① 小学四年级数学复习资料
四年级下册数学背诵或默写知识点
知识点一
四则运算(背诵)
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二
0的运算(默写)
1、“0”不能做除数; 字母表示:a÷0错误 2、一个数加上0还得原数; 字母表示:a+0= a 3、一个数减去0还得原数; 字母表示:a-0= a 4、被减数等于减数,差是0; 字母表示:a-a = 0 4、一个数和0相乘,仍得0; 字母表示:a×0= 0 5、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0
知识点三 运算定律(默写)
1、 加法交换律:a+b=b+a
2、 加法结合律:(a+b) +c=a+(b+c) 3、 乘法交换律:a×b=b×a
4、 乘法结合律:(a×b)×c=a×(b×c)
5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
6、连减:a—b—c=a—(b+c) 7、连除: a÷b÷c=a÷(b×c)
知识点四
简便计算一(默写或自己举例子)
一、常见乘法计算:
25×4=100 125×8=1000
二、加法交换律简算例子: 三、加法结合律简算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60) =100+98 =488+100 =198 =588
四、乘法交换律简算例子: 五、乘法结合律简算例子:
25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000
六、含有加法交换律与结合律的简便计算: 65+28+35+72
=(65+35)+(28+72) =100+100 =200
七、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8) =100×1000 =100000
知识点四
简便计算二(默写或自己举例子)
乘法分配律简算例子:
一、分解式 二、合并式
25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350
三、特殊1 四、特殊2 99×256+256 45×102
=99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 五、特殊3 六、特殊4
99×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574
知识点四
简便计算三(默写或自己举例子) 一、 连续减法简便运算例子:
528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250
二、 连续除法简便运算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32
三、 其它简便运算例子:
256—58+44 250÷8×4 =256+44—58 =250×4÷8 =300—58 =1000÷8
=242 =125
知识点五 三角形(第1条到第13条要背诵)
1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。
3、三角形具有稳定性。
4、三角形任意两边之和大于第三边。
5、三个角都是锐角的三角形叫做锐角三角形。 6、有一个角是直角的三角形叫做直角三角形。 7、有一个角是钝角的三角形叫做钝角三角形。
8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
9、两条边相等的三角形叫做等腰三角形。
10、三条边都相等的三角形叫等边三角形,也叫正三角形。 11、等边三角形是特殊的等腰三角形 12、三角形的内角和是180°。 13、四边形的内角和是360°
14、用2个相同的三角形可以拼成一个平行四边形。
15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。 16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
知识点六
小数的意义和性质(第7、10条默写,其它要理解)
1、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、 0.01、 0.001…… 2、每相邻两个记数单位间的进率是(10)。
3、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
4、 小数的数位顺序表
整数部分
小数点
小数部分
数位
…
万位 千位
百位
十位
个位
·
十分位
百分位
千分位
万分
位
… 计数
单位
… 万
千
百
十
一(个)
十分之一
百分之一
千分之一
万分
之一
… 5、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
6、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
7、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。
8、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
9、小数点的移动 小数点向右移:
移动一位,小数就扩大到原数的10倍; 移动两位,小数就扩大到原数的100倍; 移动三位,小数就扩大到原数的10 00倍;
移动四位,小数就扩大到原数的10000倍;…… 小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的101
;
移动两位,小数就缩小100倍,即小数就缩小到原数的1001
;
移动三位,小数就缩小1000倍,即小数就缩小到原数的1000
1
;
移动四位,小数就缩小10000倍,即小数就缩小到原数的10000
1
;……
10、生活中常用的单位:
质量: 1吨=1000千克; 1千克=1000克
长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积: 1平方米= 100平方分米 1平方分米=100平方厘米 1平方千米=100公顷 1公顷=10000平方米 人民币: 1元=10角 1角=10分 1元=100分 11、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。然后再根据小数的性质把小数末尾的零去掉即可。
知识点七
小数的加法和减法(第1条背诵)
1、小数的加、减法要注意:小数点要对齐也就是把数位对齐,得数的末尾有0,一般要把0去掉。
2、整数的运算定律(以及简便的方法)在小数运算中同样适用。
知识点八
统计图(背诵)
1、 条形统计图优点:直观地反映数量的多少。
2、 折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。 3、 折线统计图中,变化趋势指:上升或者下降。 知识点九
数学广角(默写)
(一)植树问题:
1、 两端要栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数+1; 间隔数=棵数-1
2、 两端不栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数-1; 间隔数=棵数+1
(二)锯木问题: 段数=次数+1; 次数=段数-1 总时间=每次时间×次数
(三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4 整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形): 总长÷间距=间隔数;棵数=间隔数
② 四年级数学知识点
(一)四则运算:
1、 运算顺序:1、在没有括号的算式里,如果只有加减法或只有乘除法,都要从左往右按顺序(依次)计算。
2、在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。
3、算式里有括号时,要先算括号里面的。
2、 加法、减法、乘法和除法统称为四则运算。
3、 有关0的运算:1、一个数加上0得原数。
2、任何一个数乘0得0。
3、0不能做除数。0除以一个非0的数等于0。
0?0得不到固定的商;5?0得不到商.
(二) 位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)
2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)
3、简单路线图的绘制。
(三)运算定律及简便运算:
1、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a b=b a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a b) c=a (b c)
加法的这两个定律往往结合起来一起使用。
如:165 93 35=93 (165 35)依据是什么?
2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b c)
3、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a ? b = b ? a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
( a ? b )? c = a ? ( b ? c )
乘法的这两个定律往往结合起来一起使用。
如:125?78?8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a b)?c=a?c b?c
4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。
a ? b ? c = a ? ( b ? c)
5、有关简算的拓展:
102?38-38?2125?25?32 125?88 3.25 1.98 10.32-1.98 37?96 37?3 37
易错的情况:0.6 0.4-0.6 0.4 38?99 99
(四) 小数的意义和性质:
1、分母是10、100、1000……的分数可以用小数来表示。
2、小数是十进制分数的另一种表现形式。
3、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
4、每相邻两个计数单位间的进率是10。
5、小数的读写法:读法:整数部分按照整数读法来读,小数部分要顺次读出每一个数。
写法:整数部分按照整数的写法来写,整数部分是0就写0,小数部分依次写出每一个数。
6.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。
7.小数大小比较:先比较整数部分,整数部分相同比较十分位,十分位相同比较百分位,……
8.小数点位置移动引起小数大小变化规律:
小数点向右:移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;
……
小数点向左:移动一位,小数就缩小10倍,(小数就缩小为原数的 );
移动两位,小数就缩小100倍,(小数就缩小为原数的 );
移动三位,小数就缩小1000倍,(小数就缩小为原数的 );
……
9.名数的改写:1吨30千克+800克=( )吨
长度单位:千米 ??———— 米 ———— 分米 ———— 厘米
面积单位:平方千米———公顷———平方米————平方分米———平方厘米
质量单位:吨————千克————克
10、求小数的近似数(四舍五入):(保留两位小数与精确到百分位的提法)
保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位,取近似数时,小数末尾的0不能去掉。
大数的改写。先改写,再求近似数。注意:带上单位。
(五) 三角形:
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。重点:三角形高的画法。
3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。
2、边的特性:任意两边之和大于第三边。
4、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)
5、三角形的内角和等于180度。有关度数的计算以及格式。
6、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。
7、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
(六)小数的加减法:
1、 计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。
2、 竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。
3、 整数的四则运算顺序和运算定律在小数中同样适用。(简算)
(七)统计:
折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。
优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。
(八)数学广角:植树问题。
间隔数=总长度 ? 间隔长度
情况分类:1、两端都植:棵数=间隔数+1
2、一端植,一端不植:棵数=间隔数
3、两端都不植:棵数=间隔数-1
4、封闭:棵数=间隔数
③ 四年级数学小知识
0.618 黄金比
圆周率 3.141592657....
黄金分割 1.618
勾股定理 3*3+4*4=5*5
黄金比
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"斐波那契数列",这些数被称为"菲斐波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列 1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论着。
④ 数学四年级小知识
少年得到北大学霸的数学培优课(四年级)(标清视频)网络网盘
链接:
若资源有问题欢迎追问~
⑤ 最新人教版四年级下册数学知识点总结
这里有最新2021人教版的:
四年级下册数学复习资料全册1-8单元知识点归纳
第一单元 四则运算
1.加、减的意义和各部分间的关系:
(1)把两个数合并成一个数的运算,叫做加法。
(2)相加的两个数叫做加数。加得的数叫做和。
(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。
(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数
(6)减法各部分间的关系:差=被减数-减数
减数=被减数-差
被减数=减数+差
2.乘、除法的意义和各部分间的关系
(1)求几个相同加数的和和的简便运算,叫做乘法。
(2)相乘的两个数叫做因数。乘得的数叫做积。
(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。
(5)乘法各部分间的关系:
积=因数×因数
因数=积÷另一个因数
(6)除法各部分间的关系:
商=被除数÷除数
除数=被除数÷商
被除数=商×除数
(7)有余数的除法,
被除数=商×除数+余数
3.加法、减法、乘法、除法统称为四则运算
4.四则混和运算的顺序
(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;
(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)
(3)在有括号的算式里,要先算括号里面的,后算括号外面的。
5.有关 0 的计算
①一个数和0相加,结果还得原数:a+0=a 0+a=a
②一个数减去0,结果还得这个数:a-0=a
③一个数减去它自己,结果得零:a-a=0
④一个数和0相乘,结果得0:a×0=0 ;0×a=0
⑤0除以一个非0的数,结果得0:0÷a=0;
⑥0不能做除数:a÷0=(无意义)
6.租船问题。解答租船问题的方法:先假设、再调整。
第二单元 观察物体二
1.正确辨认从上面、前面、左面观察到物体的形状。
2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
5.从不同的位置观察,才能更全面地认识一个物体。
第三单元 运算定律
……
更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳
⑥ 小学四年级数学的知识要点有哪些
一、亿以内数的认识
1. 一(个),十,百、千、万……亿都是计数单位。
2. 每相邻两个计数单位之间有什么关系?
每相邻两个计数单位的进率都是“10”。
3. 求近似数的方法叫“四舍五入”法。
4. 是“舍”还是“入”要看省略的尾数部分的最高位数是小于5还是大于5。
5. 表示物体个数的1,2,3,4,5,6,7,8,9,10,11,……都是自然数。一个物体也没有用0表示。0也是自然数。
6. 最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
7. 每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
二、角的度量
1. 像手电简、汽车灯和太阳等射出来的光线,都可以近似地看成是射线。射线只有一个端点,可以向一端无限延伸。
2. 直线没有端点、可以向两端无限延伸。
3. 直线、射钱与线段有什么联系和区别?
联系:射线、线段都是直线的一部分,线段是直线的有限部分。
区别:直线无端点,长度无限,向两方无限延伸,射线只有一个端点,长度无限,向一方无限延伸,线段有两个端点,长度有限。
4. 直线和射线都可以无限延伸。线段可以量出长度。
5. 从一点引出两条直线所组成的图形叫做角。
6. 角的计量单位是“度”,用符号号“°”表示。把半圆分成180等份,每一份所对的角的大小是1度,记作1°。
7. 锐角、钝角、直角,平角和周角之间有什么关系?
直角=90度,钝角大于直角小于平角,平角=180度,周角=360度,锐角小于90度,锐角<直角<钝角<平角<周角。
8. 钝角大于90°,而小于180°。锐角小于90°。平角等于180°,等于两个直角。
三、三位数乘两位数
1. 速度x时间=路程
四、平行四边形和梯形
1. 在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
2. 从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
3. 两组对边分别平行的四边形叫做平行四边形,只有一组对边平行的四边形叫做梯形。
4. 长方形和正方形可以看成特殊的平行四边形吗?为什么?
可以,因为长方形和正方形两组对边分别平行,而且都是四边形,所以可以看成特殊的平行四边形。
5. 从平行四边形一条边上的一点到对边引一条垂线。这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
6. 两腰相等的梯形叫做等腰梯形。
7. 有一种特殊的平行四边形,它的四条边都相等,这样的平行四边形叫菱形。
五、除数是两位数的除法
六、统计
七、数学广角
⑦ 四年级数学角的认识知识点有哪些
1、角的概念。由一点引出两条射线所组成的图形叫作角。角是由一个顶点和两条边组成的。
2、认识平角、周角。
平角:角的两边在同一直线上,(像一条直线),平角等于180°,等于两个直角。
周角:角的两边重合,(像一条射线),周角等于360°,等于两个平角,四个直角。
3、角的分类:小于90度的角叫作锐角;等于90度的角叫作直角;大于90度小于180度的角叫作钝角;等于180度的角叫作平角;大于180度小于270度叫作优角(此为补充内容);等于360度的角叫作周角。
4、动手画平角、周角。
1、量角的大小,要用量角器。
2、角的大小与两条边的长短没有关系,与两条边叉开的大小有关系。开口大,角就大;开口小,角就小。
3、角的计量单位是“度”,用符号“°”表示。把半圆分成180等份,每一份所对的角的大小是1度,记作:1°。
4、角的种类:
锐角:小于90°钝角:大于90°而小于180°。
从小到大排:锐角<直角<钝角<平角<周角
从大到小排:周角>平角>钝角>直角>锐角。
⑧ 最新最全人教版小学四年级数学下册知识点总结
来上新啦,2021人教版的:
四年级下册数学复习资料全册1-8单元知识点归纳
第一单元 四则运算
1.加、减的意义和各部分间的关系:
(1)把两个数合并成一个数的运算,叫做加法。
(2)相加的两个数叫做加数。加得的数叫做和。
(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。
(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数
(6)减法各部分间的关系:差=被减数-减数
减数=被减数-差
被减数=减数+差
2.乘、除法的意义和各部分间的关系
(1)求几个相同加数的和和的简便运算,叫做乘法。
(2)相乘的两个数叫做因数。乘得的数叫做积。
(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。
(5)乘法各部分间的关系:
积=因数×因数
因数=积÷另一个因数
(6)除法各部分间的关系:
商=被除数÷除数
除数=被除数÷商
被除数=商×除数
(7)有余数的除法,
被除数=商×除数+余数
3.加法、减法、乘法、除法统称为四则运算
4.四则混和运算的顺序
(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;
(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)
(3)在有括号的算式里,要先算括号里面的,后算括号外面的。
5.有关 0 的计算
①一个数和0相加,结果还得原数:a+0=a 0+a=a
②一个数减去0,结果还得这个数:a-0=a
③一个数减去它自己,结果得零:a-a=0
④一个数和0相乘,结果得0:a×0=0 ;0×a=0
⑤0除以一个非0的数,结果得0:0÷a=0;
⑥0不能做除数:a÷0=(无意义)
6.租船问题。解答租船问题的方法:先假设、再调整。
第二单元 观察物体二
1.正确辨认从上面、前面、左面观察到物体的形状。
2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
5.从不同的位置观察,才能更全面地认识一个物体。
第三单元 运算定律
……
更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳
整理不易,如有帮助,请予采纳。
⑨ 四年级数学重点内容是什么
小学数学四年级上册知识点详解(人教版)_网络文库
http://wenku..com/view/f88200de50e2524de5187ea4?pt=rv&listNo=1&app=event
你把这个网址的内容看下,就明白了,希望对你有帮助。
⑩ 四年级数学知识要点
总:一、亿以内数的认识1.一(个),十,百、千、万……亿都是计数单位.2.每相邻两个计数单位之间有什么关系?每相邻两个计数单位的进率都是“10”.3.求近似数的方法叫“四舍五入”法.4.是“舍”还是“入”要看省略的尾数部分的最高位数是小于5还是大于5.5.表示物体个数的1,2,3,4,5,6,7,8,9,10,11,……都是自然数.一个物体也没有用0表示.0也是自然数.6.最小的自然数是0,没有最大的自然数,自然数的个数是无限的.7.每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法.二、角的度量 1.像手电简、汽车灯和太阳等射出来的光线,都可以近似地看成是射线.射线只有一个端点,可以向一端无限延伸.2.直线没有端点、可以向两端无限延伸.3.直线、射钱与线段有什么联系和区别?联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸,射线只有一个端点,长度无限,向一方无限延伸,线段有两个端点,长度有限.4.直线和射线都可以无限延伸.线段可以量出长度.5.从一点引出两条直线所组成的图形叫做角.6.角的计量单位是“度”,用符号号“°”表示.把半圆分成180等份,每一份所对的角的大小是1度,记作1°.7.锐角、钝角、直角,平角和周角之间有什么关系?直角=90度,钝角大于直角小于平角,平角=180度,周角=360度,锐角小于90度。
单元概括:
第一单元 亿以上数的认识 姓名:
一、亿以内数的读法:○1先读万级,再读个级。○2万级的数,要按照个级的读法来读,再在后面加一个“万”字。○3每级末尾不管有几个0都不读;中间有一个或连续几个0都只读一个零。 二、亿以内数的写法:○1先写万级,再写个级。○2哪一个数位上一个单位
也没有,就在哪一位上写0。○
3一定要先分级再来读数或写数。 三、比较数的大小的方法:○1位数不同时,位数多的数大。○2位数相同时,从最高位比起,哪个数最高位上的数大,这个数就大;如果最高位上的数字相同,就比较下一位上的数字,直到比较出大小为止。
四、整万数改写成用“万”作单位的数的方法;将万位后面的4个0省略,换成一个“万”字。
五、用“四舍五入”法求近似数的方法:求一个数的近似数,主要是看它的省略的尾数,如果省略的尾数最高位上的数是0、1、2、3、4,就把尾数都舍去,改写成“0”,如果省略的尾数最高位上的数是5、6、7、8、9,就把尾数省略,并向前一位进1。
六、用“四舍五入”法求近似数的关键:找准尾数的最高位,如果省略万位后面的尾数,就看千位;如果省略千位后面的尾数,就看百位;如果省略百位后面的尾数,就看十位„„
七、表示物体个数的0、1、2、3、4、5、6、7、8、9„„都是自然数,0是最小的自然数。没有最大的自然数,自然数的个数是无限的。
八、每相邻两个计数单位之间的进率是十,这种计数法叫做十进制计数法。 九、亿以上数的读法与亿以内数读法相同:先分级,从最高位读起,一级一级往下读,读亿级时按照个级读法来读,再在后面加一个“亿”字。
十、亿以上数的写法与亿以内的写法相同:先分级,从最高位写起,一级一级往下写,每一级的写法与个级的写法一样。 十一、读数和写数关键都是“先分级”。
十二、对整亿数的改写:直接省略亿位后面的8个0,再加上一个“亿”字。 十三、不是整亿数的用“四舍五入”法省略亿位后面的尾数再改写:先分级再在尾数最高位“千万位”上进行“四舍五入”,用“”写出得数,不要忘记写“亿”字。
十四、算盘上每一档代表一个数位,记数前先要确定某一档作个位,向左依次是十位、百位、千位„„。每一档的上珠代表5,下珠代表1。 十五、电子计算器操作键的功能。
符号 名称 功能 ON/C 开启键 开或消除输入的内容 OFF 关闭键 关闭 CE 消除键 只消除上一次刚输入的内容
第二单元 角的度量
一、直线、射线、线段的联系和区别
联 系 区 别 都是直的 端点个数 延长情况 长短
直线 无 可以向两端无限延长 无
射线 1 可以向一端无限延长 无
线段 2 不能向一端延长 有长短
二、从一点出发可以画无数条射线,经过一点只能画无数条直线,经过两点只能画一条直线。
三、量角器由中心点,0刻度线,内圈刻度,外圈刻度组成,在量角时注意:(1)量角器的中心点与角的顶点重合.(2)使量角器的内面0刻度(外面的0刻度)与角的一条边重合.(3)角的另一边指向哪,就根据内圈(外圈)刻度读数.(4)要注意从0刻度读起,做到“0对内读内,0对外读外”。
四、角的大小与角的两边长短无关与两边叉开的大小有关,角的两边叉开越大角就越大.
五、小于900的角叫锐角,大于900而小于1800
的角叫钝角.
六、1平角1800
=2直角
1周角=3600
=2平角=4直角
七、锐角<直角<钝角<平角<周角
八、画指定度数的角,注意做到两重合:量角器的中心点与顶点重合;0刻度线与所画的角的一条边重合;还要看准度数,“0对内读内,0对外读外”所画的边对应的0刻度在内圈,就看内圈的刻度。
第三单元 三位数乘两位数
一、口算整数或整千数乘一位数,都可以先把0前面的数相乘,再在积的末尾添上相应个数的0。
二、三位数乘两位数的笔算方法,先用两位数个位上的数去乘三位数,得数的末位与两位数的个位对齐,再用两位数十位上的数去乘三位数得数末位和两位数的十位对齐,然后把两次乘的结果加起来。
三、因数末尾有0的简便算法:先把0前面的数相乘,再看两个因数末尾一共有几个0,则在积的末尾添写几个0。
四、速度是指单位时间内所走的路程。其表示方法是所行路程/时间单位。如:120千米/时,50米/分,计算方法是用路程÷时间=速度。
五、路程=时间×速度 速度=路程÷时间 时间=路程÷速度
六、积的变化规律:两数相乘,一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几(0除外)。乘法估算必须符合两个要求:一是接近准确值(符合实际);二是计算方便。
七、乘法估算通常情况下是按照“四舍五入”法来估算,即把两个因数看成是整十、整百或几百几十的数;但有时也要根据实际情况来分析,如估钱够不够要往大估。
第四单元 平行四边形和梯形
1、在同一平面内不相交的两条直线叫做平行线,它们的关系叫做互相平行。如果两条直线相交成直角,这两条直线互相平行,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
2、平行线的要点有:(1)在同一平面;(2)永不相交;(3)两条直线。 3、平行线的基本性质:(1)经过直线外一点有并且只有一条直线与已知直线平行。(2)与一条直线距离相等的平行线可以画两条,如与已知直线相距5厘米的平行线有上和下各一条。(3)在同一平面内,如果两条直线与另一条直线平行,哪么这两条直线也一定互相平行。
4、垂线的基本性质:(1)经过直线外一点,有并且只有一条直线与已知直线平行;(2)从直线外一点到这条直线的所有线段中,与直线垂直的线段最短;(3)在同一平面内,如果两条直线 与另一条直线垂直,哪么这两条直线一定互相平行。 5、两条直线在同一平面内的关系有:(1)平行:不相交的两条直线;(2)相交:相交成直角就是垂直。
6、用三角板和直尺来画平行线的方法:○1放三角尺,○2靠直尺,○3沿着直尺边推三角尺,○4画平行线。(总结为一放、二靠、三推、四画)
7、两组对边分别平行的四边形叫做平行四边形;只有一组对边平行的四边形叫做梯形。 8、平行四边形的特征:(1)两组对边平行且相等;(2)四个内角的和等于360度;(3)相对的角相等;(4)相邻的角互补。梯形的特征:(1)只有一组对边平行但不相等;(2)四个内角的和也等于360度;(3)最少有一个锐角和一个钝角。
9、平行四边形具有不稳定性,也就是说长方形可以拉成平形四边形,平行四边形可以变成长方形。长方形拉成平行四边形后,周长不变,高变小,面积会变小。 10、平行四边形和梯形的高都有无数条。
11、平行四边形和梯形高的画法,相当于过直线外一点画已知直线的垂线。梯形的高只能从相互平行的两条边中任一边上的一点向它的对边画垂线,而不能在梯形的腰上画高。 12、从平行四边形一条边上的任意一点,到对边引一条垂线,这点到垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。两腰相等的梯形叫做等腰梯形。 13、从组合图形中数平行四边形或梯形的个数,也要按从小到大的顺序来数,先给每个最小的图标出序号,然后一个个的数,两个两个数,再三个三个数„„以此类推。 14、所有的四边形的内角和都等于360度。三角形的内角和都等于180度。
第五单元 除数是两位数的除法
16、除数是两位数的口算除法,可以用想乘法算除法和表内除法计算的方法进行口算。 17、除法估算一般是把算式中不上整十的数用“四舍五入”法估算成整十数,再进行口算。 18、除数是两位数的除法,要先看被除数的前两位,如果前两位不够商1,就看前三位数,除到被除数的哪一位,商就写在哪一位的上面,余数一定要比除数小。
19、如果除数是一个接近整十数两位数,就用“四舍五入”法把除数看作与它接近整十数的两位数的笔算除法,既可以按照“四舍五入”法试商,也可以把除数看作和它接近的几十五,再利用一位数乘法直接确定商。
20、判定商是几位数,先看被除数与除数的前几位(取决于除数是几位数), 如果除数是两位数,就先看被除数的前两位。
注意:每一步商的位置要正确,每求出一位商,余下的数必须比除数小。 21、当除数不变时商与被除数变化正好相同。(0除外) 当被除数不变时,商与除数的变化正好相反。(0除外)
当除数与被除数同时乘(或除以)相同的数时,商不变。 22、总数量=每份数×份数 每份数=总数量÷份数
份数=总数量÷每份数
23、总价=单价×数量 单价=总价÷数量 数量=竞价÷单价 24、被除数=商×除数+余数 商=(被除数-余数)÷除数 除数=(被除数-余数)÷商
25、除数不接近整十数时可看作个位是5的数来试商。
15×2=30 15×3=45 15×4=60 15×5=75 15×6=90 15×7=105 15×8=120 15×9=135
25×2=50 25×3=75 25×4=100 25×5=125