当前位置:首页 » 基础知识 » 数学12的知识点
扩展阅读
为什么要伤心歌词 2024-11-29 04:26:48

数学12的知识点

发布时间: 2024-04-03 15:04:47

‘壹’ 高中数学知识点全总结最全版

高中数学知识点全 总结 最全版有哪些?高中数学小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,一起来看看高中数学知识点全总结最全版,欢迎查阅!

目录

高中数学重点知识点

高考数学常考知识点

高中数学重点知识点讲解

高中数学重点知识点

1.有理数:

(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;

(2)有理数的分类:①②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数?0和正整数;a>0?a是正数;a<0?a是负数;

a≥0?a是正数或0?a是非负数;a≤0?a是负数或0?a是非正数.

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0?a+b=0?a、b互为相反数.

(4)相反数的商为-1.

(5)相反数的绝对值相等

4.绝对值:

(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:或;

(3);;

(4)|a|是重要的非负数,即|a|≥0;

5.有理数比大小:

(1)正数永远比0大,负数永远比0小;

(2)正数大于一切负数;

(3)两个负数比较,绝对值大的反而小;

(4)数轴上的两个数,右边的数总比左边的数大;

(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

6.倒数:乘积为1的两个数互为倒数;

注意:0没有倒数;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.

等于本身的数汇总:

相反数等于本身的数:0

倒数等于本身的数:1,-1

绝对值等于本身的数:正数和0

平方等于本身的数:0,1

立方等于本身的数:0,1,-1.

7.有理数加法法则:

(1)同号两数相加,取相同的`符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

11有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.(简便运算)

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

13.有理数乘方的法则:(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;

14.乘方的定义:(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0?a=0,b=0;

(4)据规律底数的小数点移动一位,平方数的小数点移动二位.

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。

18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种 方法 ,但不能用于证明.常用于填空,选择。

<<<

高考数学常考知识点

一、三角函数

1.周期函数:一般地,对于函数f(x),如果存在一个不为0的常数T使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期三角函数属于高中数学中的重点内容,在高考理科数学中更是占据很重要的位置。

2.三角函数的图像:可以利用三角函数线用几何法作出,在精确度要求不高的情况下,常用五点法作图,要特别注意“五点”的取法。

3.三角函数的定义域:三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用。

二、反三角函数主要是三个:

y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;

y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

三、三角函数其他公式

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

当x∈[—π/2,π/2]时,有arcsin(sinx)=x

当x∈[0,π],arccos(cosx)=x

x∈(—π/2,π/2),arctan(tanx)=x

x∈(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx类似

若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

四、三角函数与平面向量的综合问题

(1)巧妙“转化”--把以“向量的数量积、平面向量共线、平面向量垂直”“向量的线性运算”形式出现的条件还其本来面目,转化为“对应坐标乘积之间的关系”;

(2)巧挖“条件”--利用隐含条件”正弦函数、余弦函数、的有界性“,把不等式的恒成立问题转化为含参数ψ的方程,求出参数ψ的值,从而可求函数的解析式;

(3)活用”性质“--活用正弦函数与余弦函数的单调性、对称性、周期性、奇偶性,以及整体换元思想,即可求其对称轴与单调区间。

五、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)

1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的`直线分别成轴对称;

2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;

3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

<<<

高中数学重点知识点讲解

直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

高中数学重点知识点讲解:直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。在高中数学里直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后高中数学涉及到求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

高中数学重点知识点讲解:直线方程

①点斜式:

直线斜率k,且过点

注意:高中数学在关于直线方程解法中,当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:

(b为常数);平行于y轴的直线:

(a为常数);

<<<


高中数学知识点全总结最全版相关 文章 :

★ 高中数学知识点全总结最全版

★ 高中数学学习方法:知识点总结最全版

★ 高中数学知识点总结及公式大全

★ 高中数学必考知识点归纳整理

★ 高中数学知识点总结及公式大全(4)

★ 高中数学知识点总结及公式大全(3)

★ 高三数学学习方法和技巧大全

★ 高一数学基础知识学习方法归纳

★ 2020高一数学学习方法总结大全

★ 高一数学学习方法总结大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

‘贰’ 各单元数学知识点归纳--一年级

第一单元

准备课

1、 数一数

数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

2、 比多少

同样多:当两种物裤镇体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

比较两种物体的多或少时,可以用一一对应的方法。

第二单元

位置

1、 认识上、下

体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

2、 认识前、后

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

同一物体,相对于不同的参照物,前后位置关系也会发生变化。

从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

3、 认识左、右

以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

第三单元

1-5的认识和加减法

一、 1--5的认识

1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个腊蠢物体就用几来表示。

2、1—5各数的数序

从前往后数:1、2、3、4、5.

从后往前数:5、4、3、2、1.

3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

二、比大小

1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

2、填“>”或“<”时,开口对大数,尖角对小数。

三、第几

1、确定物体的排列顺序时,先轮纯陪确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

2、区分“几个”和“第几”

“几个”表示物体的多少,而“第几”只表示其中的一个物体。

四、分与合

数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.

把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

五、加法

1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

六、减法

1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

七、0

1、0的意义:0表示一个物体也没有,也表示起点。

2、0的读法:0读作:零

3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.

如:0+8=8 9-0=9 4-4=0

第四单元

认识图形

1、长方体的特征:长长方方的,有6个平平的面,面有大有小。

2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。

3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。

4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。

5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。五-八单元[/page]

第五单元

6-10的认识和加减法

一、6—10的认识:

1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

2、10以内数的顺序:

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序,后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序,即第几个。

5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

记忆数的组成时,可由一组数想到调换位置的另一组。

二、6—10的加减法

1、10以内加减法的计算方法:根据数的组成来计算。

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号 ”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

三、连加连减

1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

四、加减混合

加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

第六单元

11-20各数的认识

1、数数:根据物体的个数,可以用11—20各数来表示。

2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、

3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。

5、数位:从右边起第一位是个位,第二位是十位。

6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

8、十加几、十几加几与相应的减法

(1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。

如:10+5=15 17-7=10 18-10=8

(2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

(3)、加减法的各部分名称:

在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

9、解决问题

求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

第七单元

认识钟表

1、认识钟面

钟面:钟面上有12个数,有时针和分针。

分针:钟面上又细又长的指针叫分针。

时针:钟面上又粗又短的指针叫时针。

2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。

3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。

4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00

第八单元

20以内的进位加法

1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。

4、解决问题

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

(2)求总数的实际问题,用加法计算。


‘叁’ 小学数学知识点归纳

、自然数包括正整数和0,所以最小的自然数是0,没有最大的自然数。
2、计数单位是指:个、十、百、千、万、十万、百万、千万、亿„„等等。
3、每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、能被2整除的数叫做偶数。0也是偶数。不能被2整除的数叫做奇数。
5、一个数,如果只有1和它本身两个约数,这样的数叫做质数,如2、3、5、7、11、13等等;
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、10都是合数。
6、最小的自然数是0,最小的质数是2,最小的合数是4。公因数只有1的两个数叫做互质数。
7、为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。如·1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
8、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13 亿。
9、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的搏族数是5或者比5大,就把尾数舍去,并向它的前一位进1。
10、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
11、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
12、分数的基本性质:
分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。
13、比、比例、比例尺、百分数的后面不能带单位。
2运算法则(小数、分数和整数的运算法则一样)
1、同级运算,从左往右。(加和减是第一基闭弊级态皮运算,乘和除是第二级运算)
2、两级运算,乘除优先,加减在后。
3、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
3运算定律(总共5个,加法2个,乘法3个)
1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)
5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,
即(a+b)×c=a×c+b×c
4运算性质
1、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)
2、除法的性质:从一个数里连续除去几个数,可以从这个数里除去所有除数的积,商不变,即a÷b÷c=a÷(b×c)
3、被减数-减数=差,被除数÷除数=商。
5式与方程
1、含有未知数的等式就是方程,如x+5=6
2、解方程的步骤:
①去分母
②去括号
③移项
④合并同类项
⑤系数化为1
3、列方程解应用题的步骤:
①审题,用x表示未知数。(一般问什么就设什么)
②找出等量关系,列方程。(这一步最最重要)
③解方程。
④检验、写出答案。
6常见的量
1、长度单位换算
1千米=100米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
2、面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
3、体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
4、重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
5、人民币单位换算
1元=10角
1角=10分
元=100分
6、时间单位换算
1世纪=100年
1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
闰年:4年一闰,100年不闰,400年再闰。(如:2008是闰年,1900年不是闰年,2000年是闰年。)
1日=24小时
1时=60分
1分=60秒
1时=3600秒
7几何形体周长、面积、体积计算公式
1、长方形的周长=(长+宽)×2
C=(a+b)×2
2、正方形的周长=边长×4
C=4a
3、长方形的面积=长×宽
S=ab
4、正方形的面积=边长×边长
S=a·a= a²
5、三角形的面积=底×高÷2
S=ah÷2
6、平行四边形的面积=底×高
S=ah
7、梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
8、直径=半径×2
d=2r
半径=直径÷2
r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2
C=π d =2πr²
10、圆的面积=圆周率×半径×半径
S=πr
11、长方体的体积=长×宽×高
公式:V=abh
长方体(或正方体)的体积=底面积×高
公式:V=sh
12、正方体的体积=棱长×棱长×棱长
公式:V=aaa=a³
8圆柱和圆锥的公式

1、圆柱:两个底面是相同的圆,有无数条高,侧面展开是一个长方形或正方形。
2、圆锥:一个底面是一个圆,只有1条高,侧面展开是一个扇形。
3、如果一个圆柱和圆锥等底等高,那么,这个圆柱是圆锥体积的3倍,圆锥是圆柱体积的1/3。
9正、反比例
1、12个字:除正乘反,正比例:比值一定;反比例:乘积一定。(判断的依据)
2、一般式:
正比例:y/x= k或y=kx(k一定)
反比例:xy=k或y = k/x(k一定)
3、图像:
正比例:一条直线
反比例:一条曲线
4、判断依据就是看两个相关联的量的比值或乘积是否一定,若比值一定,则是正比例;若乘积一
定,则是反比例;若都不符合,则为不成比例。
10比例尺
1、图上距离与实际距离的比,就是比例尺。比例尺没有单位。
2、1:100的意思是:图上1厘米代表实际距离100厘米。
3、三个公式:
比例尺=图上距离÷实际距离;
实际距离=图上距离÷比例尺
图上距离=比例尺×实际距离
4、方向:上北下南左西右东
5、千米化厘米添5个“0”,厘米化千米去掉5个“0”。
6、解决有关比例尺的问题,一是要统一化成低级单位;二是要熟记比例尺的三个公式。
7、图形的放缩:我们可以把小图放大,也可以把大图缩小,但只有把原图的长和宽放大或缩小相同的倍数,才能画得像。(如3:2=6:4=9:6等等)
11找规律
看差看商、看某数的平方或立方、隔开看、分组法等等。
12线与角
1、直线无端点,不可度量;射线1个端点,不可度量;线段两个端点,可度量。
2、从直线外一点到直线的线段中,垂直线段最短。这条垂直线段叫做点到直线的距离。
3、
锐角:小于90度的角;
直角:等于90度的角;
钝角:大于90度的角小于180度的角;
平角:等于180度的角;
周角:等于360度的角。三角形的内角和为180度。
13统计与概率
1、三种统计图:
条形统计图(表示各个量的多少)、
折线统计图(表示数量多少、反映增减变化)
扇形统计图(表示部分与整体的关系)。
2、平均数:几个数量的和除以数量的个数;
中位数:数据从大到小或从小到大排列,最中间的一个或最中间的两个的平均数。
众数:在一组数据中出现次数最多的数。
3、事情的发生有三种情况:
第一种是必然事件:一定会发生的事件,概率是1
第二种是不可能事件:一定不会发生的事件,概率为0
第三种是随机事件(也叫可能事件):可能发生也可能不发生的事件,概率是大于0小于

‘肆’ 一年级数学基础知识点2021

学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。制定好的 学习计划 ,是提高工作效率的重要手段。下面是我给大家整理的一些 一年级数学 的知识点,希望对大家有所帮助。

小学一年级上册数学知识点 总结

1、数数:根据物体的个数,可以用11—20各数来表示。

2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、

3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。

如:1个十和5个一组成15。

5、数位:从右边起第一位是个位,第二位是十位。

6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2。有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

8、十加几、十几加几与相应的减法

(1)、10加几和相应的减法的计算 方法 :10加几得十几,十几减几得十,十几减十得几。

如:10+5=15,17-7=10,18-10=8

(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

(3)加减法的各部分名称:

在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

9、解决问题

求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

小学一年级数学《有趣的图形》知识点

认识图形(长方形、正方形、三角形和圆)

1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。

2、学会观察,能在生活中找出基本的形状,会举例。

3、能区分出面和体的关系,体会“面在体上”。

4、能找出一组图形的规律。

5、能在复杂的图案中找出基本的图形。

动手做(一)

学生能自己动手折一折、剪一剪,剪拼出喜欢的图案。

通过 折纸 、剪拼等活动进一步认识平面图形。

通过折纸对简单的图形进行分解和拼补。

动手做(二)

了解七巧板的组成。通过用七巧板拼图的活动,进一步熟悉学过的平面图形。

初步认识平行四边形,只让学生直观认识,知道形状和名称即可。

动手做(三)

通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

小学一年级数学知识点积累

一、读数、写数

1、20以内的数

顺数:从小到大的顺序

倒数:从大到小的顺序20191817······

单数:1、3、5、7、9······

双数:2、4、6、8、10······

(注:0既不是单数,也不是双数,0是偶数。在生活中说单双数,在数学中说奇偶数。)

2、两位数

(1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。

如:A:11里有(1)个十和(1)个一;

11里有(11)个一。

12里有(1)个十和(2)个一;

12里有(12)个一13里有(1)个十和(3)个一;

13里有(13)个一14里有(1)个十和(4)个一;

14里有(14)个一15里有(1)个十和(5)个一;

15里有(15)个一······

19里有(1)个十和(9)个一;

或者说,19里有(19)个一20里有(2)个十;

20里有(20)个一B:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。

(2)在计数器上,从右边起第一位是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)

(3)先读11、12、13、14、15、16、17、18、19、20,再写出来。

如:14,读作:十四,写作:14。个位上是4,表示4个一,十位上数字是1,表示1个十。


一年级数学基础知识点2021相关 文章 :

★ 2021一年级数学知识点归纳

★ 2021小学一年级数学知识点

★ 2021一年级数学知识点

★ 一年级数学基础知识点

★ 一年级数学基本知识点

★ 初一数学单元知识点2021

★ 小学一年级数学知识点

★ 小学一年级数学重点知识点总结

★ 一年级数学上册知识点

★ 部编版一年级数学知识点总结

‘伍’ 小学数学知识点整理,1~6年级汇总,收藏起来随时用!(上)

小学是打好数学基础的阶段,小学时期的数学也比较简单,学生相对容易学习。知识却是基础中的基础,只有深刻理解才能运用到试题中并且举一反三,但也很容易忘,这次为大家整理了1~6年级小学数学知识点,可以给孩子收藏起来随时查阅。

正整数:

用来表示物体个数的 1、2、3、4、5……叫做正整数。相邻的两个正数整数之间相差 1。

0: 0 是一个数,是一个自然数,也是一个整数,但不是正整数或负整数。

0 既可以表示“没有”,也可以作为某些数量的界限,如 0℃等。

0 是一个偶数。0 不能作除数,不能作分母,也不能作比的后项。

负整数: 像-l、-2、-3、-4、-5……这样的数就叫做负整数。相邻的两个负整数之间也是相差 1。

整数: 像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。

整数包括负整数、0 和正整数。

整数的个数是无限的。自然数是整数的一部分。

自然数: 用来表示物体个数的 0、l、2、3、4、5、6、7……叫做自然数。自然数包括 0 和正整数。

正数: 正数包括正整数、正分数、正小数、正百分数等。

负数: 负数包括负整数、负分数、负小数、负百分数等。负数可以表示相反意义的量。

数对: 用数对表示位置时,第一个数表示列,第二个数表示行。

数的读法和写法:

读、写者都要从高位到低位,每一级末尾的 0 都不读出来,其他数位连续有几个 0 都只读一个0。不管读和写都要进行分级。如 534007000602 读作:五千三百四十亿零七百万零六百零二。

分数:  表示把“单位 1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中一份的数叫做分数单位。例如: 7/12 的分数单位是 1/12 ,它有7个这样的分数单位。

真分数:  分子比分母小的分数叫真分数。真分数小于 1。

假分数: 分子大于或等于分母的分数叫做假分数。假分数大于或等于 1。

带分数: 一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。

分数的基本性质:

一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。

小数: 小数是分数的一种特殊形式。但是不能说小数就是分数。

循环小数: 一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

纯循环小数: 循环节从小数部分第一位开始的循环小数,叫做纯循环小数。

混循环小数: 循环节不是从小数部分的第一位开始循环的循环小数,叫混循环小数。

有限小数: 小数的小数部分的位数是有限的,这样的小数叫做有限小数。

无限小数: 小数的小数部分的位数是无限的,这样的小数叫做无限小数。循环小数都是无限小数。

减法: 被减数-减数=差。减法是加法的逆运算。

乘法: 求几个相同加数的和的简便运算,叫做乘法。因数×因数=积

除法: 被除数÷除数=商。除法是乘法的逆运算。

加、减法的运算定律:

加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

减法的运算定律:a-b -c=a-(b+c)

乘、除法运算定律:

乘法的交换律:ab=ba

乘法的结合律:abc=a(bc)

乘法分配律:(a+b)c=ac+bc 或(a—b)c=ac—bc

除法的运算定律:a÷b÷c=a÷(b×c)

商不变的性质: 两个数相除,被除数和除数同时乘上或除以相同的数(0 除外),商的大小不变(余数的大小有变化)。

积不变性质: 一个因数扩大若干倍,另一个因数缩小相同的倍数,其积不变。

乘法的意义:

1、求几个相同加数的和是多少?例如:27×13,表示求 13 个 27 的和是多少?也可以表示求 27 的 13 倍是多少?

2、求一个数的几分之几是多少?例如:27×0.3 的意义:求 27 的十分之三是多少?

除法的意义:

1、把一个数平均分成若干份,每份是多少?例如:24÷3,表示把 24 平均分成 3 份,每份是多少?

2、一个数是另一个数的多少倍。例如:24÷3,表示 24 是 3 的多少倍?

3、一个数里有几个除数。例如 24÷3 表示 24 里面包含有几个 3。

4、已知一个数的几分之几是多少,求这个数。例如:24÷3 已知一个数的 3 倍是 24,

整除与除尽:

整除:被除数、除数、商都是整数(除数不为 0)。

除尽:整除都可以说是除尽,但除尽不一定是整除。例如:l÷5=0.2,叫除尽,不叫整除,因为商是小数。又如:10÷3=3.33…,既不叫整除,也不叫除尽,叫除不尽。

因数和倍数:

当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的因数。如 12÷3=4,就说 12 是 3 的倍数,3 是 12 的因数。这两个概念都是相对而存在,一个自然数是不存在是否是倍数或因数的。例如:“3 是因数”,就是一个错误说法。只能说 3 是 12 的因数,或 12的因数有3。又例如:“12 是倍数”,也是一个错误说法。只能说 12 是 3 的倍数,或 3 的倍数有 12。

奇数与偶数: 凡是能被 2 整除的数叫偶数,不能被 2 整除的数叫奇数。

质数(素数)与合数: 一个数的因数只有 1 和它本身两个因数的数叫做质数,也叫素数,如2。一个数的因数除了 1 和它的本身以外,还有其他的因数,这个数就叫合数,如 4。

100 以内的质数 :2 3 5 7 l1 13 17 19 23 29 3l 37 4l 43 47 53 5961 67 71 73 79 83 89 97

1 既不是质数,也不是合数。最小的质数是 2,最小的合数是 4。

公因数:

几个数公有的因数,叫做公因数。它的个数是有限的。既有最大的。也有最小的,最小的公因数是 1。

互质数:

两个数的公因数只有 1,而没有其他公因数的,这两个数就叫互质数。例如 8 和 9,11 和13,6 和 7。

任意两个质数都是互质数。但互质的两个数不一定都是质数。如 8 和 9 互质,但它们都是合数。

私信获取小学数学知识点完整版。 关注 并分享 ,更多的学习干货与教育知识,尽在玩学世界!

‘陆’ 一年级数学北师大版知识点总结

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些 一年级数学 的知识点,希望对大家有所帮助。

一年级数学知识点

数的顺序 《百数图》

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 53 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

举例:

以33 34 35为例:

① 和34相邻的两个数是33和35;

33 和 35中间的数是34。

② 比34少1的数是33,

比34多1的数是35。

③ 34前面的数是33,后面的数是35;

④ 35比34多1,33比34少1。

以52为例:

① 52和60之间的数是:53、54、55、56、57、58、59 ;(即大于52小于60的所有数)

② 52前面的五个数是:51、50、49、48、47;后面的五个数是:53、54、55、56、57。

③ 52前面的第五个数是:47;后面的第五个数是:57。

一年级数学下册学习的知识点

第一重点:认识图形(二)

一、图形可分为(1)平面图形;(2)立体图形

1.平面图形:正方形、长方形、三角形、圆、平行四边形

2.立体图形:长方体、正方体、圆柱、球

二、图形的拼组

1.两个完全一样的三角形可拼成一个平行四边形;两个完全一样的三角形既可以拼成一个平行四边形,也可以拼成一个长方形,还可以拼成一个大三角形。

2.拼成一个大正方形至少需要4个小正方形,拼成一个大正方体至少需要8个小正方体。

3.两个长方形能拼成一个大的长方形。(两个特殊的长方形能拼成一个大正方形),4个长方体能拼成一个大的长方体。

第二重点:分类与整理

分类的方法:一般是(1)按形状;(2)按颜色;(3)按用途;(4)按种类。

在分类的同时,初步体验数据的收集、整理、描述、分析的过程,会用简单的方法收集、整理数据,初步认识条形统计图和统计表,能根据统计图表中的数据提出并回答简单的问题。

第三重点:认识人民币

1.人民币的单位有(元)、(角)、(分)。

2.人民币各单位之间的换算:1元=10角;10角=1元;1角=10分;10分=1角;10角=100分;1元=100分。

3.主要题型:

填合适的单位。(注意和生活实际联系)

计算:元+元 角+角 满10角记得换成1元

元-元 角-角 “角”不够减向“元”借1元当10角再计算

如:

(1)2元8角+6角=2元14角=3元4角

(2)65元-3元7角

=64元10角-3元7角

=61元3角

4.解决问题:先画批,找准数据,再列式计算。

列式时用:“几元几角+几元几角”的形式来表示,不用小数形式列式。

5.换钱:1张10元可以换5张2元。

1张100元可以换5张20元。1张100元可以换2张50元。

1张50元可以换10张5元。

6.2.00元=2元;0.50元=5角;59.90元=59元9角;9.25元=9元2角5分。

数学学习方法 技巧

1.学好数学,必须掌握三个基本概念:基本概念、基本规律和基本方法。

2。在完成主题后,我们必须仔细 总结 并相互推论。这样,我们就不会花太多的时间和精力,当我们遇到同样的问题在未来。

3.一定要得到一个全面的对数学概念的理解,并且不能有偏见。

4.学习概念的最终目的是用概念来解决具体问题。因此,我们应该主动运用所学到的数学概念来分析和解决相关的数学问题。

5.我们应该掌握各种解决问题的方法,在实践中有意识地总结,慢慢培养合适的分析习惯。

6、要主动提高综合分析能力,利用文本阅读进行分析和理解。

7.在学习中,要注意有意识地转移知识,培养解决问题的能力。

8.为了贯穿我们所学到的形成一个系统的知识,我们可以使用类比关系方法。

9.每一章的内容都是相互关联的,不同章节之间的比较,以及前后的知识真正整合在一起,有助于我们更深入地理解知识体系和内容。

10.在数学学习中,通过对相似的概念或规律进行比较,找出它们的相同点、不同点和联系,从而加深它们的理解和记忆。明确数学知识之间的相互关系,深入理解数学知识的概念,了解数学知识的衍生过程,使知识有序、系统化。

11。学习数学不仅要关注问题,还要关注典型问题。

12。对于一些数学原理、定理公式,不仅记得其结论,了解这一结论。

13.学习数学,记住并正确描述概念和规律。

14.在学习过程中,要注重理解,解放思想,把抽象化为具体,逐步培养学习数学的兴趣。

15。对概念进行恰当的分类可以简化学习内容,突出重点,明确上下文,便于分析、比较、综合和概念。

16.数学学习是最忌讳的知识歧义,知识点被混淆在一起,为了避免这种情况,学生应该学会写“知识结构摘要”。

17.学会对问题类型进行划分和组合,学会从多角度、多方面分析和解决典型问题,并从中总结出基本问题类型和基本规律方法。

18.根据同一种数学知识之间的关系形成一个有机的整体,从而达到全局记忆的目的。

19.结合各种特殊培训的特点,更多的学生和教师进行交流,学习他人的智慧,节省时间,提高问题的速度和质量,提高反应能力。

20。学习数学应该是循序渐进的,只要我们打好基础,就可以逐步完善。

21。解决数学问题,关键是要建立正确的数学概念,从数学思维的角度来看,使用数学法则来解决。

22.认真听课是奠定数学基础的重要组成部分,也是牢固掌握基础知识的根本途径。

23.在解决这一问题时,可以尝试采用不同的方法,如假设法、特殊值法、整体法等。

24、要深刻认识知识点,认真研读课本,认真倾听,了解现实。


一年级数学北师大版知识点总结相关 文章 :

★ 小学一年级数学知识点整理

★ 一年级数学知识点梳理

★ 各年级数学学习方法大全

★ 各年级数学学习方法大全

★ 小学一年级数学学习方法指导

★ 北师大版数学一年级下册《加减法与有趣的图形》知识点归纳

★ 北师大版小学一年级上册数学复习计划

★ 一年级学习方法指导

★ 一年级学习方法指导与学习方法总结

★ 七年级数学知识点大全

‘柒’ 八年级数学上知识点归纳

有智慧的人未必先天就很聪明,反而更多的是通过后天毕生的努力。只要勤奋努力学习八年级数学知识点,希望就在面前。我整理了关于八年级数学上知识点归纳,希望对大家有帮助!

八年级数学上知识点归纳第11-12章

第十一章 全等三角形

知识概念

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章 轴对称

知识概念

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

八年级数学上知识点归纳第13-14章

第十三章 实数

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第十四章 一次函数

知识概念

1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

八年级数学上知识点归纳第15章

第十五章 整式的乘除与分解因式

1.同底数幂的乘法法则: (m,n都是正数)

2.. 幂的乘方法则:(m,n都是正数)

3. 整式的乘法

(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的.

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。