当前位置:首页 » 基础知识 » 初中数学函数知识点总结
扩展阅读
小学的基础如何考 2024-12-29 02:33:10
十岁女孩应该怎么教育 2024-12-29 02:13:12

初中数学函数知识点总结

发布时间: 2022-02-27 16:07:28

㈠ 初三数学二次函数知识点总汇

一、内容综述:

四种常见函数的图象和性质总结 图象
特殊点
性质









与x轴交点

与y轴交点(0,b)
(1)当k>0时,y随x的增大而增大;

(2)当k<0时,y随x的增大而减小.











与x、y轴交点是原点(0,0)。
(1)当k>0时,y随x的增大而增大,且直线经过第一、三象限;

(2)当k<0时,y随x的增大而减小,且直线经过第二、四象限











与坐标轴没有交点,但与坐标轴无限靠近。
(1)当k>0时,双曲线经过第一、三象限,在每个象限内,y随x的增大而减小;

(2) 当k<0时,双曲线经过第二、四象限,在每个象限内,y随x的增大而增大。









与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是 (-,)。
(1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。

(2)当 a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=

注意事项总结:

1.关于点的坐标的求法:

方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。

2.对解析式中常数的认识:

一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。

3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,还应掌握“顶点式”y=a(x-h)2+k及“两根式”y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。当已知图象过任意三点时,可设“一般式”求解;当已知顶点坐标,又过另一点,可设“顶点式”求解;已知抛物线与x轴交点坐标时,可设“两根式”求解。总之,在确定二次函数解析式时,要认真审题,分析条件,恰当选择方法,以便运算简便。

4.二次函数y=ax2与y=a(x-h)2+k的关系:图象开口方向相同,大小、形状相同,只是位置不同。y=a(x-h)2+k图象可通过y=ax2平行移动得到。当h>0时,向右平行移动|h|个单位;h<0向左平行移动|h|个单位;k>0向上移动|k|个单位;k<0向下移动|k|个单位;也可以看顶点的坐标的移动, 顶点从(0,0)移到(h,k),由此容易确定平移的方向和单位。

二、例题分析:

例1.已知P(m, n)是一次函数y=-x+1图象上的一点,二次函数y=x2+mx+n的图象与x轴两个交点的横坐标的平方和为1,问点N(m+1, n-1)是否在函数y=-图象上。

分析:P(m, n)是图象上一点,说明P(m, n)适合关系式y=-x+1,代入则可得到关于m,n的一个关系,二次函数y=x2+mx+n与x轴两个交点的横坐标是方程x2+mx+n=0的两个根,则x1+x2=-m, x1x2=n, 由平方和为1即x12+x22=(x1+x2)2-2x1x2=1,又可得到关于m, n的一个关系,两个关系联立成方程组,可解出m, n,这种利用构造方程求函数系数的思想最为常见。

解:∵P(m,n)在一次函数y=-x+1的图象上,

∴ n=-m+1, ∴ m+n=1.

设二次函数y=x2+mx+n的图象与x轴的两个交点的横坐标为x1,x2,

∴x12+x22=1,

又∵x1+x2=-m, x1x2=n,

∴ (x1+x2)2-2x1x2=1, 即m2-2n=1

由解这个方程组得:或。

把m=-3, n=4代入x2+mx+n=0,

x2-3x+4=0, Δ<0.

∴ m=-3, n=4(舍去).

把m=1, n=0代入x2+mx+n=0,

x2+x=0, Δ>0

∴点N(2,-1),

把点N代入y=-,当x=2时,y=-3≠-1.

∴点N(2,-1)不在图象y=-上。

说明:这是一道综合题,包括二次函数与一次函数和反比例函数,而且需要用到代数式的恒等变形,与一元二次方程的根与系数关系结合,求出m、n值后,需检验判别式,看是否与x轴有两个交点。当m=-3, n=4时,Δ<0,所以二次函数与x轴无交点,与已知不符,应在解题过程中舍去。是否在y=-图象上,还需把点(2,-1)代入y=-,满足此函数解析式,点在图象上,否则点不在图象上。

例2.直线 y=-x与双曲线y=-的两个交点都在抛物线y=ax2+bx+c上,若抛物线顶点到y轴的距离为2,求此抛物线的解析式。

分析:两函数图象交点的求法就是将两函数的解析式联立成方程组,方程组的解既为交点坐标。

解:∵直线y=-x与双曲线y=-的交点都在抛物线y=ax2+bx+c上,

由解这个方程组,得x=±1.

∴当x=1时,y=-1.

当x=-1时,y=1.

经检验:,都是原方程的解。

设两交点为A、B,∴A(1,-1),B(-1,1)。

又∵抛物线顶点到y轴的距离为2,∴ 抛物线的对称轴为直线x=2或x=-2,

当对称轴为直线x=2时,

设所求的抛物线解析式为y=a(x-2)2+k,又∵过A(1,-1),B(-1,1),

∴解方程组得

∴ 抛物线的解析式为y=(x-2)2-

即 y=x2-x-.

当对称轴为直线x=-2时,设所求抛物线解析式为y=a(x+2)2+k,

则有解方程组得,

∴ 抛物线解析式为y=-(x+2)2+

y=-x2-x+.

∴所求抛物线解析式为:y=x2-x-或y=-x2-x+。

说明:在求直线和双曲线的交点时,需列出方程组,通过解方程组求出x, y值,双曲线的解析式为分式方程,所以所求x, y值需检验。抛物线顶点到y轴距离为2,所以对称轴可在y轴左侧或右侧,所以要分类讨论,求出抛物线的两个解析式。

例3、已知∠MAN=30°,在AM上有一动点B,作BC⊥AN于C,设BC的长度为x,△ABC的面积为y,试求y与x之间的函数关系式。

分析:求两个变量y与x之间的函数关系式,就是想办法用x表示y,,BC=x,则想办法先用含x的代数式表示AC。

解:如图

在Rt△ABC中,

∵∠A=30°,∠BCA=90° BC=x,

∴AC=BC=x



说明:在含有30°、45°、60°的直角三角形中,应注意利用边之间的特殊倍数关系(如AC=BC)。

例4、如图,锐角三角形ABC的边长BC=6,面积为12,P在AB上,Q在AC上,且PQ∥BC,正方形PQRS的边长为x,正方形PQRS与△ABC的公共部分的面积为y。
(1)当SR恰落在BC上时,求x,
(2)当SR在△ABC外部时,求y与x间的函数关系式;
(3)求y的最大值。

略解:(1)由已知,△ABC的高AD=4。

∵△APQ∽△ABC,(如图一)

设AD与PQ交于点E∴





(2)当SR在△ABC的外部时, 同样有,

则,即AE=

∴y=ED·PQ=x(4-)=-2+4x()

(3)∵a=-<0,y=-其中,

∴当x=3时,y取得最大值6.

说明:此例将线段PQ的长设为x,正方形PQRS与△ABC的公共部分的面积设为y,寻找它们之间的函数关系.注意自变量的取值范围;在y取最大值时,要注意顶点(3,6)的横坐标是否在取值范围内.

例5.( 潍坊市中考题)某公园草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图一)作成的立柱。为了计算所需不锈钢管立柱的总长度,设计人员利用图二所示的坐标系进行计算。
(1)求该抛物线的解析式; (2)计算所需不锈钢管立柱的总长度。



分析:图中给出了一些数量,并已经过护栏中心建立了平面直角坐标系, 所以求二次函数的解析式关键是找到一些条件建立方程组。因为对称轴是 y轴,所以b=0,可以设二次函数为y=ax2+c.

解:(1)在如图所示坐标中,设函数解析式为y=ax2+c,B点坐标为(0,0.5),C点坐标为(1,0)。

分别代入y=ax2+c得:

,解得

抛物线的解析式为:y=-0.5x2+0.5

(2)分别过AC的五等分点,C1,C2,C3,C4,作x轴的垂线,交抛物线于B1,B2,B3,B4,则C1B1,C2B2,C3B3,C4B4的长就是一段护栏内的四条立柱的长,点C3,C4的坐标为(0.2,0)、(0.6,0),则B3,B4点的横坐标分别为x3=0.2,x4=0.6.
将x3=0.2和x4=0.6分别代入

y=-0.5x2+0.5得y3=0.48,y4=0.32

由对称性得知,B1,B2点的纵坐标:y1=0.32,y2=0.48

四条立柱的长为:C1B1=C4B4=0.32(m)

C2B2=C3B3=0.48(m)

所需不锈钢立柱的总长为

(0.32+0.48)×2×50=80(m)。

答:所需不锈钢立柱的总长为80m。

㈡ 初中数学知识点总结

很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?

知识点

当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.

以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.

㈢ 初中数学知识点整理

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

㈣ 初中数学函数知识讲解

一、关于函数教材的地位
函数关系是量与量之间关系的抽象,凡涉及到量的关系就少不了要用函数概念去描述、去刻画,并通过它去研究客观实际中的数量关系,所以无论就业或升学都要学点函数概念.
高中代数教材是以函数为中心,函数又比较抽象、难学,所以在初中讲点函数为高中作点准备也是必要的.
就以初中代数本身而言,像解三角形、二次不等式等也都离不开函数的有关概念.在物理、化学中像匀速运动、波义耳定律、抛射运动、自由落体也都要有相应的函数作基础.
因此,初中学习函数初步是相当必要的.
二、初中函数教学的特点
首先,从整个中学阶段来看,函数教学大致可划分为下面三个阶段:
第一,感性认识阶段
这一阶段以积累材料为其主要特征.在正式引入函数概念之前,基本上都属于这一阶段.
这一阶段教学的基本内容,大致有以下几个方面:
(1)通过各种关型的算术运算,让学生观察运算的结果与组成这一运算的各项之间的相互关系.如:和数与被加数、加数之间的相互关系,商数与被除数、除数之间的相互关系等.
(2)通过代数式和方程的学习,让学生进一步认识到如何用文字来表示一般的数量关系;如何用代数式来表示量与量之间的关系等.
(3)通过数的概念的发展,来积累学生关于“集合”这一概念的初步思想.例如在讲被开方数的容许值时,可以引导学生注意非负数集合.课本有意识地渗透了一些集合思想,这对以后讲函数概念是极其有帮助的.
(4)通过数轴和坐标的教学积累关于“对应”这一概念的初步思想.
第二,理性认识阶段
这一阶段是函数教学的主要阶段.它分为二个小循环.第一个循环是初中的“函数及其图像”;第二个循环是高中从集合开始一直讲到三角函数及其图像.这一阶段的教学任务是正确地形成函数的一般概念,较深刻地理解函数关系,掌握绘制简单的函数图像和讨论它们的性质的方法,学会应用函数的性质来解决某些比较简单的实际问题,把学生的认识水平和思维水平向前推进一步.
第三,深化和发展阶段
这一阶段的主要任务是了解函数的变化趋势,并通过它,初步掌握极限的方法——无限精确化的方法;利用微积分这一工具,对函数的增减、极值再作深一步的研究,并指出利用初等方法研究函数的局限性.
这三个阶段是彼此衔接的,由此可见,初中的函数教学具有承上启下的作用,对它学习的好坏,会直接影响后面的学习.
其次,初中的函数教学,无论对函数概念还是函数性质的教学,都是一种描述性的.这样,准确性和通俗性是其教学特点.尽管是描述性的,但交待要准确,不要给学生以错觉,并且交待又要遇俗易懂,让学生易于接受.为此需要多举实例,多运用图形、表格等直观手段.
三、关于函数概念
关于函数定义,常常有要素说的提法,如函数是由三个要素组成:定义域、对应法则、值域.这种提法不太科学,最好不要提要素,而应该重点放在函数概念的本质特征上.因为要素并未完全反映本质特征.
函数概念,它的本质特征是两条:一条是“随处定义”,一条是“单值对应”(名词可不必向学生提).
“随处定义”是指:在一个 R:X→Y的关系中,如果定义域和X相等,则R便是一个随处定义的关系.也就是说,X中的任一个元x都有Y中的元y和它对应.所以随处定义的条件是
在图39所表示的关系中,(1)是随处定义的,而(2)不是.
单值对应是指:若R为由集X到集Y的关系,而对任何一个x∈X都只有一个y∈Y和它对应,则说R是单值的,即
图40的(1)、(2)是单值对应,(3)不是单值对应.
在初中代数的函数定义中,本质就是这两条:“对于x在某一个确定的范围内的每一个确定的值(随处定义),y都有唯一确定
的值与它对应(单值对应).”这两条缺一条就不成为其函数了,所以强调本质特征比强调要素明确得多了.
此外,还要防止学生把函数都看成式,不然,就缩小了函数概念的外延.为此,在讲授函数概念时,还要举出不能用式子表示的函数的例子.
四、关于函数定义域的教学
中学课本对定义域有两个方面要求:如果用式子给出,不指明定义域,那是指自然定义域,即使式子有意义的自变量x的取值范围.课本还指出“遇到实际问题时,确定函数的自变量取值范围,必须使实际问题也有意义”.所以教学时要有所反映.
求函数定义域要涉及到诸如解方程、不等式、分式、根式等知识,所以是以新带旧很好的材料,这在教学中应作适当要求,但是题目应该是最基本的,不要故意去搞一些很做作的题,因为这种训练是没有多大意义的.
五、关于函数图像的教学
由于函数往往涉及无穷集,因而一般来说图像应无限延伸,但这在画图像方面有局限,只能用有限来表示无限.这样,一方面要求有限图像能反映出无限图像的主要特征(如与轴的交点、峰点等要表现出来);另一方面,要反映出无限的趋势(如与x轴无限接近等).这两点也是画函数图像总的要求.
要让学生掌握描绘函数图像的下述技能:设数、计算(或查表)、设坐标单位、标点、补点、用光滑曲线连接.
这里要分两种情况:
一种情况是事先并不知所画图像是什么样子,也不知其什么性质.这时候设点应该密一些,并正、负都有,如果自变量及对应值数值较大,那么坐标单位可设小一些;如果弯曲处点还不够,则应适当补点,总之不要让图像走样.
另一种情况是事先已知图像是什么样子,那么设点可以根据图像特点来设.如正比例函数,只需设一个点,再与原点连结即可.一次函数可任意设两点.反比例函数若k>0,只需设第一象限的点,第三象限的点可用原点对称的点得到.k<0,只需设第二象限的点,第四象限的点可用与原点对称的点得到.对于二次函数可设顶点、与x轴的两个交点等.
以上这些技能都应让学生掌握.
教学中要注意函数图像在解方程、不等式中的作用.
六、关于反比例函数的教学
反比例函数无论从定义、图像、性质来说,都是教学的难点.这反映在的叙述方式与正比例函数极其相似,就容易给人以误解.
(2)反比例函数图像是曲线而不是直线(第一次出现曲线),画曲线图像技能的培养,如曲线是两支、曲线不与任何轴相交,且与x轴、y轴无限接近等都是难点.
(3)在讲授单调性时,对于“负值绝对值越大就越小”,就常常被图像的表面现象迷惑而错误理解,从而对单调性得出错误结论.
这些都是应该予以重视的.
七、关于二次函数的教学
二次函数是初中字习函数的高潮和重点.它一方面与二次方程、二次不等式等密切相关,即把二次方程、二次不等式统一在函数观点下,可把两者有机地联系起来;另一方面,在讲授二次函数时,又要学习如“沿横、纵轴平移”、“配方”、“极值”等重要的数学思想、概念和方法,因此二次函数教材具有重要的培养性.
“参数a的意义”、“对称轴方程”、“沿轴平移”、“极值的意义”等,都是教学的难点.教学中克服这些难点,要从学生实际出发,采用具体的、形象的方法来讲授.
有关二次函数的题目难度要适当控制,题型要适当归类,重点应放在培养分析问题的能力上.

㈤ 急求!!初中数学二次函数所有知识的归纳。

不知道怎么发给你 我乱删减了很多····你还是到文库里看看吧。。丫的就要中考了,我也很紧张啊

1、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
2、坐标轴上的点的特征
点P(x,y)在x轴上 ,x为任意实数
点P(x,y)在y轴上 ,y为任意实数
点P(x,y)既在x轴上,又在y轴上 x,y同时为零,即点P坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上 x与y相等
点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数
4、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数
点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数
点P与点p’关于原点对称 横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
考点三、函数及其相关概念 (3~8分)
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
考点四、正比例函数和一次函数 (3~10分)
1、正比例函数和一次函数的概念
一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。
特别地,当一次函数 中的b为0时, (k为常数,k 0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。
k的符号 b的符号 函数图像 图像特征
k>0 b>0 y

0 x

图像经过一、二、三象限,y随x的增大而增大。
b<0 y

0 x

图像经过一、三、四象限,y随x的增大而增大。
K<0 b>0 y

0 x

图像经过一、二、四象限,y随x的增大而减小
b<0
y

0 x

图像经过二、三、四象限,y随x的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质,,一般地,正比例函数 有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质,,一般地,一次函数 有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。解这类问题的一般方法是待定系数法。
考点五、反比例函数 (3~10分)
1、反比例函数的概念
一般地,函数 (k是常数,k 0)叫做反比例函数。反比例函数的解析式也可以写成 的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x 0,函数y 0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数

k的符号 k>0 k<0
图像
y

O x

y

O x

性质 ①x的取值范围是x 0,
y的取值范围是y 0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x 的增大而减小。 ①x的取值范围是x 0,
y的取值范围是y 0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x 的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数 中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数 图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PM PN= 。 。
二次函数
考点一、二次函数的概念和图像 (3~8分)
1、二次函数的概念
一般地,如果 ,那么y叫做x 的二次函数。
叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于 对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
(2)求抛物线 与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
考点二、二次函数的解析式 (10~16分)
二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)当抛物线 与x轴有交点时,即对应二次好方程 有实根 和 存在时,根据二次三项式的分解因式 ,二次函数 可转化为两根式 。如果没有交点,则不能这样表示。
考点三、二次函数的最值 (10分)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当 时, 。
如果自变量的取值范围是 ,那么,首先要看 是否在自变量取值范围 内,若在此范围内,则当x= 时, ;若不在此范围内,则需要考虑函数在 范围内的增减性,如果在此范围内,y随x的增大而增大,则当 时, ,当 时, ;如果在此范围内,y随x的增大而减小,则当 时, ,当 时, 。
考点四、二次函数的性质 (6~14分) 1、二次函数的性质
函数 二次函数

图像 a>0 a<0

y

0 x

y

0 x

性质 (1)抛物线开口向上,并向上无限延伸;
(2)对称轴是x= ,顶点坐标是( , );
(3)在对称轴的左侧,即当x< 时,y随x的增大而减小;在对称轴的右侧,即当x> 时,y随x的增大而增大,简记左减右增;
(4)抛物线有最低点,当x= 时,y有最小值,
(1)抛物线开口向下,并向下无限延伸;
(2)对称轴是x= ,顶点坐标是( , );
(3)在对称轴的左侧,即当x< 时,y随x的增大而增大;在对称轴的右侧,即当x> 时,y随x的增大而减小,简记左增右减;
(4)抛物线有最高点,当x= 时,y有最大值,

2、二次函数 中, 的含义: 表示开口方向: >0时,抛物线开口向上,,, <0时,抛物线开口向下
与对称轴有关:对称轴为x=
表示抛物线与y轴的交点坐标:(0, )
3、二次函数与一元二次方程的关系
一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。
因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。
当 >0时,图像与x轴有两个交点;
当 =0时,图像与x轴有一个交点;
当 <0时,图像与x轴没有交点。
补充:
1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)
y
如图:点A坐标为(x1,y1)点B坐标为(x2,y2)
则AB间的距离,即线段AB的长度为 A

0 x
B

2、函数平移规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)
3、直线斜率: b为直线在y轴上的截距
4、直线方程: 一般两点斜截距
1,一般 一般 直线方程 ax+by+c=0
2,两点 由直线上两点确定的直线的两点式方程,简称两点式:
--最最常用,记牢
3,点斜 知道一点与斜率
4,斜截 斜截式方程,简称斜截式: y=kx+b(k≠0)

5 ,截距 由直线在 轴和 轴上的截距确定的直线的截距
式方程,简称截距式:
记牢可大幅提高运算速度
5、设两条直线分别为, : :
若 ,则有 且 。

6、点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离:
对于点P(x0,y0)到直线滴一般式方程 ax+by+c=0 滴距离有

常用记牢
中考点击
考点分析:
内容 要求
1、函数的概念和平面直角坐标系中某些点的坐标特点 Ⅰ
2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系 Ⅰ
3、一次函数的概念和图像 Ⅰ
4、一次函数的增减性、象限分布情况,会作图 Ⅱ
5、反比例函数的概念、图像特征,以及在实际生活中的应用 Ⅱ
6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活问题 Ⅱ
命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题.会求一元二次方程的近似值.
分析近年中考,尤其是课改实验区的试题,预计2007年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.
初中数学助记口诀(函数部分)
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“同左上加,异右下减”。

一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
1. 一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号;
同类项、合并好,再把系数来除掉;
两边除(以)负数时,不等号改向别忘了。
2. 特殊点坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
X轴上y为0,x为0在Y轴。
3. 平行某轴的直线:
平行某轴的直线,点的坐标有讲究,
直线平行X轴,纵坐标相等横不同;
直线平行于Y轴,点的横坐标仍照旧。
4. 对称点坐标:
对称点坐标要记牢,相反数位置莫混淆,
X轴对称y相反, Y轴对称,x前面添负号;
原点对称最好记,横纵坐标变符号。
5. 自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行。
6. 函数图像的移动规律:
若把一次函数解析式写成y=k(x+0)+b,
二次函数的解析式写成y=a(x+h)2+k的形式,
则用下面后的口诀:
“左右平移在括号,上下平移在末稍,
左正右负须牢记,上正下负错不了”。
7. 一次函数图像与性质口诀:
一次函数是直线,图像经过仨象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与Y轴来相见,
k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
8. 二次函数图像与性质口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。
9. 反比例函数图像与性质口诀:
反比例函数有特点,双曲线相背离的远;
k为正,图在一、三(象)限;k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换;
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
10. 求定义域:
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
11. 解一元一次不等式:
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
12. 解一元一次不等式组:
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
13. 解一元二次不等式:
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
13.1 用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
14. 用常规配方法解一元二次方程:
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
15. 用间接配方法解一元二次方程:
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】 恒等式
16. 解一元二次方程:
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
17. 正比例函数的鉴别:
判断正比例函数,检验当分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
18. 正比例函数的图象与性质:
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
19. 一次函数:
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
20. 反比例函数:
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
21. 二次函数:
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
22. 列方程解应用题:
列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
23. 两点间距离公式:
同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。

二次函数知识点:1.二次函数的概念:一般地,形如 ( 是常数, )的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数.
2. 二次函数 的结构特征:
⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是2.
⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项.
二次函数的基本形式
1. 二次函数基本形式: 的性质:

结论:a 的绝对值越大,抛物线的开口越小。
总结:

的符号
开口方向 顶点坐标 对称轴 性质

向上

时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .

向下

时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .

2. 的性质:

结论:上加下减。同左上加,异右下减
总结:
的符号
开口方向 顶点坐标 对称轴 性质

向上

时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .

向下

时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .

3. 的性质:

结论:左加右减。同左上加,异右下减
总结:
的符号
开口方向 顶点坐标 对称轴 性质

向上
X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .

向下
X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .

4. 的性质:

总结:
的符号
开口方向 顶点坐标 对称轴 性质

向上
X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .

㈥ 初中数学知识点哪本书总结的好

下面是我们老师总结的,电子版的,就都发出来了
一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数 无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 3、函数变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。2、角线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形二、基本定理1、过两点有且只有一条直线 2、两点之间线段最短3、同角或等角的补角相等 4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理 三角形两边的和大于第三边16、推论 三角形两边的差小于第三边17、三角形内角和定理 三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理 四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论 任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论 夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

㈦ 人教版初中八年级下册函数知识点总结

㈧ 初中数学的知识点总结

一、基本运算方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。

㈨ 初中数学的知识点总结,急,快中考了。

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)

乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
sin30:二分之一 sin45:二分之根二 sin60:二分之根三
cos30:二分之根三 cos45:二分之根二 cos60:二分之一
tan30:三分之根三 cos45:一 tan60:根三
等比数列:
若q=1 则S=n*a1
若q≠1
推倒过程:
S=a1+a1*q+a1*q^2+……+a1*q^(n-1)
等式两边同时乘q
S*q=a1*q+a1*q^2+a1*q^3+……+a1*q^
1式-2式 有
S=a1*(1-q^n)/(1-q)

等差数列
推导过程:
S=a1+(a1+d)+(a1+2d)+……(a1+(n-1)*d)
把这个公式倒着写一遍
S=(a1+(n-1)*d) +(a1+(n-2)*d)+(a1+(n-3)*d)+……+a1
上两式相加有
S=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2