多少”。

2、利用等式的性质解方程。 3、理解打折的含义。

如:打8折就是指现价是原价的十分之八。数学与生活粉刷墙壁知识点:1、明确我们在粉刷教室墙壁时必须知道的条件。

2、根据实际情况进行计算相应的面积。折叠:知识点:1、体会立体图形与展开图形之间的关系,发展空间观念。

2、能正确判断平面展开图所对应的简单立体图形。四单元:《长方体(二)》体积与容积知识点:1、体积与容积的概念。

体积:物体所占空间的大小叫作物体的体积。 容积:容器所能容纳入体的体积叫做物体的容积。

体积单位知识点:1、认识体积、容积单位。 常用的体积单位有:立方厘米、立方分米、立方米。

2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义。补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。

长方体的体积知识点:1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法。 长方体的体积=长*宽*高 正方体的体积=棱长*棱长*棱长 长方体(正方体)的体积=底面积*高 2、能利用长方体(正方体)的体积及其他两个条件求出问题。

如:长方体的高=体积/长/宽补充知识点:长方体的体积=横截面面积*长体积单位的换算知识点:1、体积、容积单位之间的进率。 相邻两个体积单位、容积单位之间的进率是1000。

有趣的测量知识点:1、不规则物体体积的测量方法。 2、不规则物体体积的计算方法。

五单元:《分数混合运算》分数混合运算(一)知识点:1、体会分数混合运算的运算顺序和整数是一样的。分数混合运算(二)知识点:整数的运算律在分数运算中同样适用。

分数混合运算(三)知识点:1、利用方程解决与分数运算有关的实际问题。 2、分数中的估算。

3、利用线段图来分析题中的数量关系。 4、对最后结。
5.数学手抄报的资料.要简短.快快.急~~
中国古代数学发展史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。

中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。

西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。

据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。

春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。

战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。

还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。

墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。

墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。

名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。

中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学着作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名着。

例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。

就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显着的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。

这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。

最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。

它的一些成就如十进位值制、今有术、盈不足术等还传到印度和 *** ,并通过印度、 *** 传到欧洲,促进了世界数学的发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。

吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。

赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。

在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开。

2. 防疫小知识的字

卫生防疫常识

1、不要喝生水,生水中带有病菌、病毒,喝下去很容易生病。要喝水,应当喝开水,或者喝经过消毒处理卫生合格的水。

2、不要吃未洗净的瓜果。未洗净的瓜果,或用河滨水洗的瓜果,皮上可能沾有病菌病毒,吃了很容易得病。

3、不要吃过期食物。过期的食物会分解、产生出对人体有害的物质,所以不能吃,吃了容易引发严重的后果。

4、不要吃馊饭菜。饭菜馊了以后,即使经过重新蒸煮,吃了仍旧有害。

5、不要吃或尽量不吃凉拌菜。环境卫生条件差,凉菜特别是凉菜在制作过程中容易污染,最好不要吃,如果一定要吃,应注意凉菜的卫生,同时吃一些生大蒜。

6、不要吃霉米面。生霉的米面含有毒物,人吃了有害。



肠道传染病防治 肠道传染病,主要是经食物、饮用水、日常生活接触等途径进行传播。注意环境卫生,养成良好卫生习惯,把住“口手两关”,是防病的关键。 肠道传染病最重要的防治措施是切断传播途径,防止“病从口入”,即讲究个人卫生,养成良好的卫生习惯,做到饭前、便后洗手,不喝生水,不吃腐败变质与不洁的生冷食品、饮料等。

你拍一我拍一,勤洗手脸常换衣;你拍二我拍二,预防疾病要牢记;

你拍三我拍三,开窗通风把气散;你拍四我拍四,蔬菜水果要常吃;

你拍五我拍五,喷嚏咳嗽手稍捂;你拍六我拍六,刷牙洗脸不能丢;

你拍七我拍七,锻炼身体要早起;你拍八我拍八,污垢场所不去耍。

你拍九我拍九,防病常识人人有;你拍十我拍十,粗心大意后悔迟。

3. 数学小知识在生活中的应用

1.急
在人们的日常生活中,数学无处不在,正确运用数学知识可以使生活得到改善。

数学虽然是我们人类的大功臣,可如果我们人类不会使用它,它仍然"无利于世",所以,我们一定要用聪明的大脑,利用数学,使我们的生活更方便. 神奇的数学其实就在我们身边,让我们一起从身边的每一件小事做起,你一定会发现这神奇的数学无时无刻都在影响着我们,帮助着我们. 数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。

此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。 数学在社会学中的应用也非常广泛,在统计学中更是如此。

它甚至可以用来避免疫病流行或减轻它们的影响力。当我们无法对全部人口采取免疫措施时,数学可以帮助我们确定哪些人必须注射疫苗以减少风险举茄。

在艺术领域,数学仍然无处不在。音乐、绘画、雕塑……所有门类的艺术都通过这样或那样的方式得到数学的帮助。

日本雕塑家潮惠三喜欢用几何和拓扑学来创造自己的作品,通过数学计算分割雕塑用的花岗岩。潮惠三说:“数学是宇宙语言。”

“数学是我们这个时代看不见的文化”,它在众多领域不同程度地影响着我们的生活方式和工作方式。当然,普通人和科学家是从不同的角度和不同的层面认识数学,普通人一般只了解数学与生活某一方面的联系,而体会不到它与生活各个方面的关联。

人们总是认为数学穗扒比较抽象,对实际工作没有直接的帮助,没有必要去深入地学习和研究数学。其实不然,数学与其它科学一样,与我们的生活息息相关。

着名的数学家华罗庚先生曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”这是睿智的科学家对数学与生活关系的精彩描述。

当代数学已经远不止是算术和几何,而是一门丰富多彩的学科,是计算和演绎的创造性的结合,扎根于数据而展现于抽象形式中,通过揭示现象中隐蔽的模式来帮助人们了解和认识周围的世界。它所处理的是科学中的数据、测量和观察的资料,是推断、演绎和证明,是自然现象、人类行为和社会系统的数学模型,是数、机会、形状、算法和变化。

下面举个例子,让大家体会一下数学在实际生活中的运用。 例:在第二次世界大战期间,军事上、生产上、交通运输上都面临一系列的难题:飞机应当怎样侦察潜水艇的活动,有限的兵力应当怎样部署,生产应当怎样组织得更合理等等。

在二战中期,希特勒统治的纳粹德国非常猖獗,潜艇活动频繁。根据一些数学家的建议,一个用飞机进行系统巡逻的计划被采纳了。

按照这个计划,可以用尽可能少量的飞机来控制一定范围的水域。在这个计划实施以后,德国潜艇被侦察到的可能性大大增加。

1943年2月,美国军方获悉一支日本舰队集结在南太平洋的新不列颠岛,打算越过俾斯麦海开往新几内亚。美国西南太平洋空军奉命拦截,并炸沉这支日本舰队。

从新不列颠岛到新几内亚的航线有南北两条,航程都是三天。美军得到的气象预报表明,未来三天在北路航线上阴雨连绵,而南路天气比较好。

在这种情况下,日本舰队将走北路呢,还是南路?这是美军必须进行分析和判断的。因为要完成轰炸任务,首先要派出少量飞机进行侦察搜索,要求尽快地发现日本舰队,然后出动大批飞机进行轰炸。

空军司令考虑了出动少数飞机分两路进行搜索的战略,共有以下几种: 第一,搜索重点放在北路,日舰也走北路。这时虽然天气很差,能见度很低,但是因为搜索力量集中,可望在一天内发现日舰,于是就有两天的轰炸时间。

第二,索重点放在北路,可是日舰走的是南路。这时南路虽然天气比较好,但是因为搜索力量集中于北路,南路只有很少的飞机,因此也需要花上一天的时间才能发现日舰。

于是轰炸的时间也就只有两天。 第三,搜索重点放在南路,日舰却走北路。

这时北路只有为数极少的飞机,天猜答昌气又很坏,得花上两天时间才能发现日舰,轰炸时间只剩下一天。 第四,搜索重点放在南路,日舰也走南路。

这时搜索的飞机比较多,天气又好,可以指望很快就能发现日舰,轰炸时间基本上有三天 站在美国人的立场,当然是第四种情况最有利。可是,打仗不能“一厢情愿”。

站在日本人的立场,当然走北路要有利得多。所以第二种和第四种情形可能出现的机会很小。

因此,空军司令毅然决定,把搜索重点放在北路。结果不出所料,日本人果然选择了这条航线,海战基本上就在美方预期的地点发生了,结果日方遭到了惨败。

有人说:数学是科学的皇后。我认为,数学的地位与哲学非常相似。

古往今来,历代哲学家都很重视数学,伟大的哲学家柏拉图曾在自己家的门口写下了一句话:“不懂数学者免进”。由此可见数学在哲学家心中的位置有多么重要。

数学与哲学一样,既来源于生。
2.数学在生活中的应用有哪些
数学在生活中的应用有哪些 一、走进生活,用数学眼光去观察和认识周围的事物: 世界之大,无处不有数学的重要贡献。

培养学生的数学意识以及运用数学知识解决实际问题的能力,既是数学教学目标之一,又是提高学生数学素质的需要。在教学中,要使学生接触实际,了解生活,明白生活中充满了数学,数学就在你自己的身边。

例如在“比例的意义和基本性质”的导入中,我设计了这样一段:你们知道在我们人体上的许多有趣的比例吗?将拳头翻滚一周,它的长度与脚底长度的比大约是1:1,脚底长与身高长的比大约是1:7……知道这些有趣的比有很多用处,到商店买袜子,只要将袜子在你的拳头上绕一周,就会知道这双袜子是否合适你穿;如果你是一个侦探,只要发现罪犯的脚印,就可以估计出罪犯的身高……这些都是用身体的比组成了一个个有趣的比例,今天我们就来研究“比例的意义和基本性质”; 此外教师还可结合学生年龄特点,设计一些“调查” 、“体验” 、“操作”等实践性强的作业,让学生在活动中巩固所学知识,提高各方面的能力:如教学“单价、数量、总价”三者关系应用题前可布置学生做一回小小调查员,完成下列表格: 品 名 黄瓜 白菜 萝卜 猪肉 单 价(元) 数量(千克) 总 价(元) 这样做,使学生对所学知识有了感性认识,减缓他们在学习上坡度,对他们深刻理解单价、数量、总价三者之间的关系有很大帮助。再如学习了三角形的稳定性后,可让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识后,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?还可以让学生想办法找出锅盖、脸盆的圆心在哪儿;……这样大大丰富了学生所学的知识,让学生真正认识到周围处处有数学,数学就在我们生活中间,并不神秘,同时也在不知不觉中感悟数学的真谛,进而激起从小爱数学、学数学、用数学的情感,促进学生的思维向科学的思维方式发展,培养学生自觉地把所学的知识应用于实际生活的意识。

二、感悟生活,架构数学与生活的桥梁: “人人学有用的数学,有用的数学应当为人人所学”成了数学教学改革实验的口号。教学中我联系生活实际,拉近学生与数学知识之间的距离,用具体生动、形象可感的生活事例解释数学问题。

1、运用生活经验解决数学问题 在上“用字母表示数”一课的内容时,我用CAI课件演示李蕾同学拾金不昧的情景,紧接着播出一则“失物招领启事”: 失 物 招 领 李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。 校少先队大队部 2002.3 学生惊奇于数学课上老师怎么讲起了失物招领的事呢?我和学生通过分析、讨论A元所表示的意义, 师:A元可以是1元钱吗? 生1:A元可以是1元钱,表示拾到1元钱。

师:A元可以是5元钱吗? 生2:可以!表示拾到5元钱。 师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。

师:A元还可以是多少钱呢?生4:还可以是0.5元,表示拾到5角钱。…… 师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑! 师:为什么不直接说出拾到多少元,而用A元表示呢?…… 由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。

本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。

2、运用数学知识解决实际问题 例如学习了长方形、正方形面积的计算及组合图形的计算后,我尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;接下来我还让学生们回家测算一下自己家的实际居住面积。

在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。 如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆? 通过观察、思考、讨论,在我的鼓励指导下,同学们用式子有序地依次表示为: (1)把100元分解为两个数的和: (2)把100元分解为3个数的和: 50+50=100 40+60=100 30+70=10020+80=100 60+20+20=10050+20+30=10040+40+20=10030+30+40=100 (3)把100元分解为4个数的和 (4)把100元分解为5个数的和 40+20+20+20=100 20+20+20+20+20=100 30+30+20+20=100 学生以发现者的心态去探索、去求新、去寻觅独创性的答案,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”

这种图文并茂的应用题,使学生。
3.小学数学在生活中的应用(举例)
原发布者:中国学术期刊网

数学在生活中的运用内容摘要:坚持数学来源于生活,扎根生活,且反过来又应用,服务于生活,将学生应用于数学过程兴趣化,生活化,为学生在生活中应用数学知识,提高数学能力提供了一个广阔的空间。关键字:数学;生活中图分类号:g623.5学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。数学就应该在生活中学习。有人说现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了自然会发现,其实数学很有用处。一、在应用数学知识中认识生活实际我们以往的数学教学往往比较重视解答现有的数学问题,既课本上已经经过处理的问题。学生只需要按照学会的解
4.数学在生活中的应用
数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。 我在纸上写道: 设某顾客买茶杯x只,付款y元,(x>3且x∈N),则 用第一种方法付款y1=4*20+(x-4)*5=5x+60; 用第二种方法付款y2=(20*4+5x)*90%=4.5x+72. 接着比较y1y2的相对大小. 设d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当d>0时,0.5x-12>0,即x>24; 当d=0时,x=24; 当d/Article_View?ID=20&page=1 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。 如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d. ∴r=secα*d这个问题至此便迎刃而解了。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我主要谈一下均值不等式和均值定理的应用。 在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均值不等式知识在日常生活中的应用,笔者虽未亲身经历,但从电视、报纸等新闻媒体及我们所做的应用题中不难发现,均值不等式和极值定理通常可有如下几方面的极其重要的应用:(表后重点分析“包装罐设计”问题)
5.数学在生活中的运用有哪些例子
1、骑自行车的时候用脚蹬一圈脚踏板自行车行走的米数。我们可以去测量车轮的半径,再用圆的周长公式求出来。

2、数学加减乘除的计算。如商品的买卖,日期的计算,时间的计算。

3、面积的计算。自家的住房面积,公园的占地面积,操场的活动面积等等。

4、统计学的计算。迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。

5、工资的计算。财务收入与支出,日常的消费管理等等。

(3)防疫知识的数学应用350字扩展阅读:

数学的几个分支介绍

1:数学史

2:数理逻辑与数学基础

a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理 *** 论 f:数学基础 g:数理逻辑与数学基础其他学科

3:数论

a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科

4:代数学

a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科

5:代数几何学

6:几何学

a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科