当前位置:首页 » 基础知识 » 初一数学小知识
扩展阅读
青春留在哪里歌词 2024-11-28 22:24:25
银行小知识点 2024-11-28 22:11:36

初一数学小知识

发布时间: 2024-04-17 05:42:39

1. 初一数学知识点总结

初一数学知识点总结1

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

19.公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

20.多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

21.多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有n(n-3)/2条对角线。

初一数学知识点总结2

平面直角坐标系

1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

3.原点的坐标是(0,0);

纵坐标相同的点的连线平行于x轴;

横坐标相同的点的连线平行于y轴;

x轴上的点的纵坐标为0,表示为(x,0);

y轴上的点的横坐标为0,表示为(0,y)。

4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

5.几个象限内点的特点:

第一象限(+,+);第二象限(—,+);

第三象限(—,—);第四象限(+,—)。

6.(x,y)关于原点对称的点是(—x,—y);

(x,y)关于x轴对称的点是(x,—y);

(x,y)关于y轴对称的点是(—x,y)。

7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;

点P(x,y)到y轴的距离是︱x︳。

8.在第一、三象限角平分线上的点的坐标是(m,m);

在第二、四象限叫平分线上的点的坐标是(m,—m)。

不等式与不等式组

(1)不等式

用不等号(,≥,≤,≠)连接的式子叫做不等式。

(2)不等式的性质

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

(3)一元一次不等式

用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

(4)一元一次不等式组

一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

点、线、面、体知识点

1.几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

2.点动成线,线动成面,面动成体。

点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

注意:

(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

角的种类

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。

初一数学知识点总结3

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学知识点总结4

一、一元一次不等式的解法:

一元一次不等式的解法与一元一次方程的解法类似,其步骤为:

1、去分母;

2、去括号;

3、移项;

4、合并同类项;

5、系数化为1

二、不等式的基本性质:

1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

三、不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

四、不等式的解集:

一个含有未知数的不等式的所有解,组成这个不等式的解集。

五、解不等式的依据不等式的基本性质:

性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,

性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,

性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,

常见考法

(1)考查一元一次不等式的解法;

(2)考查不等式的性质。

误区提醒

忽略不等号变向问题。

初中数学重点知识点归纳

有理数乘法的运算律

1、乘法的交换律:ab=ba;

2、乘法的结合律:(ab)c=a(bc);

3、乘法的分配律:a(b+c)=ab+ac

单项式

只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的'指数构成的。

多项式

1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

提高数学思维的方法

转化思维

转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。

创新思维

创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解

要培养质疑的习惯

在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。

在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。

有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。

初一数学知识点总结5

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①整数②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数0和正整数;a>0a是正数;a<0a是负数;

a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数>0,小数-大数<0.

初一数学知识点总结6

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学知识点总结7

一、知识梳理

知识点1 :正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

知识点2 :有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

知识点3 :数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4 :绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5 :相反数的概念:

(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

知识点6 :有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7 :有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8 :有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9 :有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10 :有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

2. 初中一年级数学知识要点

初一数学概念
实数:
—有理数与无理数统称为实数.
有理数:
整数和分数统称为有理数.
无理数:
无理数是指无限滑银不循环小数.
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数.
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴.
相反数:
符号不同的两个数互为相反数.
倒数:
乘积是1的两个数互为倒数.
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值.一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0.
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数激模相加得0.
⑵减法法则:减去一个数,等于加上这个数的相反数.
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数信铅宴与0相乘都得0.
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.

3. 初一数学单元知识点归纳5篇(精选)

每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

初一数学第一单元知识点

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0a+b=0a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:或;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10.有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

18.混合运算法则:先乘方,后乘除,最后加减。

2数学常用计算公式表(1)长方形面积=长×宽,计算公式s=a b

(2)正方形面积=边长×边长,计算公式s=a × a

(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2

(4)正方形周长=边长× 4,计算公式s= 4a i

(5)平形四边形面积=底×高,计算公式s=a h.

(6)三角形面积=底×高÷2,计算公式s=a×h÷2

(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2

(8)长方体体积=长×宽×高,计算公式v=a bh

(9)圆的面积=圆周率×半径平方,计算公式s=лr2

(10)正方体体积=棱长×棱长×棱长,计算公式v=a3

初一下册数学知识点 总结

1.1正数与负数

在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。

1.2有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rationalnumber)。

通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。

初中 一年级数学 上册知识

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:

a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

初一数学上册知识点归纳

代数初步知识

1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“? ” 乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“? ”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;

(5)在代数式中出现除法运算时,一般用 分数线 将被除式和除式联系,如3÷a写成 的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

初一数学 复习方法

考试与作业逻辑不同:

我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。

那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:

复习方法总结

1回归书本,梳理章节概念公式、性质定理等

就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。

比如知识点填空:

知识点填空

我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。

比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。

再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。

还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。

2题型突破,对各章节常见的 热点 问题归纳练习。

我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。

大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。

3、熟悉套路、模型

平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。

三角形倒角常见模型:8字型、飞镖型、折角型。

三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。

学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。

如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。

4、坚持改错题

把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。

初一数学单元知识点归纳相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学第一单元知识点归纳

★ 初一上册数学知识点归纳整理

★ 初一数学上册知识点汇总归纳

★ 初一数学知识点小归纳

★ 初中七年级数学知识点归纳整理

★ 初一数学知识点梳理归纳

★ 初一数学的知识点归纳

★ 初一数学知识点归纳

★ 初一数学知识点归纳与学习方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

4. 初一数学知识点

第一章 有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程

2.1 从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步

3.1 多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段

线段公理:两点的所有连线中,线段最短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

第四章 数据的收集与整理

收集、整理、描述和分析数据是数据处理的基本过程。

第五章 相交线与平行线

5.1 相交线

对顶角(vertical angles)相等。

过一点有且只有一条直线与已知直线垂直(perpendicular)。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

5.2 平行线

经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

直线平行的条件:

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系

6.1 平面直角坐标系

含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

第七章 三角形

7.1 与三角形有关的线段

三角形(triangle)具有稳定性。

7.2 与三角形有关的角

三角形的内角和等于180度。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角

7.3 多边形及其内角和

n边形内角和等于:(n-2)?180度

多边形(polygon)的外角和等于360度。

第八章 二元一次方程组

8.1 二元一次方程组

方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2 消元

将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

第九章 不等式与不等式组

9.1 不等式

用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

9.3 一元一次不等式组

把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

第十章 实数

10.1 平方根

如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

0的算术平方根是0。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

求一个数a的平方根的运算,叫做开平方(extraction of square root)。

10.2 立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

求一个数的立方根的运算,叫做开立方(extraction of cube root)。

10.3 实数

无限不循环小数又叫做无理数(irrational number)。

有理数和无理数统称实数(real number)。

拓展: 初一语文上知识点

一、叙述人称(三种人称):

1、第一人称(“第一人称”能给人亲切自然、真实的感受。用“第一人称”写“我”,最适宜于写人物的心理活动,所见、所闻、所为、所感,都可以通过心理活动描写表现出来的。用第一人称写“他”时,最适宜写人物的外貌、语言、行动,因为用“我”的观感来写“他”的这些,较为客观。“第一人称”写“我”的外貌,写“他”的心理活动,必须加上摹拟的话,才能让读者心悦诚服。写“我”的外貌,可以这样写:“你们可以想象,我那时的脸是多么红。”写“他”的心理活动,可以这样写:“心里很轻松似的。”)

2、第二人称(作用:增强文章的抒情性和亲切感,便于感情交流。)

3、第三人称(作用:能比较直接客观地展现丰富多彩的生活,不受时间和空间限制,反映现实比较灵活自由。)

二、叙述方式(或者说“记叙的顺序”)(三种):

1、顺叙——按时间发生的先后顺序所作的叙述。顺叙型的结构模式是:总叙+分叙(分叙1+分叙2+分叙3+分叙n)+结尾。作用:条理清楚地进行记叙。

2、倒叙——把事件的结局或其发展过程中的某一重要断面提到文章前面,写完结局或断面,然后才按时间顺序写。作用:这种笔法能造成悬念,吸引读者。

3、插叙( 补叙属于插叙一种)——对全文来说,插叙仅是一个片断,插叙完后,文章仍回到原来的事件叙述上来。这种插叙不是叙述的主体部分,一般不发生在主流的时间范围内。若把这种插叙删去,虽会削弱主体的深刻性,但不明显影响主要情节的完整性。作用:使情节更加完整,结构更加严密,内容更加充实丰满。补叙作用:对上文内容加以补充解释,对下文做某些交代。

(有一种不常用的,叫“平叙”,即:俗称“花开两枝,各表一朵”,(指叙述两件或多件同时发生的事)使头绪清楚,照应得体。)

三、描写:

总体来说,描写有以下一些作用:①再现自然风光。②描绘人物的外貌及内心世界。③交代人物活动的自然及社会环境。

1、五种人物的描写方法:肖像(外貌)描写、语言描写、动作描写、心理描写、神态描写。

作用:更好展现人物的内心世界、性格特征。刻画人物性格,反映人物心理活动,促进故事情节的发展。等等。具体回答的时候要说明白是什么性格、什么心理等。

2、二种环境描写:自然环境描写——具体描写自然风光,营造一种气氛,烘托人物的情感和思想。烘托人物心情,渲染气氛等。

社会环境描写——交代人物活动的(时代)背景,写明事件发生的时间和地点,渲染气氛,更好地表现人物。

3、正面描写、侧面描写:正面直接表现人物、事物;侧面烘托突出人物、事物。

4、细节描写:刻画人物性格,反映人物心理活动,促进故事情节的发展。也可描摹人物的.语态,收到一种特殊的效果。

四、修辞:

1、比喻:使语言形象生动,增加语言色彩。化平淡为生动,化深奥为浅显,化抽象为具体形象。

2、拟人:把事物当人写,使语言形象生动。给物赋予人的形态情感(指拟人),描写生动形象,表意丰富。

3、排比:增强语言气势,加强表达效果。叙事透辟,条分缕析;长于抒情。

4、夸张:突出某一事物或强调某一感受。烘托气氛,增强感染力,增强联想;创造气氛,揭示本质,给人以启示。

5、反问:起强调作用,增强肯定(否定)语气。

6、设问:自问自答,提出问题,引发读者的注意、思考。

7、对偶:使语言简练工整、有音乐感;抒情酣畅;便于吟诵,易于记忆。

8、反复:多次强调,给人以深刻的印象;写景抒情感染力强;承上启下,分清层次。

注:上面只是简要给出各种修辞手法(方法)的作用,在回答问题的时候,一定要结合具体的内容具体来回答,避免空洞。

五、结构安排:

布局谋篇的技巧:开门见山、首尾呼应、卒章显志、伏笔照应、层层深入、过度铺垫、设置线索;结构严密,完整匀称;烘托铺垫,前后照应;设置悬念,制造波澜,起承转合,曲折有致。材料和中心的关系的处理,主次详略是否得当;材料是否典型、真实、新颖、有力。

记叙文常以时间推移、空间转换、情景变化、思维逻辑顺序等来安排层次。散文构思的线索,一般常见的有如下几种:以情为线索;以理为线索;以物为线索;以空间位置为线索。

从结构上明确不同位置的句子在文中所起的作用:

1、首句——统领全文、提纲挈领、引出下文,为后文做铺垫、埋下伏笔;

2、尾句——总结全文,深化主题,照应上文,前后呼应,言有尽而意无穷,回味深长。

3、转承句——承上启下,过渡,承接上文,引出下文;

4、中心句——点明中心、揭示主旨;

5、点睛句——点明全文中心,统领全文;句子含义深刻,耐人寻味,读后能给人以启迪。

6、情感句——抒发强烈内在情感,直抒胸臆;

7、矛盾句——从字面上看自相矛盾,但作者却寄寓了深刻的用意。揭示深刻内涵,表达深刻见解。

(1)记叙文(散文)的结构特点

①按时间顺序或事件发生、发展的顺序组织材料。

②按观察点的变换安排材料,如《我的空中楼阁》。

③按场面的安排安排材料,如《内蒙访古》。

④按材料性质归类安排结构,如《琐忆》。

⑤按作者认识的过程或感情的变化安排材料。如《荔枝蜜》。

⑥按作者的所见所闻所感所思作为行文线索安排材料。

六、表达方式入手分析句意:

五种表达方式:记叙、 描写、 说明、 抒情、 议论。

解释:用语言文字表情达意时,有一个方法或手段问题,人们习惯上将它称为表达方式。

比如:记叙文是以叙述、描写、抒情为主要表达方式,议论文是以议论为主要表达方式,而说明文则以说明为主要表达方式。

1、记叙文中的议论往往起画龙点睛、揭示记叙目的和意义的作用;

2、议论文中的记叙往往起到例证的作用;

3、说明文中描写、文艺性笔调起到点染作品使之更加生动形象的作用。

4、夹叙夹议,记叙与议论交叉运用的写法,使文章在轻松活泼之中,阐发议论,读来饶有兴味,深受教益,文章中的记叙是为议论服务的,而议论又以记叙为基础,叙为议提供了事实依据,使立论有根有据,具有很强的说服力。

七、标点符号:

1、引号的五种用法:①表引用 ②表讽刺或否定 ③表特定称谓 ④表强调或着重指出 ⑤特殊含义

2、破折号的五种用法:①表注释 ②表插说 ③表声音中断、延续 ④表话题转换 ⑤表意思递进

3、省略号的六种用法:①表内容省略 ②表语言断续 ③表因抢白话未说完 ④表心情矛盾 ⑤表思维跳跃 ⑥表思索正在进行

八、十种常用写作手法:

象征、对比、衬托、烘托、伏笔铺垫、照应(呼应)、直接(间接)描写、 扬抑(欲扬先抑、欲抑先扬)、借景抒情、借物喻人。

象征 通过某一特点的具体形象,表达某种人和某种社会现象的本质特点。例:《海燕》以海燕象征大智大勇的无产阶级革命先驱者的形象。

对比 把两种相反的事物或一种事物相对立的两个方面作比较,鲜明的突出主要事物或事物的主要方面的特征。例:《海燕》以海燕的高大形象与海鸭、海鸥、企鹅的卑怯形象作对比,突出海燕勇猛、敢于斗争的鲜明特征。

衬托 以他体从正面、反面两个角度陪衬本体,突出本体的主要特征。例:《白杨礼赞》开头描写白杨树的生长环境---西北高原的雄壮,衬托出白杨树傲然挺立的高大形象。

借景抒情 通过描写具体生动的自然景象或生活场景,表达作者真挚的思想感情。

例:《从百草园到三味书屋》文章从不同角度不同层次淋漓尽致的描摹百草园声色趣俱全的景观和三味书屋枯燥乏味的生活场景,表现作者热爱大自然,喜欢自由快乐生活和不满束缚儿童身心发展的封建教育的思想感情。

借物喻人 描写事物,突出其特点,并以此设喻,表现作者高尚的思想情操。 例:《白杨礼赞》以白杨树比喻北方军民,以白杨树正直、朴质、严肃、挺拔、力争上游的特点比喻北方军民为我国的解放事业而抗争、战斗的顽强精神。

先抑后扬 先否定或贬低事物形象,尔后深入挖掘事物特点及内在意义,再对事物予以肯定、褒扬,更突出地强调事物的特征。 例:《白杨礼赞》先说白杨树不是“好女子”,而后称颂其是“伟丈夫”,更突出的强调了白杨树的外在形象和内在神韵。

九、试卷题目常见的一些术语(问题):

1、有何作用 回答文章中某一内容的作用可从三个方面考虑,一是内容方面,如深化主题、强调感情等;二是结构方面的,如过渡、呼应等;三是语言方面,如引人入胜、生动活泼等。

2、思想内容——基本是指文章的中心思想或主旨。

3、思想感情——作者或作品中人物所表现出来的思想倾向,如善恶、好恶、褒贬等。

课外阅读 指课本(教材)之外的阅读内容。不管是课内读的还是课外读的内容。

4、感悟——多指发自内心的感受、理解、领悟等。

5、写作手法——考生要清楚,狭义的写作手法即“表达方式”,广义的是指写文章的一切手法,诸如表达方式、修辞手法,先抑后扬、象征、开门见山、托物言志等。

6、表现手法——从广义上来讲也就是作者在行文措辞和表达思想感情时所使用的特殊的语句组织方式。

分析一篇作品,具体地可以由点到面地来抓它的特殊表现方式,首先是字词、语句上的修辞技巧,种类很多,包括比喻、象征、夸张、排比、对偶、烘托、拟人、用典等等;从作品的整体上来把握它的表现手法时,就要注意不同文体的作品:抒情散文的表现手法丰富多彩,借景抒情、托物言志、抑扬结合、象征等手法;记叙文的写作手法如首尾照应、画龙点睛、巧用修辞、详略得当、叙议结合、正侧相映等;议论文写作手法如引经据典、巧譬善喻、逆向求异、正反对比、类比推理等;小说的描写手法、烘托手法、伏笔和照应、悬念和释念、实写与虚写等。

表现手法的分析是一种很泛的题目,答题时要注意完整地理解题目的答题要求,要简洁准确地答题,对有些题目如欣赏写作技巧的题,应结合上下文语境、文章题材与体裁风格等来准确把握,选取其中最主要的一种回答即可,不必面面俱到,如小说塑造人物的种种手法,如散文抒发情感的种种手法等,尽量抓到得分点。

7、注:要了解一些常用程式(句式),如体现了什么,强调了什么,强化了什么,营造了什么,表现了什么,还有深化了主题,点明了题旨等等。

十、其他:“一去二三里,烟村四五家。亭台六七座,八九十枝花。”

二种常见叙事线索:物线、情线。

二种语言类型:口语、书面语。(语言特点 一般指口语的通俗易懂,书面语的严谨典雅,文学语言的鲜明、生动、富于形象性和充满感情色彩的特点。分析时,一般从修辞上进行分析。)

二种抒情:1、直接抒情 指作者直接出面就某种事物或情况抒发感情,由于是作者直接出面,直接抒情时的语言往往有强烈的主观性色彩。 (1)为抒发感情而选择某种形象 (2)针对形象直接抒情

2、间接抒情 指作者不直接出面,通过其它方式来抒发感情,语言比较冷静客观。 (1)借人物之口来抒情。 (2)通过特定的语调来抒情。

三种感情色彩:褒义、 贬义、 中性。

语言运用三原则:简明(语句简洁、明了,一般有字数上的限制。)、 连贯、 得体(文明礼貌,人性化。)。

三种说明顺序:(1)时间顺序、 (2)空间顺序、

(3)逻辑顺序。逻辑顺序包括六种:①一般←到→个别 ②现象←→本质 ③原因←→ 结果④概括←→具体 ⑤部分←→整体 ⑥主要←→次要

四种文学体裁:小说、 诗歌、 戏剧、 散文。

小说三要素:人物(根据能否表现小说主题思想确定主要人物)情节(开端 /发展 /高潮 /结局 ) 环境(自然环境/ 社会环境。)

人物 主要掌握通过适当的描写方法、角度刻画人物形象,反映人物思想性格的阅读技巧。

情节 主要了解各部分的基本内容,以及理解、分析小说情节的方法、技巧。

小说情节四部分:开端、 发展、 高潮、 结局。

开端 交代背景,铺垫下文。

发展 刻画人物,反映性格。

高潮 表现冲突,揭示主题。

结局 深化主题,留下思考。

环境 主要理解自然环境和社会环境的作用。

自然环境 描写自然景观,渲染气氛、衬托情感、预示人物命运、揭示社会本质、推动情节发展。

社会环境 描写社会状况,交代故事背景,揭示社会本质,铺垫下文内容。

句子的四种用途:陈述句、 疑问句、 祈使句、 感叹句。

记叙文六要素:时间、 地点、 人物、 事件的起因、经过和结果。

六种病句类型:①成分残缺 ②搭配不当 ③关联词语使用不恰当 ④前后矛盾 ⑤语序不当 ⑥误用 滥用虚词(介词)

七种说明方法:举例子、 打比方、 作比较、 列数字、 分类别、 下定义、引用。

初一语文知识点大全,以供同学们学习和参考,希望同学们的语文成绩越来越棒!

5. 初一数学必考知识点总结

初一数学必考知识点总结1

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学必考知识点总结2

有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

平面直角坐标系:

在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

因式分解

因式分解定义 :把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素 :①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式: 一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法 :①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初一数学必考知识点总结3

第一章有理数

1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:

①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数

8、表示数a的点到原点的距离称为数a的绝对值

9、绝对值的三句:正数的绝对值是它本身,

负数的绝对值是它的相反数,0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

12、乘除:同号得正,异号的负

13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数)

17、左边第一个非零的数字起,所有的数字都是有效数字。

【知识梳理】

1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.

5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

一元一次方程知识点

知识点1:等式的概念:用等号表示相等关系的式子叫做等式.

知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.

说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.

知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.

例2:如果(a+1) +45=0是一元一次方程,则a________,b________.

分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.

(2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.

即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.

说明:等式的性质是解方程的重要依据.

例3:下列变形正确的是( )

A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1

C.如果x=y,则x-5=5-y D.如果则

分析:利用等式的性质解题.应选D.

说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.

知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.

知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.

⑵移项时,一定记住要改变所移项的符号.

知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.

例4:解方程 .

分析:灵活运用一元一次方程的步骤解答本题.

解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.

说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.

知识点8:方程的检验

检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.

注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.

初一数学必考知识点总结4

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

初一数学必考知识点总结5

尽快地掌握科学知识,迅速提高学习能力,由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!

一、目标与要求

1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

3.培养学生获取信息,分析问题,处理问题的能力。

二、重点

从实际问题中寻找相等关系;

建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。

三、难点

从实际问题中寻找相等关系;

分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

四、知识点、概念总结

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0.

4.等式的性质:

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项

(1)依据:乘法分配律

(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

(3)合并时次数不变,只是系数相加减。

6.移项

(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质

(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a0)的形式;

(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

8.同解方程

如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!

初一数学必考知识点总结6

一、方程的有关概念

1.方程:含有未知数的`等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质

(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么ac=bc

(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc

三、移项法则:

把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则

1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1.去分母(方程两边同乘各分母的最小公倍数)

2.去括号(按去括号法则和分配律)

3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4.合并(把方程化成ax=b(a0)形式)

5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

六、用方程思想解决实际问题的一般步骤

1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

2.设:设未知数(可分直接设法,间接设法)。

3.列:根据题意列方程。

4.解:解出所列方程。

5.检:检验所求的解是否符合题意。

6.答:写出答案(有单位要注明答案)。

七、有关常用应用类型题及各量之间的关系

1、和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

2、等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积。

3、劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出。

(2)只有调入没有调出,调入部分变化,其余不变。

(3)只有调出没有调入,调出部分变化,其余不变。

4、数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。

5、工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率工作时间

6、行程问题:

(1)行程问题中的三个基本量及其关系:路程=速度时间。

(2)基本类型有

①相遇问题;

②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

7、商品销售问题

有关关系式:

商品利润=商品售价商品进价=商品标价折扣率商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价折扣率

8、储蓄问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金利率期数

本息和=本金+利息

利息税=利息税率(20%)

今天的内容就介绍这里了。

初一数学必考知识点总结7

知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5:相反数的概念:

(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

知识点6:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

6. 初一数学的主要知识点都有哪些

初一数学的主要知识点都有哪些

初一数学主要知识点:

代数初步知识

1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2. 几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

有理数

凡能写成q/p(p,q为整数且p≠0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

整式的加减

单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

单项式的`系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

多项式:几个单项式的和叫多项式.

多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

一元一次方程

一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).

一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).

列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间;

(2)工程问题:工作量=工效·工时;

(3)比率问题:部分=全体·比率;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:售价=定价·折·0.1 ,利润=售价-成本;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=1/3πR2h.

7. 初一数学上册知识点总结

初一数学上册知识点总结1

代数初步知识

1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用 乘,或省略不写;

(2)数与数相乘,仍应使用乘,不用 乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成 的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

初一数学上册知识点总结2

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学上册知识点总结3

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① 整数 ②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a0 a是正数;a0 a是负数;

a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.

有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数 0,小数-大数 0.

初一数学上册知识点总结4

第一章:丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

①几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

②点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形(按名称分)

柱:

①圆柱

②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

锥:

①圆锥

②棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:

11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)

6、截一个正方体:

用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图:

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第二章:有理数及其运算

1、有理数的分类

①正有理数

有理数{ ②零

③负有理数

有理数{ ①整数

②分数

2、相反数:

只有符号不同的两个数叫做互为相反数,零的`相反数是零

3、数轴:

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

5、绝对值:

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

若|a|=a,则a≥0;

若|a|=-a,则a≤0。

正数的绝对值是它本身;

负数的绝对值是它的相反数;

0的绝对值是0。

互为相反数的两个数的绝对值相等。

6、有理数比较大小:

正数大于0,负数小于0,正数大于负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

7、有理数的运算:

①五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;

绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:

减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

②有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

③运算律(5种)

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成a×

10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

第三章:整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:

①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数。

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

2、整式:单项式和多项式统称为整式。

①单项式:

都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:

单独的一个数或一个字母也是单项式;

单独一个非零数的次数是0;

当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

②多项式:

几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

③同类项:

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:

把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

第四章基本平面图形

1、线段、射线、直线

名称

表示方法

端点

长度

直线

直线AB(或BA)

直线l

无端点

无法度量

射线

射线OM

1个

无法度量

线段

线段AB(或BA)

线段l

2个

可度量长度

2、直线的性质

①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

②过一点的直线有无数条。

③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

③线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

②角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:

一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:

由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。

连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

12、圆:

平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。

固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;

由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

第五章一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:

把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

6、解一元一次方程的一般步骤:

①去分母

②去括号

③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

④合并同类项

⑤将未知数的系数化为1

第六章数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。

其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一数学上册知识点总结5

1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).

4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).

5、几何体简称为体(solid).

6、包围着体的是面(surface),面有平的面和曲的面两种.

7、面与面相交的地方形成线(line),线和线相交的地方是点(point).

8、点动成面,面动成线,线动成体.

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)

13、连接两点间的线段的长度,叫做这两点的距离(distance).

14、角∠(angle)也是一种基本的几何图形.

15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.

16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).

17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.

18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

19、等角的补角相等,等角的余角相等.

8. 初一数学全部知识点有哪些

1、正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数。

2、一元一次方程

只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数 不是零的整式方程是一元一次方程。

3、一元一次方程的标准形式:ax+b=0(x 是未知数,a、b 是已知数,且 a≠0)。

4、等式的性质

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

5、角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

9. 初一数学全部知识点有哪些

一、正负数

1、正数:大于0的数。

2、负数:小于0的数。

3、正数大于0,负数小于0,正数大于负数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

二、有理数

1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

三、数轴

1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2、数轴的三要素:原点、正方向、单位长度。

3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

相反数的和为0 a+b=0 a、b互为相反数。

四、有理数的加减法

1、先定符号,再算绝对值。

2、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

五、有理数乘法(先定积的符号,再定积的大小)

1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2、乘积是1的两个数互为倒数。

10. 初一数学有哪些知识点

一:有理数
知识网络:
概念、定义:
1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
22、根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字