当前位置:首页 » 基础知识 » 数学集合相等知识点
扩展阅读
考研教育平台哪个好 2024-11-28 08:41:26
同学生日宴会怎么举办 2024-11-28 08:39:54
数学基础2000题价位多少 2024-11-28 08:38:50

数学集合相等知识点

发布时间: 2024-05-11 19:31:15

1. 数学知识点总结

数学集合知识点总结

集合是高中数学中的一个重要考点,相关的知识掌握并不是十分的难,下面是我想跟大家分享的数学集合知识点总结,欢迎大家浏览。

数学知识点总结1

一、知识归纳:

1、集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集)、其中每一个对象叫元素

注意:

①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*

2、子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)并集:A∪B={x| x∈A或x∈B}

5)补集:CUA={x| x A但x∈U}

注意:

①? A,若A≠?,则? A ;

②若 , ,则 ;

③若 且 ,则A=B(等集)

3、弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:

(1) 与 、?的区别;

(2) 与 的区别;

(3) 与 的区别。

4、有关子集的几个等价关系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5、交、并集运算的性质

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n—1个非空子集,2n—2个非空真子集。

二、例题讲解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系

A) M=N P B) M N=P C) M N P D) N P M

分析一:从判断元素的共性与区别入手。

解答一:对于集合M:{x|x= ,m∈Z};对于集合N:{x|x= ,n∈Z}

对于集合P:{x|x= ,p∈Z},由于3(n—1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。

分析二:简单列举集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以选B。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合 , ,则( B )

A、M=N B、M N C、N M

解:

当 时,2k+1是奇数,k+2是整数,选B

【例2】定义集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为

A)1 B)2 C)3 D)4

分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。

变式1:已知非空集合M {1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

A)5个 B)6个 C)7个 D)8个

变式2:已知{a,b} A {a,b,c,d,e},求集合A。

解:由已知,集合中必须含有元素a,b。

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。

评析 本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有 个 。

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3。

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为—2和1,

∴ ∴

变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值。

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=—5

∴B={x|x2—5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=—(2+2)=4,c=2×2=4

∴b=—4,c=4,m=—5

【例4】已知集合A={x|(x—1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>—2},且A∩B={x|1

分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

解答:A={x|—21}。由A∩B={x|1—2}可知[—1,1] B,而(—∞,—2)∩B=ф。

综合以上各式有B={x|—1≤x≤5}

变式1:若A={x|x3+2x2—8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>—4},A∩B=Φ,求a,b。(答案:a=—2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设M={x|x2—2x—3=0},N={x|ax—1=0},若M∩N=N,求所有满足条件的a的集合。

解答:M={—1,3} , ∵M∩N=N, ∴N M

①当 时,ax—1=0无解,∴a=0 ②

综①②得:所求集合为{—1,0, }

【例5】已知集合 ,函数y=log2(ax2—2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。

分析:先将原问题转化为不等式ax2—2x+2>0在 有解,再利用参数分离求解。

解答:(1)若 , 在 内有有解

令 当 时,

所以a>—4,所以a的取值范围是

变式:若关于x的方程 有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

数学知识点总结2

一、集合与函数概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:元素的确定性;元素的互异性;元素的无序性。

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法

二、函数的有关概念

1、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的.值域。

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”

给定一个集合A到B的映射,如果a∈A,b∈B。且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,

①集合A、B及对应法则f是确定的;

②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;

③对于映射f:A→B来说,则应满足:

(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;

(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

拓展阅读:学习数学的方法

第一、兴趣。

如今的家庭和学校对孩子的期望很高,而且女生的性格普遍较为文静,心理不够强大,还有的就是数学这科目难度相对来说较高,很容易会导致女生对数学的兴趣降低。

所以说,作为老师应该多关心她们的学习情况,多与她们交流科目上的内容,了解她们的想法,只有理解她们的想法才能有效的制定相应的学习计划,为她们驱除紧张的情绪,从而达到一个好的学习状态。与此同时,作为家长的应该多关心孩子的情况,不要一看到成绩不好就开口训斥,这样对孩子的心理会造成一定的影响,甚至可能削弱孩子对数学的兴趣。我们应该用积极的态度去对待孩子的学习,女生的情感与男生不同,她们对于感兴趣的,一般会更有耐心克服困难,达到自己的目标。

第二、自信。

女生的形象思维能力一般比男生要差,逻辑思维能力也如此,所以容易造成没有信心的现象。事实上,女生在运算准确率方面是很高的,也比较规范,所以我们看到女生的数学答题大都很工整,其实这是一个优点。

所谓每个人都有优缺点,我们不应该因为自己的缺点而妄自菲薄,而是应该努力克服缺点,增强自己的自信心,在学习上应该多了解通解通法,还有一些常用的数学公式,解题技巧,还有解题速度。很多女生解数学题的速度都不快,甚至有些女生到时间了还有几道大题没做,这样丢分是让人很遗憾的。

第三、学习方法。

很多女生在学习数学的时候喜欢按部就班,注重基础,但是却很少做难题,所以便导致了解题能力薄弱。女生上课的时候很认真,复习的时候喜欢看笔记和书本,但是却忽视了对自己能力的训练,所以导致了自己适应性比较差。

所以,女生应该从这几点下手,多下功夫,对于难题我们不要害怕,但是也不能一味地做难题,适当的训练,对于自己的数学能力是有很大提升的。还有,女生在学习数学的时候应该多向男生学习,学习他们的一些优秀技巧,进而转化为自己的学习技巧,结合在做题上,多训练,相信对自己的数学水平是有很大帮助的。

第四、课前预习。

正所谓“笨鸟先飞”,我们经过预习可以提前对新内容有一个大概的了解,从而在听课的时候能够有的放矢,对自己不了解的知识点着重注意,很可能会有奇效。而提前预习,还能对女生的心理有一个暗示,对女生的信心提高也是有极大的好处。

;

2. 数学的知识点总结

集合的运算也遵循一般的代数式运算规律,也有着自己的法则和定理。下面是我整理的数学集合的知识点总结,欢迎参考阅读!

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

①.元素的确定性; ②.元素的互异性; ③.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

4、集合的表示:{ } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于属于的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的'方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

二、集合间的基本关系

1.包含关系子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A

2. 不含任何元素的集合叫做空集,记为

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

3.相等关系(55,且55,则5=5)

实例:设 A={x|x2-1=0} B={-11} 元素相同

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集。A?A

②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 A?B B?C 那么 A?C

④ 如果A?B 同时 B?A 那么A=B

三、集合的运算

1、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:AB(读作A并B),即AB={x|xA,或xB}.

2.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.

记作AB(读作A交B),即AB={x|xA,且xB}.

3、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x ? x?S且 x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

4、交集与并集的性质:AA = A A= B = BA,AA = A

A= A AB = BA.

3. 高一集合数学知识点有哪些

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A。

3、集合的表示方法:列举法与描述法。

①列举法:{a、b、c……}。

②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}。

例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}。

4、子集

A包含于B,有两种可能:

(1)A是B的一部分。

(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之集合A不包含于集合B。

5、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

4. 闆嗗悎镄勬傚康鐭ヨ瘑镣

闆嗗悎镄勬傚康鐭ヨ瘑镣规湁锛

1锛岄泦钖堬细镆愪簺鎸囧畾镄勫硅薄闆嗗湪涓璧峰氨鎴愪负涓涓闆嗗悎锛堥泦锛夛纴鍏朵腑姣忎竴涓瀵硅薄鍙鍏幂礌銆

2锛岄泦钖堢殑琛ㄧず鏂规硶锛氭妸闆嗗悎涓镄勫厓绱犱竴涓鍒椾妇鍑烘潵锛屽啓鍦ㄥぇ𨰾鍙峰唴琛ㄧず闆嗗悎镄勬柟娉曞彨锅氩垪涓炬硶銆

3锛岄泦钖堢殑鍒嗙被锛氭湁闄愰泦锛屾棤闄愰泦锛岀┖闆嗐

4锛屽父鐢ㄦ暟闆嗭细N锛孼锛孮锛孯锛孨*銆

5锛岄泦钖堜腑镄勫厓绱犲叿链夌‘瀹氭с佷簰寮傛с佹棤搴忔с

鐭ヨ瘑镓╁𪾢

闆嗗悎鏄鏁板︿腑镄勪竴涓锘烘湰姒傚康锛屾寚镄勬槸涓缁勫叿链夋煇绉岖壒瀹氭ц川镄勫硅薄镄勬诲拰銆傞泦钖堜腑镄勫硅薄鍙浠ユ槸鏁板瓧銆佸瓧姣嶃佸浘褰銆佸嚱鏁扮瓑绛夛纴鍙瑕佸畠浠鍏锋湁镆愮嶅叡钖岀殑鐗规э纴灏卞彲浠ヨ鐪嬩綔鏄涓涓闆嗗悎銆

镐讳箣锛岄泦钖堟槸涓绉嶆暟瀛︾殑锘烘湰姒傚康锛屽畠鍙浠ョ敤𨱒ユ弿杩颁竴缁勫叿链夋煇绉岖壒镐х殑瀵硅薄锛屽苟涓斿叿链夌‘瀹氭с佷簰寮傛у拰镞犲簭镐х瓑鐗规с傚湪鏁板﹀拰璁$畻链虹戝︿腑锛岄泦钖堣骞挎硾搴旂敤浜庡悇绉崭笉钖岀殑棰嗗烟锛屼负鎴戜滑鎻愪緵浜嗗己澶х殑宸ュ叿𨱒ユ弿杩板拰澶勭悊闂棰樸

5. 集合的概念知识点归纳有哪些

集合的概念和知识点归纳如下:

1、概念:

集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。

2、地位:

集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。

3、特性:

(1)确定性:

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

(2)互异性:

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

(3)无序性:

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

4、表示方法:

表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。

5、运算定律:

(1)交换律:A∩B=B∩A;A∪B=B∪A。

(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。

(3)分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。

(4)对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C。

(5)同一律:A∪∅=A;A∩U=A。

(6)求补律:A∪A'=U;A∩A'=∅。

(7)对合律:A''=A。

(8)等幂律:A∪A=A;A∩A=A。

(9)零一律:A∪U=U;A∩∅=∅。

(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A。

集合的容斥原理(特殊情况):

card(A∪B)=card(A)+card(B)-card(A∩B)

card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。

以上内容参考:网络-集合

6. 高一集合数学知识点内容有哪些

集合数学知识点有如下:

一、某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

二、通常用大写字母表示集合,用小写字母表示元素。

三、一个集合中,每个元素的地位都是相同的,元素之间是无序的。

四、集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。

五、集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。

7. 集合数学知识点有哪些

(1)集合的含义与表示

①通过实例了解集合的含义,体会元素与集合的“属于”关系。

②能选择然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

(2)集合间的基本关系

①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

有限集:含有有限个元素的集合

无限集:含有无限个元素的集合

空集:不含任何元素的集合 例:{x|x2=-5}

(7)数学集合相等知识点扩展阅读:

每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。

集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。

无序性:{a,b,c}{c,b,a}是同一个集合。

所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。