当前位置:首页 » 基础知识 » 四年级下数学知识
扩展阅读
英语文化知识短文 2024-11-29 08:22:43
什么都可以改变的歌词 2024-11-29 08:05:29
小孩成天是什么动漫里的 2024-11-29 08:05:20

四年级下数学知识

发布时间: 2024-03-26 09:49:27

❶ 四年级数学知识点下册归纳

学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 四年级数学 的知识点,希望对大家有所帮助。

小学四年级数学下册必备知识点归纳

1.整数加法

(1)把两个数合并成一个数的运算叫做加法。

(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

(3)加数+加数=和,一个加数=和-另一个加数。

2.整数减法

(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

(3)加法和减法互为逆运算。

3.整数乘法

(1)求几个相同加数的和的简便运算叫做乘法。

(2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

(3)在乘法里,0和任何数相乘都得0。

(4)1和任何数相乘都的任何数。

(5)一个因数×一个因数 =积;一个因数=积÷另一个因数。

4.整数除法

(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

(3)乘法和除法互为逆运算。

(4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

(5)被除数÷除数=商 ,除数=被除数÷商 被除数=商×除数。

小学数学四年级知识点:有趣的算式

探索与发现(-)

(有趣的算式)

知识点:

第一组算式:积的位数是两个因数位数之和-1,积的位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)

第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)

第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。

第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。

小学数学四年级知识点:乘法分配律

探索与发现(三)

(乘法分配律)

知识点:

1、 乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c

补充知识点:

1、 式子的特点:式子的原算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。

2、 102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。

总结 :文为大家整理和分享的内容是四年级数学知识点:乘法分配律,怎么样,大家对知识点数学乘法分配律了解了多少呢?


四年级数学知识点下册归纳相关 文章 :

★ 四年级数学下册知识点归纳

★ 四年级数学下册知识点

★ 四年级下册数学知识点归纳总结(2)

★ 四年级数学三角形知识点归纳

★ 小学四年级下册数学知识点复习资料整理

★ 四年级数学下册知识点汇总

★ 四年级数学知识点归纳整理

★ 四年级数学知识点归纳

★ 人教版小学四年级下册数学知识点复习

★ 四年级数学的知识点归纳

❷ 人教版四年级下册数学知识点总结

【 #四年级# 导语】如果你是四年级的学生或者老师,如果你正在备战下学期的复习, 准备了《人教版四年级下册数学知识点总结》,希望对你有所帮助!

运算定律及简便运算
一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。
(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(态蔽只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔橘册数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头帆伍州数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

鸡兔同笼

1、鸡兔同笼属于假设问题,假设的和最后结果相反。

2、“鸡兔同笼”问题的解题方法

假设法:

①假如都是兔

②假如都是鸡

③古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

3、公式:

鸡兔总脚数÷2-鸡兔总数=兔的只数;

鸡兔总数-兔的只数=鸡的只数。

四则运算
1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算

关于“0”的运算

1、“0”不能做除数;字母表示:a÷0错误

2、一个数加上0还得原数;字母表示:a+0=a

3、一个数减去0还得原数;字母表示:a-0=a

4、被减数等于减数,差是0;字母表示:a-a=0

5、一个数和0相乘,仍得0;字母表示:a×0=0

6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商;5÷0得不到商.(无意义)

❸ 四年级下学期数学知识点有哪些

1、小数的意义:把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千分之几……的数,叫小数。

2、分母是10、100、1000……的分数可以用小数表示,表示十分之几的小数是一位小数、表示百分之几的小数是两位小数、表示千分之几的小数是三位小数……

3、小数的组成:以小数点为界,小数由整数部分和小数部分组成。

4、小数的数位、计算单位、进率:

①小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……与整数一样,小数每相邻两个计数单位之间的进率是10。

②小数部分最大的计算单位是十分之一,小数部分没有最小的计数单位。

③小数的数位是无限的。

④在一个小数中,小数点后面含有几个小数数位,它就是几位小数。小数部分末尾的零也要计入其中。

5、小数的读写:读小数时,从左往右,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分顺次读出每一个数位上的数字,即使是连续的0,也要依次读出来。

写小数时,也是从左往右,整数部分按照整数的写法来写(整数部分是零的写作“0”),小数点点在个位的右下角,小数部分顺次写出每一个数位上的数字。

6、理解0.1与0.10的区别联系:区别:0.1表示1个0.1、0.10表示10个0.01、意义不同。联系:0.1=0.10两个数大小相等。运用小数的基本性质可以不改变数的大小,改写小数或化简小数。

7、整数部分是0的小数叫做纯小数;整数部分不为0的小数叫做带小数。

❹ 最新人教版四年级下册数学知识点总结

这里有最新2021人教版的:

四年级下册数学复习资料全册1-8单元知识点归纳


第一单元 四则运算

1.加、减的意义和各部分间的关系:

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。

(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数

(6)减法各部分间的关系:差=被减数-减数

减数=被减数-差

被减数=减数+差

2.乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

3.加法、减法、乘法、除法统称为四则运算

4.四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

5.有关 0 的计算

①一个数和0相加,结果还得原数:a+0=a 0+a=a

②一个数减去0,结果还得这个数:a-0=a

③一个数减去它自己,结果得零:a-a=0

④一个数和0相乘,结果得0:a×0=0 ;0×a=0

⑤0除以一个非0的数,结果得0:0÷a=0;

⑥0不能做除数:a÷0=(无意义)

6.租船问题。解答租船问题的方法:先假设、再调整。


第二单元 观察物体二

1.正确辨认从上面、前面、左面观察到物体的形状。

2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5.从不同的位置观察,才能更全面地认识一个物体。


第三单元 运算定律

……

更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳

❺ 小学四年级数学下册知识点

小数的加减法

1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。

2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。

3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)

统计

1、条形统计图优点:直观地反映数量的多少。

2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。

3、折线统计图中,变化趋势指:上升或者下降。

4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。

5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。

乘法分配律

摘要:乘法分配律的应用:

①类型一:(a+b)×c(a-b)×c

=a×c+b×c=a×c-b×c

②类型二:a×c+b×ca×c-b×c

=(a+b)×c=(a-b)×c

③类型三:a×99+aa×b-a

=a×(99+1)=a×(b-1)

④类型四:a×99a×102

=a×(100-1)=a×(100+2)

=a×100-a×1=a×100+a×2

四则运算

摘要:1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、加法、减法、乘法和除法统称为四则运算。

关于“0”的运算

1、“0”不能做除数;字母表示:a÷0错误

2、一个数加上0还得原数;字母表示:a+0=a

3、一个数减去0还得原数;字母表示:a-0=a

4、被减数等于减数,差是0;字母表示:a-a=0

5、一个数和0相乘,仍得0;字母表示:a×0=0

6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商;5÷0得不到商.

运算定律及简便运算

摘要:一、加法运算定律

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

一、加法运算定律

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

知识点讲解

1、亿以内数的读数方法。

含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。

2、亿以内数的写数方法。

从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。

3、比较数大小的方法。

多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

知识点

1.直线、射线、角

直线:向两端无限延伸的线,直线无端点。

射线:能像一个方向延伸的线,射线有一个端点。

线段:不能延伸的线,线段有两个端点。

角:

具有公共端点的两条射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

2.直线、射线与线段的联系和区别

1)直线和射线都可以无限延伸,因此无法量出长短。

2)线段可以量出长度。

3)线段有两个端点,直线没有端点,射线只有一个端点。

3.角的特征

数学广角(植树问题)

一、1.两头(两端)要栽:棵数=间隔数+1

2.一头(一端)要栽:棵数=间隔数

3.两头(两端)不栽:棵数=间隔数-1

二、棋盘棋子数目:

1.棋盘最外层棋子数:每边棋子数×边数-边数

2.棋盘总的棋子数:每行棋子数×每列棋子数

3.方阵最外层人数:每边人数×4-4

4.多边形上摆花盆:每边摆的花盆数×边数-边数

数学广角——鸽巢问题

一、鸽巢问题

1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。

2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。

二、鸽巢问题的应用

1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。

2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。

3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。

4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。

例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。

小学数学四大领域主要内容

数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

统计与概率:收集、整理和描述数据,处理数据;

实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

数学列方程解应用题的一般步骤

1、弄清题意,找出未知数,并用X表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验、写出答案。

算式知识点:

第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)

第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)

第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。

第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。

拓展:期末试题

1、最小的自然数加上最小的质数和合数,和是()。

2、既是2和3的倍数,同时又是5的倍数的.最大两位数是()

3、学校锅炉3周烧了20吨煤,平均每周烧这些煤的(),平均每周烧了()吨。

4、一个平行四边形的面积是24平方厘米,与它同底等高的三角形的面积是(),如果底是4厘米,那么高是()厘米。

5、分母是12的所有真分数的和是()。

6、如果a÷b=9,那么a和b的最大公因数是(),最小公倍数是()。

7、0.125=()16=4()=5÷()

8、如果a=2×3×5,b=2×5×7,那么a和b的最大公因数是(),最小公倍数是()。

9、三张卡片上分别写有数字"1"、"2","3",任意抽出一张,抽出卡片"1"的可能性是()()。

10、在下面的括号里填上合适的分数。

1.2时=()时()分2千克50克=()千克

40平方厘米=()平方分米25厘米=()分米

11、全班同学分组劳动,每7人一组或是每8人一组都剩1人,全班一共有()人。

拓展:单元测验

一、怎样简便就怎样计算。

365+260+235 672-36+64 278-131-69

280÷8÷5 58×58+58×42 44×25

二、填空。

1.在横线上填上适当的数,并填写所用的运算定律。

45×32=32×( ) ( );

43+55+57+45=(43+ )+(55+ )( );

103×42=( )×42+ ( )×42 ( );

2.比较大小。

1200÷4÷6 ○1200÷24 12×6+6×28○6×(12+28)

125×8×25×4○125×8+25×4 197-37+63○197―37―63

三、判断题。(对的打“√”,错的打“×”。)

1.39+84+16=39+100 ( )

2.125×16=125×8×2 ( )

3.根据乘法分配律125×25×8×4=125×8+25×4 ( )

4.先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律。( )

5.280÷(5×8)=1250÷5×8 ( )

四、选择。(把正确答案的序号填入括号内)

1.56+72+28=56+(72+28)运用了 ( )。

A.加法交换律 B.加法结合律

C.乘法结合律 D.加法交换律和结合律

2.25×(8+4)=( )。

A.25×8×25×4 B.25×8+25×4

C.25×4×8 D.25×8+4

3.3×8×4×5=(3×4)×(8×5)运用了 ( )。

A.乘法交换律 B.乘法结合律

C.乘法分配律 D.乘法交换律和结合律

4.计算199×29,正确使用简便方法的是( )。

A.199×30-1 B.200×30 C.200×29-29

5.下面这3个物体,从( )面看到的形状相同。

A.上面 B.前面 C.左面

五、应用题。

1.学校图书室买来720本书,放在4个书架上,每个书架有5层,平均每层放多少本书?

2. 学校进行广播操比赛,有12个班参加,每个班排成4组,每组有12人,一共有多少名学生参加广播操比赛?

3.一辆汽车5小时行360千米,一辆自行车3小时行54千米。汽车的速度是自行车的多少倍?

4.学校要买35套桌椅,3000元钱够吗?

拓展:期中试卷

一、选择题:(请将正确答案的序号填在括号里)每题1分,共5分。

1. 下列算式中,运用乘法交换律使运算简便的是( )。

A、64×101 B、125×66×8 C、352×5×2

2. 一辆汽车一次运大米6吨,增加同样的汽车4辆,运90吨大米要运( )次。

A、3 B、4 C、15

3. 小方3分钟跳绳453下,小明2分钟跳286下,( )的速度快。

A、小方 B、小明 C、无法确法

4. 下面哪个算式是正确的。 ( )

A、99+1×23=100×23 B、201×50=200×50+1 C、75+34+66=75+100

5. 大于0.2而小于0.5的小数有( )。

A、1个 B、2个 C、无数个

二、判断题:(正确的在括号内打“√”,错的打“×”)每题1分,共5分。

1.85乘23与77的和,积是多少?正确列式是:85×23+77( )

2.24×5×75×5=(24+75)×5( )

3.25×4÷25×4=100÷100=l( )

4.56×17+43×17十17的简便算法是(56+43+l)×17( )

5.35×99=35×100+35=3535。( )

三、填空题:(每空2分,共16分)

1. 乘法分配律用字母表示( )。

2. 30与23的和乘46,积是( ),列式为( )。

3. 一个数同0相乘,积是( ),一个数加上( ),还得原数。

4. 根据运算定律在( )填数。

125×(8× )=(125× )×13

四、计算题。(30分)

1. 直接写得数。(12分)

84÷21= 300-50÷5= 760-10×50= 45÷(3×5)=

0÷35= 200÷5÷4= 35-5×6= 58×0+987=

2. 怎样简便就怎样计算(18分)

(1)58×72+28×58

(2)3000÷125÷8

(3)486-137-63

(4)432÷54+17×54

(5)99×78+78

(6)125×24

五、画一画。(9分)

请在平面图上确定以下地方的位置。

1. 食堂在操场东偏北30°方向上约150米处。

2. 大门在操场西偏北45°方向上约200米处。

3. 从操场向南走100米,再向东走200米是沙坑。

六、解决问题。(共35分)

1. 妈妈带600元钱去商场,买了一件羊毛衫用去248元,又买了一个皮包用去252元,应找回多少元?(5分)

2. 学校买来篮球和排球各23个,篮球每个76元,排球每个24元,学校共花多少元?(6分)

3. 小明家距离学校768米,小军每天上学要走12分钟,照这样的速度,他去离家1536米的李红家,要走多少分钟?(6分)

4. 四(1)班同学在社区清理白色垃圾,男生捡到36个饮料瓶,女生捡到的饮料瓶比男生的两倍还多6个,四(1)班同学一共捡到多少个饮料瓶?(6分)

5. 水果店进来36箱香蕉,每箱香蕉重25千克,每千克卖4元,全部卖完可卖多少钱?(6分)

6. 每袋大米重50千克,每车能装160袋,32吨大米需要几车才能一次运完? (6分)

七、附加题。(共10分)

小明今年12岁,爸爸40岁,当爸爸的年龄是女儿5倍的时候,父女两人年龄的和是多少岁?

❻ 四年级数学下册知识点

四年级数学下册知识点1

第一单元知识点(四则运算)

1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)

2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)

3. 算式里有括号,先算括号里面的,在算括号外面的。

4. 加法、减法、乘法和除法统称四则运算。

5. 一个数加上0还得原数,一个数减去0也得原数。

6. 被减数等于减数,差是0。

7. 一个数和零相乘,仍得0。

8. 0除以一个非0的数,还得0。

9. 0不能作除数。

10. 在解决问题时,如果列综合算式,必须用脱式计算。

11. 任何数除以0都得0。(×)因为0不能做除数。

第二单元知识点(观察物体)

1. 如何确定物体所在的位置?

(1)明确方向。

(2)明确距离。

2.根据方向和距离来确定物体的位置。

3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。

4.平面图形的一般画法:

(1)先确定某建筑物的方向。

(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)

(3)最后确定距离。

5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。

第三单元知识点(运算定律)

1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。

用字母表示为:a+b=b+a

2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)

3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。

用字母表示为:a×b=b×a

4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。

用字母表示为:(a×b) ×c=a×(b×c)

5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c

6. 类似于乘法分配律的简便公式;

(a-b)×c=a×c-b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)

8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c

括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c

9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)

10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:

a×(b×c)=a×b×c a×(b÷c)=a×b÷c

括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

12. 另两种简便方法:

(1) 把一个因数改写成两个一位数相乘的形式。

(2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。

第四单元知识点(小数的意义和性质)

1. 在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。

2. 分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。

3. 小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。

4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。

5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……

6. 小数的读法:

(1)先读整数部分,再读点,最后读小数部分。

(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。

(3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。

7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

8.利用小数的性质进行小数的化简和改写。

例如:0.70=0.7 105.0900=105.09(这是小数的化简)

又如:不改变数的大小,把下面各数写成三位小数

0.2=0.200 4.08=4.080 3=3.000(这是改写小数)

9.如何比较小数的大小?

先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数……

10.小数点移动的规律:

(1)小数点向右

移动一位,小数就扩大到原数的10倍;

移动两位,小数就扩大到原数的100倍;

移动三位,小数就扩大到原数的1000倍;

……

(2)小数点向左

移动一位,小数就缩小到原数的1/10;

移动两位,小数就缩小到原数的1/100;

移动三位,小数就缩小到原数的1/1000;

……

11.把量和单位名称合起来的数叫名数。

12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元……

13.复名数:带有两个或两个以上的单位名称的名数。例如:

20元5角8分 5吨600克……

14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:

(1)高到低,乘进率,小数点,向右移,移几位,看进率。

例如:1.32千克=(1320 )克 (58 )厘米=0.58米

1千克=1000克 1米=100厘米

高→低 低←高

1.32×1000=1320克 0.58×100=58厘米

(2)低到高,用除法,小数点,向左移,移几位,看进率。

例如:

7450米=(7.45 )千米 (9.02)吨=9020千克

1千米=1000米 1吨=1000千克

低→高 高←低

7450÷1000=7.45千米 9020÷1000=9.02吨

15.求小数的近似数,可用“四舍五入”法。

16.在表示近似数时,小数末尾的0不能去掉。

17.求小数的近似数的方法:

求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数……。然后根据“四舍五入”法进行取舍。

例如:9.953≈ 10 (保留整数)

9.953≈10.0 (保留一位小数)

9.953≈9.95 (保留两位小数)

23.4395≈23.440 (保留三位小数)

18. 1.0比1精确。保留的位数越多,数就越精确。

19.如何把一个数改写成以万为单位的数?

方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。

方法二:(1)先找万位;(2)在万位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。

20.如何把一个数改写成以亿为单位的数?

方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。

方法二:(1)先找亿位;(2)在亿位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。

注:对于改写的方法,同学们灵活掌握。

21.下列各数中的“6”分别表示什么?

6.32(表示6个一) 0.6(表示6个十分之一) 0.86(表示6个百分之一)

62.32(表示6个十) 3.416(表示千分之一)

22.三位小数一定小于四位小数。(×)例如:1.003﹥0.5678

23.去掉小数点后面的0,小数的大小不变。(×)

应该是去掉小数末尾的零,小数的大小不变。

24.小数就是比1小的数。(×)例如:10.1﹥1

25.近似数是0.5的两位小数有5个。(×)

近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用“四舍五入” 法。)

26.近似数4.0与精确数4.0末尾的0都可以去掉。(×)

在表示近似数时,小数末尾的0不能去掉。

27.小数的位数越多,数就越大。(×)

28.小数都比自然数小。(×)

29.整数都大于小数。(×)

30.0.4与0.6之间的小数只有一个。(×)因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。

方法:求最大近似数时,一定比6.50大,千分位上的数必须“舍”,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。

求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须“入”, 千分位上只能是5、6、7、8、9,其中最小的'数是5,所以近似数是6.50的三位小数中,最小是6.495。

四年级数学下册知识点2

运算定律及简便运算

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c a-b×c=a×c-b×c

鸡兔问题公式

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

鸡兔同笼

1、鸡兔同笼属于假设问题,假设的和最后结果相反。

2、“鸡兔同笼”问题的解题方法

假设法:

①假如都是兔

②假如都是鸡

③古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

3、公式:

鸡兔总脚数÷2-鸡兔总数=兔的只数;

鸡兔总数-兔的只数=鸡的只数。

四则运算

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算

关于“0”的运算

1、“0”不能做除数; 字母表示:a÷0错误

2、一个数加上0还得原数; 字母表示:a+0=a

3、一个数减去0还得原数; 字母表示:a-0=a

4、被减数等于减数,差是0; 字母表示:a-a=0

5、一个数和0相乘,仍得0; 字母表示:a×0=0

6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商; 5÷0得不到商.(无意义)

❼ 四年级下册数学知识点集锦

这篇关于《四年级下册数学知识点集锦》,是 特地为大家整理的,希望对大家有所帮助!
知识点一
四则运算(背诵)

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、配派减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再喊卖拍算括号外面的;括号里郑羡面的算式计算顺序遵循以上的计算顺序。

知识点二
0的运算(默写)

1、“0”不能做除数; 字母表示:a÷0错误

2、一个数加上0还得原数; 字母表示:a+0= a

3、一个数减去0还得原数; 字母表示:a-0= a

4、被减数等于减数,差是0; 字母表示:a-a = 0

4、一个数和0相乘,仍得0; 字母表示:a×0= 0

5、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0

知识点三
运算定律(默写)

1、 加法交换律:a+b=b+a

2、 加法结合律:(a+b) +c=a+(b+c)

3、 乘法交换律:a×b=b×a

4、 乘法结合律:(a×b)×c=a×(b×c)

5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c

拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c

6、连减:a—b—c=a—(b+c)

7、连除: a÷b÷c=a÷(b×c)

知识点四
简便计算一(默写或自己举例子)

一、常见乘法计算:

25×4=100 125×8=1000

二、加法交换律简算例子: 三、加法结合律简算例子:

50+98+50 488+40+60

=50+50+98 =488+(40+60)

=100+98 =488+100

=198 =588

四、乘法交换律简算例子: 五、乘法结合律简算例子:

25×56×4 99×125×8

=25×4×56 =99×(125×8)

=100×56 =99×1000

=5600 =99000

六、含有加法交换律与结合律的简便计算:

65+28+35+72

=(65+35)+(28+72)

=100+100

=200

七、含有乘法交换律与结合律的简便计算:

25×125×4×8

=(25×4)×(125×8)

=100×1000

=100000

知识点四
简便计算二(默写或自己举例子)

乘法分配律简算例子:

一、分解式 二、合并式

25×(40+4) 135×12—135×2

=25×40+25×4 =135×(12—2)

=1000+100 =135×10

=1100 =1350

三、特殊1 四、特殊2

99×256+256 45×102

=99×256+256×1 =45×(100+2)

=256×(99+1) =45×100+45×2

=256×100 =4500+90

=25600 =4590

五、特殊3 六、特殊4

99×26 35×8+35×6—4×35

=(100—1)×26 =35×(8+6—4)

=100×26—1×26 =35×10

=2600—26 =350

=2574

知识点四
简便计算三(默写或自己举例子)

一、 连续减法简便运算例子:

528—65—35 528—89—128 528—(150+128)

=528—(65+35) =528—128—89 =528—128—150

=528—100 =400—89 =400—150

=428 =311 =250

二、 连续除法简便运算例子:

3200÷25÷4

=3200÷(25×4)

=3200÷100

=32

三、 其它简便运算例子:

256—58+44 250÷8×4

=256+44—58 =250×4÷8

=300—58 =1000÷8

=242 =125

知识点五
三角形(第1条到第13条要背诵)

1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。

3、三角形具有稳定性。

4、三角形任意两边之和大于第三边。

5、三个角都是锐角的三角形叫做锐角三角形。

6、有一个角是直角的三角形叫做直角三角形。

7、有一个角是钝角的三角形叫做钝角三角形。

8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

9、两条边相等的三角形叫做等腰三角形。

10、三条边都相等的三角形叫等边三角形,也叫正三角形。

11、等边三角形是特殊的等腰三角形

12、三角形的内角和是180°。

13、四边形的内角和是360°

14、用2个相同的三角形可以拼成一个平行四边形。

15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。

知识点六
小数的意义和性质(第7、10条默写,其它要理解)

1、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、 0.01、 0.001……

2、每相邻两个记数单位间的进率是(10)。

3、小数的数位是十分位、百分位、千分位……位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。

4、 小数的数位顺序表

整数部分
小数点
小数部分

数位

万位
千位
百位
十位
个位
·
十分位
百分位
千分位
万分位


计数单位





一(个)
十分之一
百分之一
千分之一
万分之一


5、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

6、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。

7、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。

8、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。

9、小数点的移动

小数点向右移:

移动一位,小数就扩大到原数的10倍;

移动两位,小数就扩大到原数的100倍;

移动三位,小数就扩大到原数的10 00倍;

移动四位,小数就扩大到原数的10000倍;……

小数点向左移:

移动一位,小数就缩小10倍,即小数就缩小到原数的;

移动两位,小数就缩小100倍,即小数就缩小到原数的;

移动三位,小数就缩小1000倍,即小数就缩小到原数的;

移动四位,小数就缩小10000倍,即小数就缩小到原数的;……

10、生活中常用的单位:

质量: 1吨=1000千克; 1千克=1000克

长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米

1分米=100毫米 1米=10分米=100厘米=1000毫米

面积: 1平方米= 100平方分米 1平方分米=100平方厘米

1平方千米=100公顷 1公顷=10000平方米

人民币: 1元=10角 1角=10分 1元=100分

11、小数的近似数(用“四舍五入”的方法):

(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。

(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。

(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。

(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。然后再根据小数的性质把小数末尾的零去掉即可。

知识点七
小数的加法和减法(第1条背诵)

1、小数的加、减法要注意:小数点要对齐也就是把数位对齐,得数的末尾有0,一般要把0去掉。

2、整数的运算定律(以及简便的方法)在小数运算中同样适用。

知识点八
统计图(背诵)

1、 条形统计图优点:直观地反映数量的多少。

2、 折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。

3、 折线统计图中,变化趋势指:上升或者下降。

知识点九
数学广角(默写)

(一)植树问题:

1、 两端要栽:间隔数=总长÷间距; 总长=间距×间隔数;

棵数=间隔数+1; 间隔数=棵数-1

2、 两端不栽:间隔数=总长÷间距; 总长=间距×间隔数;

棵数=间隔数-1; 间隔数=棵数+1

(二)锯木问题: 段数=次数+1; 次数=段数-1

总时间=每次时间×次数

(三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4

整个方阵的总数目是:边长×边长

(四)封闭的图形(例如围成一个圆形、椭圆形):

总长÷间距=间隔数;棵数=间隔数

❽ 四年级下册数学知识点总结

四年级下册数学知识点总结1

1.直线、射线、角

直线:向两端无限延伸的线,直线无端点。

射线:能像一个方向延伸的线,射线有一个端点。

线段:不能延伸的线,线段有两个端点。

角:

具有公共端点的两条射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

2.直线、射线与线段的联系和区别

1)直线和射线都可以无限延伸,因此无法量出长短。

2)线段可以量出长度。

3)线段有两个端点,直线没有端点,射线只有一个端点。

3.角的特征

四年级下册数学知识点总结2

1、加法运算定律:

①加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a

②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b)+c=a+(b+c)

③加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)

2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a—b—c=a—(b+c)

3、乘法运算定律:

①乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a

②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。

如:125×78×8的简算。

③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

(a+b)×c=a×c+b×c

4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。

a÷b÷c=a÷(b×c)

5、有关简算的拓展:

102×38—38×2

125×25×32

37×96+37×3+37

125×88

3.25+1。98

10.32—1。98

易错的情况:

0.6+0.4—0.6+0.4

38×99+99

小学数学四大领域主要内容

数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

统计与概率:收集、整理和描述数据,处理数据;

实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

数学整除的特征

1、能被2整除的数的特征:个位上是0、2、4、6、8。

2、能被5整除的数的特征:个位上是0或5。

3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3整除。

四年级下册数学知识点总结3

1、平均数是通过把多的部分移给少的部分,使各部分都相等而得到的数,所以平均数在最大数与最小数之间

2、平均数=总数÷总分数

3、平均数是统计中的一个重要概念,也是一个非常抽象的概念,在具体情境中体会为什么要学平均数,在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。

1、复式条形统计图:用两种以上的长方形直条表示不同数量的条形统计图。

2、复式条形统计图要画两种以上的直条,为了区别可以用不同的颜色或者线条来表示。

3、与复式统计表相比,复式条形统计图更便于比较几组数据的大小,提供的信息更多,使用起来更加方便。

4、复式条形统计图优点:可以直观的看出不同项目数据是多少,能形象的比较不同的数据。

5、复式条形统计图缺点:需要自己计算总数,不大方便。

6、复式条形统计图的制作步骤:

①根据统计资料整理数据

②画出纵轴和横轴(纵轴高度的确定:要确定一个长度来表示一定的数量。横轴长度的确定:要根据纸的大小、字数的多少来确定)

③画直条或条形的宽度要一致,条形之间的间隔要相等。

④不同的直条做不同的标记(如颜色不同或在其中一组画上条纹)

⑤写上总标题、数量单位和制图日期

小学数学梯形的面积怎么求

梯形面积与周长

梯形的面积公式:(上底+下底)×高÷2、

用字母表示:(a+b)×h÷2

梯形的面积公式2:中位线×高

用字母表示:l·h(l表示中位线长度)

另外对角线互相垂直的梯形:对角线×对角线÷2

梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d

等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。

数学学习方法分享

数学学习技巧

在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

学数学指导

1、上课认真听讲是打好数学基础的重要环节,也是牢固掌握基础知识的根本途径。

2、在解决问题时,我们可以试着用不同的方法,如假设法,特殊值法,整体法。

3、深刻理解知识点,仔细阅读课本,认真听讲,理解联系实际。

3怎样学好数学

主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。

同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。

四年级下册数学知识点总结4

一、单式折线统计图

1、折线统计图的特点:既可以反映出数量的多少,又能表示出数量的增减变化。

2、绘制折线统计图的方法:

①画出横轴和纵轴(补画统计图时此步骤已给出);

②确定一个单位长度表示数量多少(补画统计图时此步骤已给出);

③描点,描点时应注意先找准横轴上的点,再找准纵轴上相对应的点,过两点分别做横轴、纵轴的垂线,两条垂线的交点就是所要描的点,在交点处点上实心点;

④用线段顺次连接所有点,并标注数据;

⑤标注好日期和标题。(日期也可不标注)

3、折线统计图的应用:可以根据折线统计图发现问题、解决问题,并进行合理地推测。

(知识巧记)统计图,类型多,条形、折线一一说。

条形数量好比较,折线增减更明了。

绘制折线较简单,描点连线来解决。

完成绘图细分析,解决问题更容易。

二、复式折线统计图

1、复式折线统计图:如果在统计过程中存在两组(或多组)数据,且需要在一幅统计图中表示这两组(或多组)数据,就要用两种(或多种)不同颜色(或不同形式)的折线来表示不同数量的变化情况,这种统计图就是复式折线统计图。

2、复式折线统计图的特点:复式折线统计图不但能表示出各组数据的多少,数据的增减变化的情况,而且可以比较各组数据的变化趋势。

3、复式折线统计图的绘制方法:与单式折线统计图的绘制方法基本相同,只是用不同的折线表示表示不同的量,需标明图例。

4、运用横向、纵向、综合、对比等不同的观察方法,可以读懂复式折线统计图,从中获取更多的信息,并能根据信息回答或提出相应的问题,同时进行简单地分析和合理地推测。

小学数学新课标的基本理念

1、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的'发展。

2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

3、学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

小数计算法则

小数加减法计算法则

计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

小数乘法的计算法则

计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

四年级下册数学知识点总结5

1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2.三角形有3个角、3条边、3个顶点。

3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。

4.为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

5.三角形具有稳定性。

6.三角形的任意两边的和大于第三边。

7.三角形按角分成:

(1)锐角三角形(三个内角都是锐角的三角形)

(2)直角三角形(有一个角是直角的三角形)

(3)钝角三角形(有一个角是钝角的三角形)

8.三角形按边分成:

(1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;有两个角相等,相等的两个角叫做底角。)

(2)等边三角形(三边相等,三个内角相等都是60°)

(3)一般三角形

9.三角形中只能有一个直角;三角形中只能有一个钝角;

三角形中至少有两个锐角,最多有三个锐角。

10.三角形的内角和是180°。

11.最少用2个相同直角三角形可以拼一个平行四边形。最少用3个相同等边三角形可以拼一个梯形。最少用2个相同等边三角形可以拼一个平行四边形。最少用2个相同等腰直角三角形可以拼一个正方形。最少用2个相同直角三角形可以拼一个长方形。

12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。

数学万级数的读法法则

1、先读万级,再读个级;

2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

小学数学必背公式

关系表达式

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度

4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数

7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

单位间进率

1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

1吨=1000千克1千克=1000克=1公斤=1市斤

1公顷=10000平方米1亩=666.666平方米

1升=1立方分米=1000毫升1毫升=1立方厘米

四年级下册数学知识点总结6

(一)加法运算定律:

1、两个加数交换位置,和不变,这叫做加法交换律。

字母公式:a+b=b+a

2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。

字母公式:(a+b)+c=a+(b+c)

(二)乘法运算定律:

1、交换两个因数的位置,积不变,这叫做乘法交换律。

字母公式:a×b=b×a

2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。

字母公式:(a×b)×c=a×(b×c)

3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

用字母公式:(a+b)×c=a×c+b×c或a×(b+c)=a×b+a×c

拓展:(a-b)×c=a×c-b×c或a×(b-c)=a×b-a×c

(三)减法简便运算:

1、一个数连续减去两个数,可以用这个数减去这两个数的和。

用字母表示:a-b-c=a-(b+c)

2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

用字母表示:a-b-c=a—c-b

(四)除法简便运算:

1、一个数连续除以两个数,可以用这个数除以这两个数的积。

用字母表示:a÷b÷c=a÷(b×c)

2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。

用字母表示:a÷b÷c=a÷c÷b

四年级下册数学知识点总结7

1、小数加、减法应注意:

(1)小数点要对齐,也就是相同的数位要对齐;

(2)从最低位算起;

(3)得数小数部分末尾有0,一般要把0去掉。

2、在小数减法中,如果被减数是整数,一般要补齐小数部分,补几位,看减数。例如:20—1、86,列竖式时应写成

3、整数的运算定律在小数运算中同样适用。

4、关于解决小数中人民币的问题,如没有特殊要求,一般保留两位小数。

5、条形统计图很容易看出数量的多少,折线统计图不但可以看出数量的多少,而且能清楚地表示出数量的增减变化。

6、在折线统计图中,所画的线段越接近垂直(或线段越长)说明上升(或下降)的越快;所画的线段越接近水平(或线段越短),说明变化得越小。

如果观察不出折线统计图的趋势来,只好计算后再作比较。

7、折线统计图的特点:能反映变化趋势。

❾ 四年级数学下册知识点总结

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 四年级数学 的知识点,希望对大家有所帮助。

小学四年级数学下册知识点

数与代数

一 .小数的认识

小数的意义:

①能用小数表示图中的阴影,或根据小数在图中图色。

②能正确读、写小数。

③能知道分母是10、100、1000的分数分别能用一位、两位、三位小数表示。并能让这些分数与小数互换。

④能用小数表示日常的生活中的实物。

⑤能在数轴上表示某个小数。

⑥数位顺序及小数的组成。

⑦能把十进、百进、千进的计量单位用小数表示。

⑧小数的大小比较。(先比较整数部分,再比较十分位...)

二.小数的运算

1.小数的加减法

①不进位、不退位。 1.2+3.4 6.6-1.3

②进一位、退一位。 20.6+3.7 19.1-2.7

③连续进位,连续退位。 12.75+2.25 71.13-16.55

④位数不同。 16.3+2.75 60-2.88

2.小数的乘法

①一般情况。 2.8×1.1

②乘数中间有“0”。 1.06×3.3

③乘数末尾有“0”。 1.06×470

④积末尾有“0”。 8.5×0.88

⑤积与因数之间的关系。 0.49×0.9○0.49

⑥小数点的移动引起小数大小的变化。

⑦小数的性质。(在不改变1.3的大小的情况下,把它改写成两位小数)

3.小数的除法

①除数是整数。

②除数是小数。

③商中间有“0”。

④商末尾有“0”。

⑥商与被除数之间的关系。0.49÷0.9○0.49

⑦循环小数。

会判断循环小数、商用循环小数表示。

⑧余数问题。(把一段长3.6米的绳剪成长为0.6米的小段,最多可以剪几段,还剩几米?)

⑨近似数。四舍五入或者根据实际情况求近似数,如去尾、收尾法(进一法)。

小学数学四年级知识点:有趣的算式

探索与发现(-)(有趣的算式)

知识点:

第一组算式:积的位数是两个因数位数之和-1,积的位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)

第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)

第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。

第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。

数学 学习 方法 技巧

一:记笔记

这方法其实很普遍也很简单,但恰恰是很多同学不容易做到的,记笔记有很多好处,一是可以把老师的精华记录下来方便复习,二是练习学生的书写能力,三是可以让学生养成边听边写的学习能力,这对于提高学习效率是非常有效的。

二:错题本

很多孩子都马虎,但有些马虎其实是同学对知识点理解不清晰造成的,这类的题目一定要记录下来。还有的是出题者故意设计的陷阱,这也可以记录下来,定时复习,久了之后很多马虎自然而然地就避免了。

三:学习小组

定期地和小组成员分享好试题,好方法,好技巧,好 经验 ,即可以增加同学之间的情感,又可以在交朋友的过程学习到新的东西,提高学习效率,培养合作精神,增强协调能力。

四:题目分类本

和错题本一样,专门记录自己做过的试题,分类指的是将自己做过的试题分为几大类,一类是极其简单,自己一看就会的。一类是有一定难度,需要思考找到突破口的,还有一类就是难度很大,需要综合运用很多知识并进行推理才能解答的,后两类都应该是我们的记录重点。在对试题分类的过程中同学自然地就增强了对试题的进一步理解。

五:旧题新解

不定时的翻翻原来做过的试题,但是重点是思考有没有新的解题思路和解题技巧。这样不断地增加思考有利于形成学生思考习惯的形成,也有利于学生 发散思维 的形成,多角度考察问题的思路,并随时利用新学知识去解决问题。


四年级数学下册知识点 总结 相关 文章 :

★ 四年级数学下册知识点归纳

★ 小学四年级下册数学知识点复习资料整理

★ 四年级数学下册知识点汇总

★ 四年级数学三角形知识点归纳

★ 四年级数学下册知识点

★ 小学四年级数学下册复习资料整理

★ 小学四年级人教版数学下册复习资料整理

★ 四年级数学下册复习计划总结

★ 数学四年级下册知识点

★ 人教版小学数学四年级下册期末知识点

❿ 数学四年级下册知识点

期末考试临近,为帮助孩子更好地复习,考出好成绩,帮助老师们节省时间,帮助家长有效辅导,下面是由我为大家整理的数学四年级下册知识,仅供参考,欢迎大家阅读。

数学四年级下册知识1

四则运算

1、加、减的意义和各部分间的关系

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。

(5)加法各部分间的关系:

和=加数+加数

加数=和-另一个加数

(6)减法各部分间的关系:

差=被减数-减数

减数=被减数-差

被减数=减数+差

2、乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数…… 。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

2、加法、减法、乘法、除法统称为四则运算

3、四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

4、有关0的计算

①一个数和0相加,结果还得原数:

a + 0 =a 0 + a = a

②一个数减去0,结果还得这个数:

a - 0 = a

③一个数减去它自己,结果得零:

a - a = 0

④一个数和0相乘,结果得0:

a × 0 = 0 ; 0 × a = 0

⑤0除以一个非0的数,结果得0:

0 ÷ a = 0 ;

⑥ 0不能做除数:

a÷0 = (无意义)

5、租船问题。

解答租船问题的 方法 :先假设、再调整。

数学四年级下册知识2

运算定律

1、加法运算定律:

①加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a

②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b) +c=a+(b+c)

③加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)

2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)

3、乘法运算定律:

①乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a

②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

(a×b) ×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。

如:125×78×8的简算。

③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

(a+b) ×c=a×c+b×c

4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。

a÷b÷c=a÷(b×c)

数学四年级下册知识3

小数的意义和性质

1、在进行测量和计算时,往往不能正好得到整数的结果,这时常用(小数)来表示。

分母是10、100、1000……的分数可以用(小数)来表示;

分母是10的分数可以写成(一位)小数,

分母是100的分数可以写成(两位)小数,

分母是1000的分数可以写成(三位)小数……

所以,一位小数表示(十分)之几,

两位小数表示(百分)之几,

三位小数表示(千分)之几……

如:

0.5表示(十分之五),

0.05表示(百分之五),

0.25表示(百分之二十五),

0.005表示(千分之五),

0.025表示千分之二十五)。

2、小数点前面的数叫小数的(整数)部分,小数点后面的数叫小数的(小数)部分,

3、小数点后面第一位是(十)分位,十分位的计数单位是十分之一,又可以写作0.1;

小数点后面第二位是(百)分位,百分位的计数单位是百分之一,又可以写作0.01;

小数点后面第三位是(千)分位,千分位的计数单位是千分之一,又可以写作0.001……

如:20.375,十分位上的3,表示3个(十分之一);百分位上的7,表示7个(百分之一);千分位上的5,表示5个(千分之一)。

4、小数每相邻两个计数单位间的进率都是10,(10个千分之一是1个百分之一,10个百分之一是1个十分之一,10个十分之一是整数1,或10个0.001是1个0.01 ,10个0.01是1个0.1, 10个0.1是整数1……

5、读小数时,整数部分按照整数的读法去读,小数点读作“点”,小数部分要依次读出每一个数字。

6、写小数时,整数部分按照整数的写法来写,小数点写在个位的右下角,小数部分要依次写出每一个数位上的数字。

7、在小数的末尾添上“0”或去掉“0”,小数的大小不变,这叫小数的性质。

8、小数大小的比较:

先比较整数部分,整数部分大,那个小数就大;整数部分相同,就比较小数部分,十分位相同,就比较百分位,百分位也相同,就比较千分位……

9、小数点的移动:

(1)小数点向右:移动一位,相当于把原数乘10,小数就扩大到原数的10倍;移动两位,相当于把原数乘100,小数就扩大到原数的100倍;移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍……

(2)小数点向左:移动一位,相当于把原数除以10,小数就缩小到原来的1/10;移动两位,相当于把原数除以100,小数就缩小到原来的1/100;移动三位,相当于把原数除以1000,小数就缩小到原来的1/1000……

10、不同数量单位的数据之间的改写:

低级单位数÷进率=高级单位数

当进率是10、100、1000……时,可以直接利用小数点的移动来换算。

11、求近似数时: 保留整数,就是精确到个位,看十分位上的数来四舍五入;

保留一位小数,就是精确到十分位,看百分位上的数来四舍五入;

保留两位小数,就是精确到百分位,看千分位上的数来四舍五入。

(表示近似数时小数末尾的0不能去掉)

12、为了读写方便,常常把非整万或整亿的数改写成用“万”或“亿”作单位的数:改写时,只要在万位或亿位的右边,点上小数点,在数的后面加上“万”字或“亿”字

数学四年级下册知识4

小数的加减法

1、笔算小数加、减法的方法:

(1)小数点对齐,也就是相同数位对齐;

(2)从末位算起,算加法时,哪一位数相加满十都要向前一位进1;算减法时,哪一位不够减就要从前一位退1。

(3)得数末尾有 0,一般要把0去掉。

(4)不要忘记了小数点。

2、小数加减混合运算的顺序与整数加减混合运算的顺序相同:

(1)没有括号,按从左往右的顺序依次计算;

(2)有小括号,要先算小括号里面的。

3、整数的运算定律在小数运算中同样适用。在小数四则运算中,恰当地运用加法交换律、结合律及连减的运算性质会使计算更简便。

4. 得数是小数时,(末尾)的0一般要去掉。

5. 一个整数与一个小数相加减时:

① 先在整数的右边点上小数点;

② 再添上与另一个小数部分同样多个数的0;

③ 然后再按照小数加减法的计算方法计算。

6. 得数是小数时,(末尾)的0一般要去掉。

7、验算:

加法验算:

①交换加数的位置再加一遍,看结果与原来是否相同;

②用减法,把和减去一个加数,看差是否与另一个加数相同。

减法验算:

① 用加法,把减数与差相加,看结果是否等于被减数;

② 用减法,把被减数减去差,看是否等于减数。

应用整数运算定律进行小数的简便计算:

整数运算定律在小数运算中同样适用。在小数四则运算中,恰当地运用加法(交换律)、(结合律)及减法的运算性质会使计算更简便。

8、 简便运算方法:

⑴ 几个小数连加时,如果其中的两个小数的尾数相加能凑整,先把这两个数相加,可使计算简便;

如:0.36+18.09+2.64+4.91

⑵ 一个数连续减去两个小数时,如果这两个小数相加的和能凑整,可以先把两个减数相加,再从被减数里减去这两个减数的和比较简便;

如:13.2-5.73-4.27

⑶ 一个数减去两个小数的和,当这两个数中的一个数的小数部分与被减数的小数部分相同时,可以先从被减数里减去这个数,然后再减去另一个数,计算比较简便。

如:18.63-(4.75+3.63)

⑷ 整数乘法的运算定律在小数乘法中同样适用

如: 3.65×42.6+3.65×57.4

⑸ 在小数运算中,可以利用(添括号)或(去括号)使计算简便:

→无论是去括号或添括号

① 括号前面是加号,去掉括号不变号;

如:6.59-4.86+2.86

②括号前面是减号,去掉括号全变号(加号变减号,减号变加号)。

如:6.47-(1.5-0.53)

⑹ 在没有括号的同级运算中,交换数据的位置,一定要带着它前面的符号。

如:4.95-2.67+1.05

数学四年级下册知识5

图形的运动二

1、把一个图形沿着某一条直线对折,如果直线两旁的部分能够完全重合,我们就说这个图形是轴对称图形,这条直线叫做这个图形的对称轴。

2、轴对称的性质:对应点到对称轴的距离都相等。

3、对称轴是一条直线,所以在画对称轴时,要画到图形外面,且要用虚线。

4、正方形的对角线所在的直线是它的对称轴。轴对称图形可以有一条或几条对称轴。

5、画对称轴时,先找到与相反方向距离对称轴相同的对应点,最后连线。

6、长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形都是轴对称图形。

长方形有2条对称轴,

正方形有4条对称轴,

等腰梯形有1条对称轴,

等腰三角形有一条对称轴,

等边三角形有3条对称轴,

线段有1条对称轴,

菱形有2条对称轴,

圆有无数条对称轴,

半圆有一条,

圆环有无数条,

半圆环有一条。

7、平行四边形不是轴对称图形,没有对称轴。(长方形和正方形除外)

8、梯形不一定是轴对称图形。只有等腰梯形是轴对称图形。

9、古今中外,许多着名的建筑就是对称的。比如:中国的赵州桥,印度泰姬陵,英国塔桥,法国埃菲尔铁塔。

10、平移先找图形点,平移完点连起来,注意数点数要数十字。

11、平移不改变图形的大小、形状,只改变图形的位置。

12、利用平移,可以求出不规则图形的面积。


数学四年级下册知识点相关 文章 :

★ 小学四年级下册数学知识点复习资料整理

★ 四年级数学下册知识点

★ 四年级数学下册知识点汇总

★ 小学四年级数学下册复习资料整理

★ 四年级数学三角形知识点归纳

★ 人教版小学四年级数学下册总复习知识点

★ 人教版小学数学四年级下册期末知识点

★ 四年级下册数学知识点归纳总结(2)

★ 小学四年级下册数学复习资料整理

★ 小学四年级人教版数学下册复习资料整理