当前位置:首页 » 基础知识 » 数学高中知识点总结
扩展阅读
探戈有哪些基础舞步 2024-12-29 02:43:58
小学的基础如何考 2024-12-29 02:33:10

数学高中知识点总结

发布时间: 2022-02-27 17:21:31

⑴ 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

⑵ 高中数学知识总结

2020凉学长数学全年联报

链接:

提取码:iwmn复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题,欢迎追问~

⑶ 高中数学知识点总结超全

2020蔡德锦数学全年联报(高清视频33.5G有水印)网络网盘

链接:

提取码: ebvb 复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题欢迎追问~


⑷ 高中数学必修1知识点总结

马上就要高考了,现在高中数学让很多孩子头疼,很多的家长还有孩子都开始着急,他们都在上一些辅导班,都在采取一对一的辅导,对于一对一的教师都是可以抓住孩子的一些弱点,然后还要了解他们的学习过程,还会帮助学生制定一些计划,帮助他们提高学习的效率,对于高中数学,一定掌握学习的方法,才可以提高成绩.高中数学都要学习什么知识?

高中数学知识

对于高中数学的一些知识,其实还是很简单的,只要你抓住学习的方法,从中找到乐趣,让自己喜欢上数学,对你的学习是很有帮助的,至于一对一辅导,其实还是有用的,好的老师会给你讲述好的学习方法,然后让你考一个好成绩,拿到满意的答卷.

⑸ 高中数学必考知识总结

高考的重点一般在 常用函数 常用双曲线+直线 数列 三角
二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分

重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的

难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10%

如果数学是弱项就一定要重视知识的反复整理和练习 不一定要以制做题 而是要把做错的题目和典型的题目反复练习 基本的方法和解题思路是很重要的

还有就是 不能放弃 数学学科要有明显提高一定有一个过程 一般是半个学期到一个学期的时间 如果一旦放弃就功亏一篑了
高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了.
必修的:
代数部分有:
1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题
2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象
3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了
4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程.
哎对不起啊现在我也高三总复习了一说就随口说了这么多,其实你不用知道那么多,三年呢自然而然就都学了.
现在建议你最好能对数学感兴趣,自己暗示自己一下;上课认真听讲,把知识记牢,免得以后补很麻烦;学会总结,抓住知识之间的联系
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

⑹ 高一数学知识点总结


集合与简易逻辑
集合具有四个性质
广泛性
集合的元素什么都可以
确定性
集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的
互异性
集合中的元素必须是互不相等的,一个元素不能重复出现
无序性
集合中的元素与顺序无关

函数
这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如
构造函数
函数与方程结合
对称思想,换元等等

数列
这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等

三角函数
三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行

平面向量
这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率
常用导数公式
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2

⑺ 高中数学知识点总结如何归纳

高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性质:

(3)德摩根定律:

4. 你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?

10. 如何求复合函数的定义域?

义域是_____________。

11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)

13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;

14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?

∴……)
15. 如何利用导数判断函数的单调性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值为3)
16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)

注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17. 你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18. 你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19. 你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。

由图象记性质! (注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20. 你在基本运算上常出现错误吗?

21. 如何解抽象函数问题?
(赋值法、结构变换法)

22. 掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:

23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

24. 熟记三角函数的定义,单位圆中三角函数线的定义

25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:

图象?

30. 熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

A. 正值或负值 B. 负值 C. 非负值 D. 正值

31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:

(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。

32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33. 用反三角函数表示角时要注意角的范围。

34. 不等式的性质有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下结论:

36. 不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

39. 解含有参数的不等式要注意对字母参数的讨论

40. 对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)
42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43. 等差数列的定义与性质

0的二次函数)

项,即:

44. 等比数列的定义与性质

46. 你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47. 你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48. 你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p——贷款数,r——利率,n——还款期数
49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

50. 解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况
51. 二项式定理

性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52. 你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53. 对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:

(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56. 你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。
(9)向量的坐标表示

表示。

57. 平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

[练习]

答案:

答案:2

答案:
58. 线段的定比分点

※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?
59. 立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60. 三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
61. 空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。

62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63. 球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

积为( )

答案:A
64. 熟记下列公式了吗?

(2)直线方程:

65. 如何判断两直线平行、垂直?

66. 怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67. 怎样判断直线与圆锥曲线的位置?

68. 分清圆锥曲线的定义

70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71. 会用定义求圆锥曲线的焦半径吗?
如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
72. 有关中点弦问题可考虑用“代点法”。

答案:
73. 如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

75. 求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法)
76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

⑻ 高中数学知识点整理

下面,我分章节讲一下数学的主干内容:那些虽然课本上没有,但是必须讲也必须学会的东西。

目录(未完待更新):
零,总论与试卷分析(就是上文内容)
一,函数
1.1 集合
1.2 函数的定义域
1.3 函数的值域
1.4 单调性
1.5 奇偶性,对称性,周期性
1.6 指数函数,对数函数
1.7 复合函数
1.8 含参函数
二,三角函数(仅函数部分,解三角形部分等讲完平面向量和平面几何再说)
2.1 正弦,余弦,正切
2.2 三角函数线
2.3 三角函数的基本形式与伸缩
2.4 三角变换公式和万能公式
2.5 三角函数最值问题
三,平面几何,平面向量,与直线与圆的方程
3.1 平行线和相交线
3.2 三角形
3.3 圆
3.4 基向量,正交基,和坐标系
3.5 平面向量与基本几何图形
3.6 向量运算律与推论
3.7 直线方程
3.8 圆的方程
3.9 用向量解决平面几何问题
四,解三角形
4.1 正弦定理
4.2 余弦定理
4.3 正弦定理和余弦定理的应用
4.4 解三角形中的多解问题
4.5 解三角形中的最值问题
五,立体几何
5.1 基本几何体:柱,锥,台,球
5.2 三视图与直观图
一,函数
1.1 集合。
集合的元素必须是确定的,并且是唯一的。比如,一个集合里不能有两个“1”。
1.2 函数的定义域。
除了最常见的几个:分母不为零,对数函数的真数大于零,偶数次方的被开方数不为负(注意我前面几个表述,其中暗含了区间的开闭),正切余切函数不能恰好取定义中分母为零的角度(正切余切都是用比值定义的) 还一定要注意一个容易被忽略的易错点: 无定义。
1.3 函数的值域
分离常数法 判别式法 换元法 基本不等式法 等等几种方法,看起来方法非常繁多,似乎挺难总结,但是,我们如果按题目的形式进行总结,每种只需要掌握一种,或者两种就可以了

⑼ 高中数学所有知识点归纳

高中数学基础知识梳理(数学小飞侠)

链接:

提取码:9bdp复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题,欢迎追问~

⑽ 总结高中数学知识点(人教版)

.集合、简易逻辑
理解集合、子集、补集、交集、并集的概念;

了解空集和全集的意义;

了解属于、包含、相等关系的意义;

掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

理解逻辑联结词"或"、"且"、"非"的含义;

理解四种命题及其相互关系;掌握充要条件的意义。

2.函数

了解映射的概念,在此基础上加深对函数概念的理解。

了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法。

了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。

理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。

理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。

能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。

3.不等式

理解不等式的性质及其证明。

掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

掌握分析法、综合法、比较法证明简单的不等式。

掌握二次不等式,简单的绝对值不等式和简单的分式不等式的解法。

理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。

4.三角函数(46课时)

理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。

掌握任意角的正弦、余弦、正切的定义,

并会利用单位圆中的三角函数线表示正弦、余弦和正切。

了解任意角的余切、正割、余割的定义;

掌握同角三角函数的基本关系式:

掌握正弦、余弦的诱导公式。

掌握两角和与两角差的正弦、余弦、正切公式;

掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。

能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。

了解周期函数与最小正周期的意义;

了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;以及简化这些函数图象的绘制过程;

会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。

会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。

掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。

5.平面向量

理解向量的概念,掌握向量的几何表示,

了解共线向量的概念。

掌握向量的加法与减法。

掌握实数与向量的积,理解两个向量共线的充要条件。

了解平面向量的基本定理,

理解平面向量的坐标的概念,

掌握平面向量的坐标运算。

掌握平面向量的数量积及其几何意义,

了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

掌握平面两点间的距离公式,

掌握线段的定比分点和中点坐标公式,并且能熟练运用;

掌握平移公式。

6.数列

理解数列的概念,

了解数列通项公式的意义;

了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

理解等差数列的概念,

掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题。

理解等比数列的概念

掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。

7.直线和圆的方程

理解直线的倾斜角和斜率的概念,

掌握过两点的直线的斜率公式,

掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。

掌握两条直线平行与垂直的条件,

掌握两条直线所成的角和点到直线的距离公式;

能够根据直线的方程判断两条直线的位置关系。

会用二元一次不等式表示平面区域。

了解简单的线性规划问题,了解线性规划的意义,并会简单应用。

掌握圆的标准方程和一般方程,

了解参数方程的概念,理解圆的参数方程。

8.圆锥曲线方程

掌握椭圆的定义、标准方程和椭圆的简单几何性质;

理解椭圆的参数方程。

掌握双曲线的定义、标准方程和双曲线的简单几何性质。

掌握抛物线的定义、标准方程和抛物线的简单几何性质。

9.直线、平面、简单几何体

掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;

能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

掌握两条直线平行与垂直的判定定理和性质定理;

掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。

掌握直线和平面平行的判定定理和性质定理;

掌握直线和平面垂直的判定定理和性质定理;

掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;

了解三垂线定理及其逆定理。

掌握两个平面平行的判定定理和性质定理;

掌握二面角、二面角的平面角、两个平行平面间的距离的概念;

掌握两个平面垂直的判定定理和性质定理。

进一步熟悉反证法,会用反证法证明简单的问题。

了解多面体的概念,了解凸多面体的概念。

了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

了解正多面体的概念,了解多面体的欧拉公式。

了解球的概念,掌握球的性质,掌握球的表面积和体积公式。

10.排列、组合、二项式定理

掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

11.概率

了解随机事件的统计规律性和随机事件概率的意义。

了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。

会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。

选修Ⅰ

1.统计

了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;

会用样本频率分布估计总体分布,

会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。

2.导数

理解导数是平均变化率的极限;理解导数的几何意义。

掌握函数 的导数公式,会求多项式函数的导数。

理解极大值、极小值、最大值、最小值的概念,

会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。

选修Ⅱ

1.概率与统计

了解离散型随机变量的意义,

会求出某些简单的离散型随机变量的分布列。

了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。

会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。

会用样本频率分布估计总体分布。

了解正态分布的意义及主要性质。

了解线性回归的方法和简单应用。

2. 极限

理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

从数列和函数的变化趋势了解数列极限和函数极限的概念。

掌握极限的四则运算法则;会求某些数列与函数的极限。

了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。

3.导数

了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);

掌握函数在一点处的导数的定义和导数的几何意义;

理解导函数的概念。

熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x,logax的导数);

掌握两个函数和、差、积、商的求导法则;

了解复合函数的求导法则,会求某些简单函数的导数。

会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

4.数系的扩充--复数

理解复数的有关概念;

掌握复数的代数表示与几何意义。

掌握复数代数形式的运算法则,能进行复数代数形式的加、减、乘、除运算。