㈠ 初一数学几何知识点改为如果那么的形式
“如果------,那么------”是命题的标准规范形式,“如果”后面叙述条件,即题设;
“那么”后面叙述结论。
很多命题,如公理、定理、性质、判定等没有“如果”和“那么”,是因为它们把
“如果”和“那么”省略了;当然可以随时把“如果”和“那么”加进去;但是要注意把
“如果”和“那么”加进去时,首先不能改变命题的本意,并且叙述的语言要灵活且通顺。
㈡ 初中数学知识点总结 最好是关于几何的。 我快毕业考了 希望大家能给我一些介意 可以在短时间内复习好 谢
1过两点有且只有一条直线 2 两点之间线段最短
3 同角或等角的补角相等 4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行 10 内错角相等,两直线平行
11 同旁内角互补,两直线平行 12两直线平行,同位角相等
13 两直线平行,内错角相等 14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等
24 推论 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理 有三边对应相等的两个三角形全等
26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理 不在同一直线上的三个点确定一条直线
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n∏R/180
145扇形面积公式:S扇形=n∏R/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
㈢ 初中数学几何知识点
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
㈣ 初中数学知识点总结
很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?
知识点
当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.
以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.
㈤ 初中数学几何知识点有哪些是比较重要的
每个知识点都是很重要的,建议你到 火星学习网 看同步教学视频,希望可以帮到你。我去看了,挺有帮助的
㈥ 初中数学知识点整理
初中数学宝典,你知道学习数学最重要的是什么吗?
在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!
复习知识点
以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.
㈦ 初中数学几何证明知识点。
初中数学公理和定理
一、公理(不需证明)
1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
2、两条平行线被第三条直线所截,同位角相等;
3、两边和夹角对应相等的两个三角形全等; (SAS) 4、角及其夹边对应相等的两个三角形全等; (ASA)
5、三边对应相等的两个三角形全等; (SSS)
6、全等三角形的对应边相等,对应角相等.
7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行
10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直
以下对初中阶段所学的公理、定理进行分类:
一、直线与角
1、两点之间,线段最短。 2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等
二、平行与垂直
5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等
9、平行线的判定:
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行;
(4)垂直于同一条直线的两条的直线互相平行.
(5)如果两条直线都和第三条直线平行,那么这两条直线也平行
10、平行线的性质:
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)
11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.
12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.
13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.
14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.
15、轴对称的性质:
(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.
(2)对应线段相等、对应角相等。
16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。即对应线段平行且 相等,对应角相等,对应点所连的线段平行且相等
17、旋转对称:
(1)图形中每一点都绕着旋转中心旋转了同样大小的角度
(2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等
18、中心对称:
(1)具有旋转对称的所有性质:
(2)中心对称图形上的每一对对应点所连成的线段都被对称中心平分
四、三角形:
(一)一般性质
19、三角形内角和定理:三角形的内角和等于180°
20、三角形外角的性质:
①三角形的一个外角等于与它不相邻的两个内角的和;
②三角形的一个外角大于任何一个与它不相邻的内角; ③三角形的外角和等于360°
21、三边关系:
(1)两边之和大于第三边;
(2)两边之差小于第三边
22、三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.
23、三角形的三边的垂直平分线交于一点(外心), 这点到三个顶点的距离(外接圆半径)相等。
24、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。
(二)特殊性质:
25、等腰三角形、等边三角形
(1)等腰三角形的两个底角相等.(简写成“等边对等角”)
(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.
(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形
26、直角三角形:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。
五、四边形
27、多边形中的有关公理、定理:
(1)四边形的内角和为360°
(2)N边形的内角和:( n-2)×180°.
(3)任意多边形的外角和都为360°
28、平行四边形的性质:
(1)平行四边形的对边平行且相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分。
29、平行四边形的判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形.
30、矩形的性质:
(1)具有平行四边形的所有性质
(2)矩形的四个角都是直角;
(3)矩形的对角线相等且互相平分.
31、矩形的判定:
(1)有一个角是直角的平行四边形是矩形。
(2)有三个角是直角的四边形是矩形.
(3)对角线相等的平行四边形是矩形。
32、菱形的性质:
(1)具有平行四边形的所有性质
(2)菱形的四条边都相等;
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.
33、菱形的判定:
(1)四条边相等的四边形是菱形.
(2)一组邻边相等的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
34、正方形的性质:
(1)具有矩形、菱形的所有性质
(2)正方形的四个角都是直角;
(3)正方形的四条边都相等;
(4)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.
35、正方形的判定:(证明既是矩形又是菱形)
(1)有一个角是直角的菱形是正方形;
(2)有一组邻边相等的矩形是正方形.
(3)对角线相等的菱形是正方形
(4)对角线互相垂直的矩形是正方形
36、等腰梯形的判定:
(1)同一条底边上的两个内角相等的梯形是等腰梯形; (2)两条对角线相等的梯形是等腰梯形.
37、等腰梯形的性质:
(1)等腰梯形的同一条底边上的两个内角相等;
(2)等腰梯形的两条对角线相等.
38、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.
四、相似形与全等形
39、全等多边形的对应边、对应角分别相等.
40、全等三角形的判定:
(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS.).
(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(SAS.)
(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(ASA).
(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(AAS.)
(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)
41、相似三角形的性质:对应边、周长、对应线段的比均等于相似比,面积比等于相似比的平方
42、相似三角形的判定:(类似于全等判定)
(1)平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似。
(2)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;
(3)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
(4)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.
43、相似多边形的性质:同相似三角形
44、相似多边形的判定:对应边成比例且对应角相等
五、圆
45、(1)圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 (2)圆是中心对称图形,对称中心是圆心。
46、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
47、垂径定理推论: 如果一条直线具有过圆心(直径)、垂直弦、平分弦、平分弦所对的劣弧(优弧)中知二得二。
48、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
49、同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
50、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半
(1)半圆或直径所对的圆周角都相等,都等于90°(直角); (2)90°的圆周角所对的弦是圆的直径.
(3)在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等则所对的弧相等;
51、不在同一条直线上的三个点确定一个圆.
52、切线的判定(1)经过半径的外端且垂直于这条半径的直线是圆的切线.
53、切线的性质(2)圆的切线垂直于过切点的直径。
附:扩展部分:
1、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角
2、射影定理:
直角三角形斜边上高分成的两直角三角形与原三角形相似,并且有以下关系:
(1)AC2=AD·AB (2)BC2=BD·AB (3)CD2=AD·BD
3、(1)如图(1)有:AE·BE=CE·DE
(2)如图(2),AB是直径,CD⊥AB ,则:CD2=AD·BD
㈧ 平面几何知识点初中
知识点一 相交线和平行线
1.定理与性质
对顶角的性质:对顶角相等。
2.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
5.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
知识点二 三角形
一、三角形相关概念
1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点:①三条线段;②不在同一直线上;③首尾顺次相接.
2.三角形中的三种重要线段
(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.
二、三角形三边关系定理
①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可
三、三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
四、三角形的内角
结论1:三角形的内角和为180°.表示: 在△ABC中,∠A+∠B+∠C=180°
结论2:在直角三角形中,两个锐角互余.
注意:①在三角形中,已知两个内角可以求出第三个内角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
五、三角形的外角
1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.
2.性质:
①三角形的一个外角等于与它不相邻的两个内角的和.
②三角形的一个外角大于与它不相邻的任何一个内角.
③三角形的一个外角与与之相邻的内角互补
六、多边形
①多边形的对角线条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°
知识点三 全等三角形
一、全等三角形
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。(SSS)
(2)两角和它们的夹边对应相等的两个三角形全等。(ASA)
(3)两角和其中一角的对边对应相等的两个三角形全等。(AAS)
(4)两边和它们的夹角对应相等的两个三角形全等。(SAS)
(5)斜边和一条直角边对应相等的两个直角三角形全等。(HL)
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
二、轴对称图形
(一)基本定义
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.
2.线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
4.等腰三角形
有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
5.等边三角形
三条边都相等的三角形叫做等边三角形.
(二)性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离相等.
3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).
(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).
4.等腰三角形的性质
(1)等腰三角形的两个底角相等(简称“等边对等角”).
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.
(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.
(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.
5.等边三角形的性质
(1)等边三角形的三个内角都相等,并且每一个角都等于60°.
(2)等边三角形是轴对称图形,共有三条对称轴.
(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.
(三)有关判定
1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
知识点四 勾股定理
1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方
勾:直角三角形较短的直角边
股:直角三角形较长的直角边
弦:斜边
勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。)
*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13
3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)
其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:
(1)确定最大边(不妨设为c);
(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;
若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);
若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)
4.注意:(1)直角三角形斜边上的中线等于斜边的一半
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:
(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为的线段
6.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
㈨ 初中数学有哪些知识点
考点1
相似三角形的概念、相似比的意义、画图形的放大和缩小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5
三角形的重心
考核要求:知道重心的定义并初步应用。
考点6
向量的有关概念
考点7
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
考点8
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点10
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点11
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点13
二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
考点14
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19
画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点20
确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21
事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22
等可能试验中事件的概率问题及概率计算
考核要求:
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23
数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24
统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25
平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26
中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点27
频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点28
中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
㈩ 初中数学系列知识点
初中代数的教学要求①是:
1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简
化运算;会查平方表、立方表、平方根表、立方根表或用计算器代替算表。
2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则,
能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。
3.使学生了解有关方程、方程组的概念;灵活运用一元一次方程、二元一次方程组和一元
二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元
二次方程的根的判别式。能够分析等量关系列出方程或方程组解应用题。
使学生了解一元一次不等式、一元一次不等式组的概念,会解一元一次不等式和一元一次不
等式组,并把它们的解集在数轴上表示出来。
4.使学生理解平面直角坐标系的概念,了解函数的意义,理解正比例函数、反比例函数、
一次函数的概念和性质,理解二次函数的概念,会根据性质画出正比例函数、一次函数的图
象,会用描点法画出反比例函数、二次函数的图象。
5.使学生了解统计的思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一
些简单的实际问题。
6.使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解“特殊
——一般——特殊”、“未知——已知”、用字母表示数、数形结合和把复杂问题转化成简单问
题等基本的思想方法。
7.使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概
念、法则、性质进行简单的推理,发展逻辑思维能力。
8.使学生了解已知与未知、特殊与一般、正与负、等与不等、常量与变量等辩证关系,以
及反映在函数概念中的运动变化观点。了解反映在数与式的运算和求方程解的过程中的矛盾
转化的观点。同时,利用有关的代数史料和社会主义建设成就,对学生进行思想教育。
教学内容①和具体要求如下。
(一)有理数
l·有理数的概念
有理数。数轴。相反数。数的绝对值。有理数大小的比较。
具体要求:
(1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数
归类。
(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以
刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。
2。有理数的运算
有理数的加法与减法。代数和。加法运算律。有理数的乘法与除法。倒数。乘法运算律。有
理数的乘方。有理数的混合运算。
科学记数法。近似数与有效数字。平方表与立方表。
具体要求:
(1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、
运算顺序以及有理数的混合运算,灵活运用运算律简化运算。
(2)了解倒数概念,会求有理数的倒数。
(3)掌握大于10的有理数的科学记数法。
(4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人
法求有理数的近似数;会查平方表与立方表。
(5)了解有理数的加法与减法、乘法与除法可以相互转化。
(二)整式的加减
代数式。代数式的值。整式。
单项式。多项式。合并同类项。
去括号与添括号。数与整式相乘。整式的加减法。
具体要求:
(1)掌握用字母表示有理数,了解用字母表示数是数学的一大进步。
(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的
值。
(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式
接某个字母降幂排列或升幂排列。
(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及
整式的加减运算。
(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方
法和特殊与一般的辩证关系。
(三)一元一次方程
等式。等式的基本性质。方程和方程的解。解方程。
一元一次方程及其解法。
一元一次方程的应用。
具体要求:
(1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方
程的解。
(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会
对方程的解进行检验。
(3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关
系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。
(4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。
(四)二元一次方程组
二元一次方程及其解集。方程组和它的解。解方程组。
用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。
一次方程组的应用。
具体要求:
(1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个
未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。
(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组
的一个解。
(3)灵活运用代人法、加减法解二元一次方程组,并会解简单的三元一次方程组。
(4)能够列出二元、三元一次方程组解简单的应用题。
(5)通过解方程组,了解把“三元”转化为“二元”,把“二元”转化为“一元”的消元的思想方法,
从而初步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法。
(五)一元一次不等式和一元一次不等式组
I·一元一次不等式
不等式。不等式的基本性质。不等式的解集。一元一次不等式及其解法。
具体要求:
(l)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本
性质的异同。
(2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的
解集。
(3)会用不等式的基本性质和移项法则解一元一次不等式。
2·一元一次不等式组
一元一次不等式组及其解法。
具体要求:
(1)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的
区别和联系。
(2)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。
(六)整式的乘除
l·整式的乘法
同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘
法。乘法公式:
(a十b)(a一b)=a2-b2
(a±b)2=a2±2ab+b2
(a±b)(a2±ab+ b2)=a3±b3
具体要求:
(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地
进行运算。
(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行
运算。
(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。
(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——
一特殊”的认识规律。
2·整式的除法
同底数幂的除法。单项式除以单项式。多项式除以单项式。
具体要求:
(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算。
(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算。
(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公
式使运算简便。
(七)因式分解
因式分解。提公因式法。运用(乘法)公式法。分组分解法。十字相乘法。多项式因式分解
的一般步骤。
具体要求:
(1)了解因式分解的意义及其与整式乘法的区别和联系,了
解因式分解的一般步骤。
(2)掌握提公因式法(字母的指数是数字)、运用公式法(直接用公式不超过两次)、分
组分解法(分组后能直接提公因式或运用公式的多项式,无需拆项或添项)和十字相乘法(二
次项系数与常数项的积为绝对值不大于60 的整系数二次三项式)这四种分解因式的基本方
法,会用这些方法进行团式分解。
(八)分式
1.分式
分式。分式的基本性质。约分。最简分式。
分式的乘除法。分式的乘方。
同分母的分式加减法。通分。异分母的分式加减法。
具体要求:
(l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地
进行约分和通分。
(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算。
2.零指数与负整数指数
零指数。负整数指数。整数指数幂的运算。
具体要求:
(l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指
数幂,掌握整数指数幂的运算。
(2)会用科学记数法表示数。
(九)可他为一元一次方程的公式方程
含有字母系数的一元一次方程。公式变形。
分式方程。增根。可化为一元一次方程的分式方程的解法与应用。
具体要求:
(1)掌握含有字母系数的一元一次方程的解法和简单的公式变形。
(2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分
式方程(方程中的分式不超过三个);了解增根的概念,会检验一个数是不是分式方程的增
根。
(3)能够列出可化为一元一次方程的分式方程解简单的应用题。
(十)数的开方
1.平方根与立方根
平方根。算术平方根。平方根表。
立方根。立方根表。
具体要求:
(1)了解平方根、算术平方根、立方根的概念,以及用根号表示数的平方根、算术平方根
和立方根。
(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根和算术平方根,用
立方运算求某些数的立方根。
(3)会查表求平方根和立方根(有条件的学校可使用计算器)。
2.实数
无理数。实数。
具体要求:
( 1)了解无理数与实数的概念,会把给出的实数按要求进行归类;了解实数的相反数、
绝对值的意义,以及实数与数轴上的点—一对应。
(2)了解有理数的运算律在实数运算中同样适用;会按结果所要求的精确度用近似的有限
小数代替无理数进行实数的四则运算。
(3)结合我国古代数学家对。的研究,激励学生科学探求的精神和爱国主义的精神。
(十一)二次根式
二次根式。积与商的方根的运算性质。
二次根式的性质。
最简二次根式。同类二次根式。二次根式的加减。二次根式的乘法。二次根式的除法。分母
有理化。
具体要求:
(1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二
次根式。
(2)掌握积与商的方根的运算性质
会根据这两个性质熟练地化简二次根式(如无特别说明,根号内所有的字母都表示正数,并
且不需要讨论).
(3)掌握二次根式(不含双重根号)的加、减、乘、除的运算法则,会用它们进行运算。
(4)会将分母中含有一个或两个二次根式的式于进行分母有理化。
*(5)掌握二次根式的性质
会利用它化简二次根式
(十二)一元二次方程
1.一元二次方程
一元二次方程。一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法。
一元二次方程的根的判别式。
*①一元二次方程根与系数的关系。
二次三项式的因式分解(公式法)。
一元二次方程的应用。
具体要求:
(1)了解一元二次方程的概念,会用直接开平方法解形如
(x-a)2=b(b≥0)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根
公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。灵活运用一
元二次方程的四种解法求方程的根。
(2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的
根的情况。
*(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另
一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。
(4)了解二次三项式的因式分解与解方程的关系,会利用一元二次方程的求根公式在实数
范围内将二次三项式分解因式。
(5)能够列出一元二次方程解应用题。
(6)结合教学内容进一步培养学生的思维能力,对学生进行辩证唯物主义观点的教育。
2.可化为一元二次方程的方程
可化为一元二次方程的分式方程。
* 可化为一元一次、一元二次方程的无理方程。
具体要求:
(1)掌握可化为一元二次方程的分式方程(方程中的分式不超过三个)的解法,会用去分
母或换元法求分式方程的解,并会验根。
(2)能够列出可化为一元二次方程的分式方程解应用题。
*(3)了解无理方程的概念,掌握可化为一元一次、一元一二次方程的无理方程(方程中含
有未知数的二次根式不超过两个)的解法,会用两边平方或换元法求无理方程的解,并会验
根。
(4)通过可化为一元二次方程的分式方程、无理方程的教学,使学生进一步获得对事物可
以转化的认识。
3.简单的二元二次方程组
二元二次方程。二元二次方程组。
由一个二元一次方程和一个二元二次方程组成的方程组的解法。
* 由一个二元二次方程和一个可以分解为两个二元一次方程
的方程组成的方程组的解法。
具体要求:
(l)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二
次方程组成的方程组的解法,会用代人法求方程组的解。
*(2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的
解法。
(3)通过解简单的二元二次方程组,使学生进一步理解“.消元”、“降次”的数学方法,获得
对事物可以转化的进一步认识。
(十三)函数及其图象
1·函数
平面直角坐标系。常量。变量。函数及其表示法。
具体要求:
(l)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标
的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间—一对应。
(2)了解常量、变量、函数的意义,会举出函数的实例,以及分辨常量与变量、自变量与
函数。
(3)理解自变量的取值范围和函数值的意义,对解析式为只含有一个自变量的简单的整式、
分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值。
(4)了解函数的三种表示法,会用描点法画出函数的图象。
(5)通过函数的教学,使学生体会事物是互相联系和有规律地变化着的,并向学生渗透数
形结合的思想方法。
2·正比例函数和反比例函数
正比例函数及其图象。反比例函数及其图象。
具体要求:
(1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比
例函数的解析式。
(2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值
随自变量的增加或减小而变化的情况。
(3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。
3.一次函数的图象和性质
一次函数。一次函数的图象和性质。
△①二元一次方程组的图象解法。
具体要求:
(1)理解一次函数的概念,能够根据实际问题中的条件,确定一次函数的解析式。
(2)理解一次函数的性质,会画出它的图象。
△(3)会用图象法求二元一次方程组的近似解。
(4)会用待定系数法求一次函数的解析式。
4·二次函数的图象
二次函数。抛物线的顶点、对称轴和开口方向。
西一元二次方程的图象解法。
具体要求:
(l)理解二次函数和抛物线的有关概念,会用描点法画出二
次函数的图象,会用公式(。配方法)确定抛物线的顶点和对称轴。
△(2)会用图象法求一元二次方程的近似解。
*(3)会用待定系数法由已知图象上三个点的坐标求二次函数的解析式。
(十四)统计初步
总体和样本。众数。中位数。平均数。方差与标准差。方差的简化计算。频率分布。
实习作业。
具体要求:
(1)了解总体、个体、样本、样本容量等概念,能够指出研究对象的总体、个体和样本。
(2)理解众数、中位数的意义,掌握它们的求法。
(3)理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式;
理解加权平均数的概念,掌握它的计算公式;会用样本平均数估计总体平均数。
(4)了解样本方差、总体方差、样本标准差的意义,会计算(可使用计算器)样本方差和
样本标准差,会根据同类问题的两组样本数据的方差或样本标准差比较这两组样本数据的波
动情况。
(5)理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,
会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。
△(6)会用科学计算器求样本平均数与标准差。
(7)通过实习作业,使学生初步掌握搜集、整理和分析数据的方法,培养解决实际问题的
能力。
(8)通过统计初步的教学,使学生了解用样本估计总体的数理统计的基本思想,并培养学
生用数学的意识,踏实细致的作风和实事求是的科学态度。
初中几何是在小学数学中几何初步知识的基础上,使学生进一步学习基本的平面几何图形
知识,向他们直观地介绍一些空间几何图形知识。初中几何将逻辑性与直观性相结合,通
过各种图形的概念、性质、作(画)图及运算等方面的教学,发展学生的逻辑思维能力、空
间观念和运算能力,并使他们初步获得研究几何图形的基本方法。
几 何
初中几何的教学要求是:
1.使学生理解有关相交线、平行线、三角形、四边形、圆,以及全等三角形、相似三角形
的概念和性质,掌握用这些概念和性质对简单图形进行论证和计算的方法。了解关于轴对称、
中心对称的概念和性质。理解锐角三角函数的意义,会用锐角三角函数和勾股定理解直角三
角形。
2.使学生会用直尺、圆规、刻度尺、三角尺、量角器等工具作和画几何图形。
3.使学生通过具体模型,了解空间的直线、平面的平行与垂直关系,并会用展开图和面积
公式计算圆柱和圆锥的侧面积和全面积。
4·逐步培养学生观察、比较、分析、综合、抽象、概括的能力,逐步使学生掌握简单的推理
方法,从而提高学生的逻辑思维能力。
5.通过辨认图形、画图和论证的教学,进一步培养学生的空间观念。
6.通过揭示几何知识来源于实践又应用于实践的关系,以及几何概念、性质之间的联系和
图形的运动、变化,对学生进行辩证唯物主义的教育。利用有关的几何史料和社会主义建设
成就,对学生进行思想教育。通过论证与画图的教学,逐步培养学生严谨的科学态度,并使
他们获得美的感受。
教学内容和具体要求如下:
(一)线段、角
1·几何图形
几何体。几何图形。点。直线。平面。
具体要求:
(1)通过具体模型(如长方体)了解从物体外形抽象出来的几何体、平面、直线和点等。
(2)了解几何图形的有关概念。了解几何的研究对象。
(3)通过几何史料的介绍,对学生进行几何知识来源于实践的教育和爱国主义教育,使学
生了解学习几何的必要性,从而激发他们学习几何的热情。
2.线段
两点确定一条直线。相交线。
线段。射线。线段大小的比较。线段的和与差。线段的中点。
具体要求:
(1)掌握两点确定一条直线的性质。了解两条相交直线确定一个交点。
(2)了解直线、线段和射线等概念的区别。
(3)理解线段的和与差及线段的中点等概念,会比较线段的大小。
(4)理解两点间的距离的概念,会度量两点间的距离。
3.角
角。角的度量。角的平分线。小于平角的角的分类。
具体要求:
(1)理解角的概念。掌握角的平分线的概念,会比较角的大小。会用量角器画一个角等于
已知角。
(2)掌握度、分、秒的换算。会计算角度的和、差、倍、分。
(3)理解周角、平角、直角、锐角、钝角的概念,并会进行有关的计算。
(4)掌握角的平分线的概念。会画角的平分线。
(5)掌握几何图形的符号表示法。会根据几何语句准确、整洁地画出相应的图形,会用几
何语句描述简单的几何图形。
(二)相交、平行
l·相交线
对顶角。邻角、补角。
垂线。点到直线的距离。
同位角。内错角。同旁内角。
具体要求:
(1)理解对顶角的概念。理解对顶角的性质和它的推证过程,会用它进行推理和计算。
(2)理解补角、邻补角的概念,理解同角或等角的补角相等的性质和它的推证过程,会用
它进行推理和计算。
(3)掌握垂线、垂线段等概念;会用三角尺或量角器过一点画一条直线的垂线。了解斜线、
斜线段等概念,了解垂线段最短的性质。
(4)掌握点到直线的距离的概念,并会度量点到直线的距离。
(5)会识别同位角、内错角和同旁内角。
2.平行线平行线。
平行线的性质及判定。
具体要求:
(1)了解平行线的概念及平行线的基本性质。会用平行的传递性进行推理。
(2)会用一直线截两平行直线所得的同位角相等、内错角相等、同旁内角互补等性质进行
推理和计算;会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。
(3)会用三角尺和直尺过已知直线外一点画这条直线的平行线。
(4)理解学过的描述图形形状和位置关系的语句,并会用这些语句描述简单的图形和根据
语句画图。
3.空间直线、平面的位置关系
直线与直线,直线与平面,平面与平面的位置关系。
具体要求:
通过长方体的棱、对角线和各面之间的位置关系,了解直线与直线的平行、相交、异面的关
系,以及直线与平面、平面与平面的平行、垂直关系。
4.命题、定义、公理、定理
命题。定义。公理。定理。
定理的证明。
具体要求:
(1)了解命题的概念,会区分命题的条件(题设)和结论(题断),会把命题改写成“如果…’··,
那么”’…”的形式。
(2)了解定义、公理、定理的概念。
(3)了解证明的必要性和推理过程中要步步有据,了解综合法证明的格式。(三)三角
形
1.三角形
三角形。三角形的角平分线、中线、高。三角形三边间的不等关系。三角形的内角和。三角
形的分类。
具体要求:
(1)理解三角形,三角形的顶点、边、内角、外角、角平分线、中线和高等概念,会画出
任意三角形的角平分线、中线和高。
(2)理解三角形的任意两边之和大于第三边的性质。会根据三条线段的长度判断它们能否
构成三角形。
(3)掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和,三角形的外角大
于任何一个和它不相邻的内角的性质。
(4)会按角的大小和边长的关系对三角形进行分类。
2.全等三角形
全等形。全等三角形及其性质。三角形全等的判定。
具体要求:
(1)了解全等形、全等三角形的概念和性质,能够辨认全等形中的对应元素。
(2)能够灵活运用“边、角、边”,“角、边、角”,“角、角、边”,“边、边、边”等来判定三
角形全等;会证明“角、角、边”定理。了解三角形的稳定性。
(3)会用三角形全等的判定定理来证明简单的有关问题,并会进行有关的计算。