当前位置:首页 » 基础知识 » 高中数学算法知识点
扩展阅读
老酒冷知识大全 2024-11-10 16:42:54
赵海棠同学是什么关系 2024-11-10 16:41:29

高中数学算法知识点

发布时间: 2022-03-01 16:32:48

1. 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

2. 高中数学知识点整理

下面,我分章节讲一下数学的主干内容:那些虽然课本上没有,但是必须讲也必须学会的东西。

目录(未完待更新):
零,总论与试卷分析(就是上文内容)
一,函数
1.1 集合
1.2 函数的定义域
1.3 函数的值域
1.4 单调性
1.5 奇偶性,对称性,周期性
1.6 指数函数,对数函数
1.7 复合函数
1.8 含参函数
二,三角函数(仅函数部分,解三角形部分等讲完平面向量和平面几何再说)
2.1 正弦,余弦,正切
2.2 三角函数线
2.3 三角函数的基本形式与伸缩
2.4 三角变换公式和万能公式
2.5 三角函数最值问题
三,平面几何,平面向量,与直线与圆的方程
3.1 平行线和相交线
3.2 三角形
3.3 圆
3.4 基向量,正交基,和坐标系
3.5 平面向量与基本几何图形
3.6 向量运算律与推论
3.7 直线方程
3.8 圆的方程
3.9 用向量解决平面几何问题
四,解三角形
4.1 正弦定理
4.2 余弦定理
4.3 正弦定理和余弦定理的应用
4.4 解三角形中的多解问题
4.5 解三角形中的最值问题
五,立体几何
5.1 基本几何体:柱,锥,台,球
5.2 三视图与直观图
一,函数
1.1 集合。
集合的元素必须是确定的,并且是唯一的。比如,一个集合里不能有两个“1”。
1.2 函数的定义域。
除了最常见的几个:分母不为零,对数函数的真数大于零,偶数次方的被开方数不为负(注意我前面几个表述,其中暗含了区间的开闭),正切余切函数不能恰好取定义中分母为零的角度(正切余切都是用比值定义的) 还一定要注意一个容易被忽略的易错点: 无定义。
1.3 函数的值域
分离常数法 判别式法 换元法 基本不等式法 等等几种方法,看起来方法非常繁多,似乎挺难总结,但是,我们如果按题目的形式进行总结,每种只需要掌握一种,或者两种就可以了

3. 高中数学全套公式和知识点

去买一本公式定理大全 书店绝对有

4. 求高中数学的知识点

常用的知识点
一、集合、简易逻辑、推理与证明

1、集合中的元素具有确定性、互异性、无序性.

2、描述法表示的集合一定要注意代表元素,注意区分是点集还是数集.

3、分析子集或真子集(或应用条件 )时是否忽略 的情况.

4、解集合问题时应注意分类讨论,不要忘了借助数轴或文氏图进行求解,同时注意端点值是否相等.

5、四种命题及其相互关系,互为逆否命题同真假.复合命题的真假如何判断?

6、“命题的否定”与“否命题”是两个不同的概念.命题的否定即“非p”,是对命题结论的否定;否命题是对原命题“若p则q”既否定条件又否定其结论.

7、全称命题、特称命题的否定是怎样的?全称命题为真需推证对所有的条件结论都成立,只要有一个反例就可以判断全称命题为假;特称命题只要找到使结论成立的一个条件就可判断为真,只有推证所有的条件都不能使结论成立才能判断为假.

8、充要条件的概念及判断(定义法、集合法).充要关系的判断可以转化为判断其逆否命题,也可以用反例或问题的特殊性作为推理的依据.

9、判断条件的充要关系时,要弄清充分条件与必要条件、充分条件与充要条件的区别.考虑问题要全面准确,使结论成立的充分条件或必要条件可以不只一个.

10、推理形式包括哪几种?常用的证明方法有哪些?是否掌握了每种证明方法的要求.

二、函数、导数、不等式

11、映射与函数的概念了解了吗?映射 中,你是否注意到了A中元素的任意性和B中与它对应元素的唯一性.

12、函数的三要素及三种题型.注意定义域、值域为非空数集;定义域、值域要写成集合或区间的形式.

13、在解决函数问题时你是否注意到“定义域优先”的原则.

14、求函数的解析式时,你是否标明了定义域;判断函数的奇偶性时,是否先检验函数的定义域关于原点对称.

15、判定函数的单调性(求单调区间)时,你是否先求出定义域?是否错误地在各个单调区间之间添加了符号“ ”和“或”.

16、函数单调性的判定方法是什么?(定义、图像、导数).复合函数单调性的判断遵循“同增异减”的原则.是否掌握了已知函数的单调性求参数范围的方法?

17、特别注意函数单调性和奇偶性的逆用(比较大小、解不等式、求参数范围).

18、下列结论记住了吗?

①如果函数f (x)满足f (a+x)= f (a-x)或f (x)= f (2a-x),则函数f (x)的图像关于x=a对称;

②如果函数f (x)满足f (a+x)= - f (a-x)或f (x)= - f (2a-x),则函数f (x)的图像关于点(a,0)对称;

③如果函数f (x)满足f (x+T)= -f (x)或f (x+T)= ,则函数f(x)的周期为2T.

19、函数的奇偶性、对称性、周期性之间又怎样的关系?(知道其中的两个可求第三个)

20、函数的零点、方程的根、函数图像与x轴的交点的横坐标之间的关系.怎样判断函数y=f (x)在所给区间 (a,b)上是否有零点? 与函数有零点的关系是怎样的?

22、三个“二次”的关系和应用掌握了吗?求二次函数的最值时用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.求参数的范围可转化为根的分布.

23、特别提醒:二次方程ax2+bx+c=0的两根为不等式ax2+bx+c>0(<0)解集的端点值,也是二次函数y=ax2+bx+c的图像与x轴交点的横坐标.

24、研究函数问题准备好“数形结合”这个工具了吗?

25、函数图像的变换有哪几种?(平移、伸缩、对称)

26、函数 的图像及单调区间掌握了吗?如何利用它求函数的最值?与利用不等式求函数的最值的联系是什么?

27、恒成立问题不要忘了“主参换位”,注意验证等号是否成立.注意分离参数的方法.

28、解分式不等式应注意什么问题?(不能去分母,常采用移项通分求解)

29、解指数、对数不等式应注意什么问题?(化同底,利用单调性求解.注意底数不为1,对数的真数大于0)

30、不等式| ax+b | < c, | ax+b | > c (c>0)及不等式| x+a | +| x+b| >c(<c)的解法掌握了吗?(几何意义、零点分区间法、图像法)

31、会用不等式| a +b| | a | + | b | 、| a +b| | a- c | + | c-b |解(证)一些简单问题.

32、利用基本不等式求最值时,易忽略其使用的条件.(一正二定三相等)

33、重要不等式是指那几个不等式 ,由它推出的不等式链是什么?

34、不等式证明的基本方法掌握了吗?(比较法、综合法、分析法、反证法、放缩法、数学归纳法、单调性法)

35、注意线性规划的常见题型.线性规划问题中你是否考虑到目标函数中z的几何意义?

36、导数的定义还记得吗?它的几何意义和物理意义分别是什么?

37、常见函数的求导公式与和、差、积、商的求导法则及复合函数的求导法则你都熟记了吗?

38、利用导数可解决哪些问题,具体步骤是什么?(切线、单调性、极值、最值)

39、函数的单调性和导函数的符号之间又怎样的关系?(充分条件) 极值点与使导函数值为0的点之间有怎样的关系?(必要条件)

40、三次函数y = ax3 + bx2 + cx + d (a 0)的图像你熟悉吗?单调性如何?它的对称中心是什么?

41、你能根据函数的单调性、极值画出函数的大致图像吗?借助函数的图像如何求已知函数在动区间上的极值(最值)?

42、已知函数零点的个数、两函数图像交点的个数、两函数图像的位置关系如何求参数范围?

三、三角函数

43、你对象限角、锐角、小于900的角、负角、终边相同的角等概念理解有误吗?角度制与弧度制是否混用?

44、记住三角函数的两种定义了吗?(比值定义、有向线段定义)

45、利用三角函数线和图像解三角不等式是否熟练?

46、求三角函数的值时是否考虑到x的范围?是否习惯用图像或单调性求解.

47、三角变换公式你记熟了吗?(同角三角关系、诱导公式、两角和差的三角函数、倍角公式)

48、已知三角函数值求角时,要注意三角函数的选择、角的范围的挖掘.

49、三角变换过程中要注意“拆角、拼角”、切化弦的问题.

50、如何求函数y = Asin(ωx +φ)的单调区间、对称轴(中心)、周期?(求单调区间时要注意A、ω的正负;求周期时要注意ω的正负)

51、“五点作图法”你是否熟练掌握?如何作函数y = Asin(ωx +φ)的图像?如何由图像确定函数的解析式?(关键是确定A、ω、φ)

52、由y = sinx → y = Asin(ωx +φ)的变换你掌握了吗?反之怎样?

53、求y = sinx +cosx+ sinxcosx类型的函数的值域,换元时令 时,要注意 .

54、在解决三角形问题时,要及时应用正、余弦定理进行边角之间的转化.

四、数列、数学归纳法

55、利用等差、等比数列的定义: ( )要重视条件 .

56、求等比数列的前n项和时,要注意分q = 1和q≠1两种情况.

57、数列求通项有几种方法?(公式、递推关系、归纳猜想证明).数列求和有几种常用方法?(公式、错位相减、裂项相消)

58、已知Sn 求an时你是否考虑到分n=1和n≠1两种情况?

59、如何解决数列中的单调性、最值问题?

60、应用数学归纳法时,一要注意步骤齐全(两步三结论);二要注意从n = k到n = k+1的过程中,先应用归纳假设,再灵活应用比较法、分析法等其它方法.

61、你是否注意到数列与函数、方程、不等式的结合?

五、平面向量、解析几何

62、记住直线的倾斜角的范围,直线的斜率和倾斜角的关系是怎样的?

63、何为直线的方向向量?直线的方向向量与直线的斜率有何关系?

64、直线方程有几种形式,各有什么限制?是否注意到x = my + n形式的运用?

65、截距是距离吗?“截距相等”意味着什么?

66、两直线A1x + B1y + C1=0与A2x + B2y + C2=0平行、垂直的充要条件分别是什么?

67、要熟记点到直线的距离公式、两平行线间的距离公式.

68、解析几何中的对称有几种?(轴对称、中心对称)分别如何求解?

69、求曲线方程的一般步骤是什么?求曲线的方程与求曲线的轨迹有什么不同?求轨迹的常用方法有哪些?

70、直线和圆的位置关系如何判定(几何法、代数法)?直线和圆锥曲线的位置关系怎样判定?

71、圆锥曲线方程中a、b、c与e的关系记住了吗?

72、解题中是否注意到圆锥曲线定义的应用?要注意圆中由半径、弦心距和半弦长构成的直角三角形;椭圆、双曲线中的特征三角形和焦点三角形.

73、记住圆、椭圆、双曲线、抛物线中的常用结论.

74、容易忽略双曲线一支上的点P到相应焦点F的距离| PF |≥c-a这一条件来取舍.

75、记住解析几何的常见题型了吗?(位置关系问题、弦长问题、对称问题、中点弦问题、定点问题、定线问题、定值问题等)

76、记住解析几何中常用的解题方法(如设而不求、点差法等.用点差法求弦所在直线方程时要注意检验.)

77、在直线与圆锥曲线的有关计算中,经常由二次曲线方程与直线方程联立消元得形如Ax2 + Bx + C = 0的方程,在后面的计算中务必要考虑两个问题:①A与0的关系;②判别式△与0 的关系,你想到了吗?

78、解析几何问题的求解中,是否注意到平面几何知识的利用?如何挖掘平面几何图形中的隐含条件?是否注意到向量在解析几何中的运用?

79、解析几何中常用的数学思想方法:换元的思想,方程的思想,整体的思想等.解题中会考虑吗?

六、立体几何

80、空间图形应注意的两个问题:一是根据空间图形正确识别空间元素点、线、面的位置关系,二是要注意改变视角,能正确判定空间图形位置、形状及存在的数量关系,寻找解题思路或途径.

81、立体几何虽是平面几何的继续和发展,但并不是所有平面几何的结论都能无条件地推广到立体几何中.

82、由几何体(或直观图)作三视图,及由三视图还原几何体(或画出相应的直观图)你熟练吗?注意到线的虚实了吗?

83、立体几何中,平行、垂直关系可以进行以下转化:线‖线 线‖面 面‖面,线⊥线 线⊥面 面⊥面.这些转化的依据是什么?

84、异面直线所成角的范围是什么?线面角的范围是什么?二面角的范围是什么?

85、求作线面角的关键是找直线在平面上的射影.

86、作二面角的平面角的方法有哪些?(利用定义、三垂线法、作二面角的棱的垂面).这些方法你掌握了吗?

87、立体几何的求解问题分为“作”、“证”、“算”三个部分,你是否只重视了“作”、“算”,而忽视了“证”这一环节?

88、会求直线的方向向量、平面的法向量吗?如何利用向量法求异面直线所成的角、线面角、二面角的大小?

89、用向量研究角的有关问题时,是否弄清了向量夹角与图形角的关系?

90、用空间向量的坐标来解决立体几何题,要合理建系并且要建立右手直角坐标系,正确地写出需用点的坐标,注意向量表达与图形表达的转化.

91、你是否记住了以下结论:

①从点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面BOC上的射影在∠BOC的平分线上.

②已知长方体的体对角线与过同一顶点的三条棱所成的角分别为,则有cos2α+cos2β+cos2γ=2.

③正方体、长方体的外接球的直径等于其体对角线的长.

七、排列、组合、二项式定理、概率统计

92、选用两个原理的关键是什么?(分类还是分步)

93、排列数、组合数的计算公式你记住了吗?它们的条件限制你注意了吗?

94、组合数有哪些性质?在杨辉三角中如何体现?

95、排列与组合的区别和联系你清楚吗?解决排列组合问题的常用方法你掌握了吗?解综合题可别忘了“合理分类、先选后排”啊!

96、排列应用题的解决策略可有直接法和间接法;对附加条件的组合应用题,你对“含”与“不含”,“至多”与“至少”型题一定要注意分类或从反面入手啊!

97、求二项展开式特定项一般要用到二项式的展开式的通项.

98、二项式定理的主要应用有哪些?

99、二项式定理(a+b)n与(b+a)n展开式上有区别吗?定理的逆用熟悉吗?

100、求二项(或多项)展开式中特定项的系数你会用组合法解决吗?

101、“二项式系数”与“项的系数”是两个不同的概念.求系数问题常用赋值法!求展开式中系数最大的项(或系数绝对值最大的项)的方法你熟悉吗?千万要注意解法技巧的变形啊!

102、二项式展开式各项的二项式系数和、奇数项的二项式系数和、偶数项的二项式系数和,奇次(偶次)项的二项式系数和你能区分开吗?它们的项的系数和呢?

103、四种常见的概率类型你掌握了吗?是否注意到每种概率应用的前提?

104、在用几何概型求概率时你是否能正确选择几何量?(线段长度、区域面积、几何体体积)

105、求随机事件概率的问题常用的思考方法是:正向思考时要善于将复杂的问题进行分解,解决有些问题时还要学会运用逆向思考的方法.是否注意到“至多”、“至少”事件概率的求法有分类、间接两种.

106、概率应用题你有写“答语”的习惯吗?解题的步骤完整吗?求分布列的解答题你能把步骤写全吗?求期望、方差的步骤齐全吗?

107、记住常用的三个分布.二项分布的期望和方差公式是什么?

108、正态密度曲线有怎样的性质?你会利用它的对称性求概率吗?

109、抽样方法有哪些?它们具有怎样的联系与区别?

110、用样本估计总体的方法有几种?具体是什么?

111、统计图有几种?频率分布直方图、条形图中纵轴的意义相同吗?对各种统计图你能正确应用吗?

112、样本的数字特征有几种?你能正确应用它们对总体进行估计吗?

113、变量间的关系包括哪几种?你能应用最小二乘法求线性回归方程、并作出预测吗?

114、独立性检验的基本思想是什么?如何根据K2的值判断两个变量存在关系的可能性的大小?

八、算法初步、复数

115、你能正确区分、使用各种框图吗?(起止框、输入输出框、处理框、判断框)

116、对各种算法语句你能正确理解和使用吗?是否熟悉赋值语句与数列的关系?

117、在循环结构中能正确判断循环的次数吗?

118、对所给的程序框图、程序,你能读懂吗?能给出正确的运算结果吗?能正确判断缺少的条件吗?

119、你熟悉复数与实数的关系吗?是否记住实数、虚数、纯虚数定义中的条件?

120、复数不能比较大小.记住复数相等的定义,会利用复数相等把复数问题实数化.

121、记清复数的几何意义.记住复数、复平面内的点、向量之间建立了一一对应的关系.

122、你能熟练进行复数的加、减、乘、除运算吗?这是高考的常考题型!

九、基本方法

123、解答选择题的特殊方法是什么?(估算法、特值法、特征分析法、直观选择法、逆推验证法)

124、解答开放型问题时,透彻理解问题中的新信息,这是准确解题的前提.

125、解答多参型问题时,关键在于恰当地引出参变量,设法摆脱参变量的困扰.这当中,参变量的分离、集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性方法.

126、在分类讨论时,要做到“不重不漏,层次分明”,最后要进行总结.

127、做应用题时,运算后的单位要弄准,不要忘了“答”及变量的范围;在填写填空题中的应用题的答案时,要写上单位.

128、换元的思想,逆求的思想,从特殊到一般的思想,方程的思想,整体的思想等,在解题中你会考虑吗?

129、在解答题中,如果要应用教材中没有的重要结论,则在解题过程中要给出简单的证明.

5. 高中数学知识点

集合区间 函数(指数 对数 三角 幂函数 反三角函数适当了解) 排列组合(二项式也算在这) 立体几何 平面向量 圆锥曲线(椭圆 双曲线 抛物线) 复数 线性回归方程 还有一些不等式 当然还有一些微积分(导数(三点2性) 不定积分 定积分) 差不多就这么多了

6. 高中数学讲解知识点

分集合,函数,数列,向量,解析几何,立体几何,排列组合,概率,导数等知识。

7. 高中数学知识点清单

高中数学基础知识梳理(数学小飞侠)

链接:https://pan..com/s/1IXqAIoe__3VdXS8yHKjxOw

提取码:9bdp复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题,欢迎追问~

8. 高中数学知识点。公式和简单讲解

如何学好高中理科各门课程
成功既不是靠天才,成功也不是靠努力,成功是靠正确的方法。只有方法正确才可能取得成功。我们周围的同学甚至是我们自己,学习不可能不努力,可是成绩就是就始终上不去,不断增加学习时间,希望自己能够提高考试成绩,总是事与愿违。为什么呢?因为学习方法有问题。
【数学的学习】
数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课本上的知识都不能掌握,就没有触类旁通的资本。
对课本上的内容,上课之前最好能够首先预习一下,否则上课时有一个知识点没有跟上老师的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对学习来说兴趣是很重要的。课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,是老师在进行题目的演算和讲解,学生在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在课堂上听懂了,但实际上你对于解题方法的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。“好脑子不如赖笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。
其次是要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。
最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。
【物理的学习】
我曾经听说过一个上海中学生总结的“多理解,多练习,多总结”的“三多法”。我觉得这个方法很能概括高中阶段的物理学习要领。
多理解,就是紧紧抓住预习、听课和复习,对所学知识进行多层次、多角度地理解。预习可分为粗读和精读。先粗略看一下所要学的内容,对重要的部分以小标题的方式加以圈注。接着便仔细阅读圈注部分,进行深入理解,即精读。上课时可有目的地听老师讲解难点,解答疑问。这样便对知识理解得较全面、透彻。课后进行复习,除了对公式定理进行理解记忆,还要深入理解老师的讲课思路,理解解题的“中心思路”,即抓住例题的知识点对症下药,应用什么定理的公式,使其条理化、程序化。
多练习,既指巩固知识的练习,也指心理素质的“练习”。巩固知识的练习不光是指要认真完成课内习题,还要完成一定量的课外练习。但单纯的“题海战术”是不可取的,应该有选择地做一些有代表性的题型。基础好的同学还应该做一些综合题和应用题。另外,平日应注意调整自己的心态,培养沉着、自信的心理素质。
多总结,首先要对课堂知识进行详细分类和整理,特别是定理,要深入理解它的内涵、外延、推导、应用范围等,总结出各种知识点之间的联系,在头脑中形成知识网络。其次要对多种题型的解答方法进行分析和概括。还有一种总结也很重要,就是在平时的练习和考试之后分析自己的错误、弱项,以便日后克服。
【化学的学习】
学习化学要做到三抓,即抓基础、抓思路、抓规律。重视基础知识的学习是提高能力的保证。学好化学用语如元素符号、化学式、化学方程式等基本概念及元素、化合物的性质。在做题中要善于总结归纳题型及解题思路。化学知识之间是有内在规律的,掌握了规律就能驾驭知识,记忆知识。如化合价的一般规律,金属元素通常显正价,非金属元素通常显负价,单质元素的化合价为零,许多元素有变价,条件不同价态不同。
关于化学有一种说法就是化学是理科中的文科,因为化学要记要背的东西很多,而且化学是一门实验性很强的学科,因此在化学的学习过程中要注意阅读与动手、动笔结合。要自己动手推演、计算、写结构式、写化学方程式,或者动手做实验,来验证、加深印象和帮助理解,有时还要动手查找资料来核对、补充某些材料。同时在化学学习中,经过思考提出存在于化学事物内部或化学事物之间的矛盾,即化学问题,由自己来加以研究和解决,或者在自己解决不了时请求别人帮助解决,是化学学习的一种基本活动方法,也是提高化学学习效果的一种基本方法。
【生物的学习】
基本方针:
1.生物是正确了解身体,学习人和环境(植物,动物,自然界)之间关系的科目。
2.不要盲目记忆,跟生活中的经验联系起来理解。
运用方案:
1.仔细了解课本内容,理解和记忆基本概念。
(1)根据每单元的学习目标,联系各个概念进行学习。
(2)不要只记忆核心事项,要一步一步进行深入的学习。
(3)要正确把握课本上的图像、表格、相片所表示的意思。
2.把所学的内容跟实际生活联系起来理解。
3.把日常用语和科学用语互做比较,确实理解整理后再记忆。
4.把内容用图或表格表述后,再进行整理和理解。
5.实验整理以后跟概念联系起来理解。(把握实验目的,把结果跟自己的想法做比较,找出差距,并分析差距产生的原因)
*正确了解显微镜的结构和使用方法,直接观察了解各生物的特征。
*养成写实验观察日记的习惯。
6.以学习资料的解释部分和习题集的整理部分为中心进行记忆。
7.根据内容用不同方法记忆。
(1)把所学的内容联系起来整理进行记忆。
*把想起来的主题不管顺序先随便记下来。
*把中心主题写在中间位置。
*按照知识间的相互关系用线或图连接起来完成地图。
(2)利用对自己有特别意义或特殊意思的词进行记忆。
(3)同时使用眼睛、手和嘴、耳朵记忆。
8.不懂的题必须解决。(先给自己提问,把握自己具体不懂哪部分后再请教其他人。)
9.通过解题确认所学内容。
(1)整理做错的题,下次考试前重点复习。
(2)不太明白的题查课本和学习资料弄清楚。
(3)以基本题——中等难度题——难题的顺序做题,理解内容。
其他:
1.时间比较宽松的时候,如假期可先从自己感兴趣的部分开始重点学习。(相联系的部分也能培养兴趣)
2.平时利用网络全书查找不懂的事项