A. 小学数学的知识点有哪些
小学数学公式大全,
第一部分: 概念。
1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 0除以任何不是0的数都得0。
简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式 答:含有未知数的等式叫方程式。
9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。
17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。假分数大于或等于1。
18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20,一个数除以分数,等于这个数乘以分数的倒数。
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24,比例的基本性质:在比例里,两外项之积等于两内项之积。
25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33,要学会把小数化成分数和把分数化成小数的化发。
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个, 叫做最大公约数。)
35,互质数: 公约数只有1的两个数,叫做互质数。
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数)
39,最简分数:分子,分母是互质数的分数,叫做最简分数。
40,分数计算到最后,得数必须化成最简分数。
41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44,质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45,合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46,利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47,利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48,自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49,循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3。 141414
50,不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3。 141592654
51,无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3。 141592654……
52,什么叫代数 代数就是用字母代替数。
53,什么叫代数式 用字母表示的式子叫做代数式。如:3x =ab+c
小学数学公式大全,第二部分:计算公式。
数量关系式:
1, 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2, 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3, 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4, 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5, 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6, 加数+加数=和 和-一个加数=另一个加数
7, 被减数-减数=差 被减数-差=减数 差+减数=被减数
8, 因数×因数=积 积÷一个因数=另一个因数
9, 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数小数×倍数=大数(或 小数+差=大数)
B. 小升初考试必备数学一到六年级的知识点
小升初数学考的知识点是一到六年级的知识点,整理出不同年级的小学数学重要知识点,对于备考很有用,我在这里整理了相关资料,希望能帮助到那您。
一年级的知识重点
1数与计算
(1)20以内数的认识,加法和减法。
数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题
(2)100以内数的认识。
加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
2量与计量
钟面的认识(整时)。人民币的认识和简单计算。
3几何初步知识
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
4应用题
比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)
5实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
二年级的知识重点
1数与计算
(1)两位数加、减两位数。两位数加、减两位数。加、减法竖式。两步计算的加减式题。
(2)表内乘法和表内除法。乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。
(3)万以内数的读法和写法。数数。百位、千位、万位。数的读法、写法和大小比较。
(4)加法和减法。加法,减法。连加法。加法验算,用加法验算减法。
(5)混合运算。先乘除后加减。两步计算式题。小括号。
2量与计量
时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识。
3几何初步知识
直线和线段的初步认识。角的初步认识。直角。
4应用题
加法和减法一步计算的应用题。乘法和除法一步计算的应用题。比较容易的两步计算的应用题。
5实践活动
与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。
三年级的知识重点
1数与计算
(1)一位数的乘、除法。
一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。
(2)两位数的乘、除法。
一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。
(3)四则混合运算。
两步计算的式题。小括号的使用。
(4)分数的初步认识。
分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。
2量与计量
千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。
3几何初步知识
长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。
4应用题常见的数量关系。
解答两步计算的应用题。
5实践活动
联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。
四年级的知识重点
1数与计算
(1)亿以内数的读法和写法。
计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。
(2)加法和减法。
加法,减法。
接近整十、整百数的加、减法的简便算法。
加、减法算式中各部分之间的关系。求未知数x。
(3)乘、除数是三位数的乘、除法。
乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。
乘、除计算的简单估算。
乘数接近整十、整百的简便算法。
乘、除法算式中各部分之间的关系。求未知数x。
(4)四则混合运算。
中括号。三步计算的式题。
(5)整数及其四则运算的关系和运算定律。
自然数与整数。十进制计数法。读法和写法。
四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。
运算定律。简便运算。
(6)小数的意义、性质,加法和减法。
小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值加法和减法。加法运算定律推广到小数。
2量与计量
年、月、日。平年、闰年。世纪。24时计时法。
角的度量。
面积单位。
3几何初步知识
直线的测定。测量距离(工具测、步测、目测)。
射线。直角、锐角、钝角、平角、*周角。垂线。画垂线。平行线。画平行线。
三角形的特征。
三角形的内角和。
4统计初步知识
简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。
5应用题列综合算式
解答比较容易的三步计算的应用题。
五年级的知识重点
1计算
小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计与可能性,数学广角和数学综合运用等。
在前面学习整数四则运算和小数加、减法的基础上,继续培养学生小数的四则运算能力。
2方程
用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
3空间与物体
在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置。
4图形的转换
探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
5统计与概率
教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性。
6平均数
理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。
7实际应用
通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。
六年级的知识重点
1数与计算
(1)分数的乘法和除法,分数乘法的意义,分数乘法,乘法的运算定律推广到分数,倒数,分数除法的意义,分数除法。
(2)分数四则混合运算,分数四则混合运算。
(3)百分数,百分数的意义和写法,百分数和分数、小数的互化。
2比和比例
比的意义和性质,比例的意义和基本性质,解比例,成正比例的量和成反比例的量。
3几何初步知识
圆的认识,圆周率,画圆,圆的周长和面积,扇形的认识,轴对称图形的初步认识,圆柱的认识,圆柱的表面积和体积,圆锥的认识,圆锥的体积,球和球的半径、直径的初步认识。
4统计初步知识
统计表,条形统计图,折线统计图,扇形统计图。
5应用题
分数四则应用题(包括工程问题),百分数的实际应用(包括发芽率、合格率、利率、税率等的计算),比例尺,按比例分配。
6实践活动
联系学生所接触到的社会情况组织活动,例如就家中的卧室,画一个平面图。
C. 小学数学的知识点总结
常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长 )
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本; 利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比; 利息=本金×利率×时间; 税后利息=本金×利率×时间×(1-20%)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算: 1元=10角 1角=10分 1元=100分
时间单位换算:
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
基本概念
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义: 自然数和0都是整数。
2 自然数:
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
D. 求小学数学的知识点归纳总结
小学数学总复习各模块知识
数的认识 简易方程
一、数和数的运算 数的整除 二、代数初步知识
数的运算 比和比例
一般复合应用题 长度
典型应用题 面积
三、应用题 分数、百分数应用题 四、量的计量 体积
列方程解应用题 重量
比和比例应用题 时间
人民币
线 统计表
平面图形的认识与计算 角 六、统计与概率
五、空间与图形 平面图形 统计图
长方体、正方体
立体图形的认识与计算
圆柱体、圆锥体
一、数和数的运算
(一)数的认识
整数的含义:像…-3,-1,0,1,2,3,…这样的数统称整数。
正数和负数的含义:像1,+5,6,…这样的数叫做正数;像-3,-2,-9,…这样的数叫做负数。
占位
0是最小的自然数,0是偶数,0的作用 表示起点
表示界线
自然数 1是最小的一位数,是自然数的基本单位;1既不是质数,也不是合数。
数的意义: 是整数的一部分,可表示基数也可以表示序数
意义:把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。表示其中一份的数就是分数单位
分数
真分数——分子比分母小(小于1)
分类: 假分数——分子大于或等于分母(大于或等于1)
带分数——分子比分母大(大于1)
意义:把整体“1”平均分成10份、100份、1000份……这样的一份或几份
是十分之几,百分之几,千分之几……可以用小数表示
有限小数
按小数部分分 无限不循环小数
小数 无限小数 纯循环小数
分类 纯小数 循环小数
按整数部分分 混循环小数
带小数
整数和小数数位顺序表
整数部分 小数部分
… 亿级 万级 个级
数位 … 千亿位 百亿位 十亿位
亿位 千万位 百万位 十万位
万位
千位
百位
十位
个位 十分位 百分位 千分位 万分位 …
计数单位 … 千亿 百亿 十亿
亿 千万 百万 十万
万
千
百
十
一
十分之一 百分之一 千分之一 万分之一 …
百分数:表示一个数是另一个数的百分之几的数叫做百分数。(百分率或百分比)
折扣*:商业用名词,几折就是十分之几,成数,几成就是百之几十。
注意:百分数、折扣只表示两个数的倍比关系,而分数除倍比关系外还可以表示具体数量。
数的读写:
1、整数的读法:从高位到低位,一级一级地读,每级末尾的0都不读,其他数位连续有几个0都只读一个0。
2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3、小数的读写:整数部分按整数来读(写),小数点读作“点”,小数部分依次读(写)出每一位上的数字。
数的改写
写成用“万”或“亿”作单位的数
1、多位数的改写和省略: 省略“万”或“亿”位后面的尾数
2、分数、小数、百分数的互化
改写成分母是10、100、1000…的分数再约分
小数 分数
用分子除以分母
小数点向右移动两位,同时添上%
小数 百分数
去掉%,小数点向左移动两位
写成分数形式并约分
百分数 分数
先写成小数,再写成百分数
数的大小比较:
1、整数的大小比较:先看位数,位数多的数大:位数相同,从高位看起相同数位上的数大的那个数就大
2、小数大小的比较:先比较两个数的整数部分,整数部分大的那个数就大;整数部分相同就看小数部分从高位看起,依数位比较
3、分数大小比较:分母相同分子大的分数大;分子相同分母小的分数大;分母不同,先通分再比较。
数的基本性质:
1、分数的基本性质:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。
2、小数的基本性质:小数的末尾添“0”或者去掉“0”,小数的大小不变。
(二)数的整除
定义:(小学阶段研究“数的整除”时所说的数一般指非0自然数)
数a除以b(b≠0)的商正好是整数而没有余数,我们就说a能被b整除(或者说b能整除a)。
倍数 公倍数 最小公倍数
整除 因数 公因数 最大公因数
质数 合数 互质数(已删除)
质因数 分解质因数(已删除)
2的倍数的特征:个位是0、2、4、6、8。
偶数 奇数(能被2整数的数叫偶数,不能被2整除的数叫奇数。)
3的倍数的特征:各位上的数的和是3的倍数
5的倍数的特征:个位上是0或者5的数。
(三)数的运算
1、四则运算的意义
数的
分类
运算名称 整数 小数 分数
加法 把两个数合并成一个数的运算。
减法 已知两个加数的和与其中一个加数,求另一个加数的运算。
乘法 求几个相同加数的和的简便运算。 小数乘整数与整数乘法意义相同。 分数乘整数与整数乘法意义相同。
一个数乘小数,就是求这个数的十分之几,百分之几…是多少。 一个数乘分数,就是求这个数的几分之几是多少。
除法 已知两个因数的积与其中一个因数,求另一个因数的运算。
2、四则运算的法则
整数 小数 分数
加减 相同数位对齐,从低位算起
加法:满十就向前一位进一
减法:不够减就从前一位退,退一当十 小数点对齐,从低位算起,按整数加减法进行计算,结果中的小数点和加减的数的小数点对齐。 1、同分母分数相加减,分母不变,分子相加减。
2、异分母分数相加减,先通分,然后再按同分母分数相加减的方法计算。
3、结果能约分的要约分。
乘法 1、从个位乘起,依次用第二个因数每一位上的数去乘第一个因数。
2、用第二个因数哪一位上的数去乘,得数的末位就和第二个因数的哪一位对齐。
3、再把几次乘得的数加起来。 1、按整数乘法法则算出积。
2、看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 1、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
2、有整数的把整数看作分母是1的假分数。
3、有带分数的,通常先把带分数化成假分数。
除法 除数是整数:从被除数的高位除起,除数是几位就先看被除数的前几位,如果不够除,就要多看一位,除到哪一位就要把商写在哪一位的上面。商的小数点和被除数的小数点对齐。 除数是小数:先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够的补0),然后按照除数是整数的除法进行计算。 甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
3、四则运算各部分的关系:
加数+加数=和 被减数—减数=差
一个加数=和—另一个加数 减法 被减数=减数+差
减数=被减数—差
因数×因数=积 被除数÷除数=商
一个因数=积÷另一个因数 除法 被除数=商×除数
除数=被除数÷商
4、运算定律和运算性质
加法交换律 : a+b=b+a
加法结合律 : (a+b)+c=a+(b+c)
乘法交换律 : a×b=b×a
乘法结合律 : (a×b)×c=a×(b×c)
乘法分配律 : (a+b)×c=a×c+b×c
减法的运算性质: a-b-c=a-(b+c)
除法的运算性质: a÷(b×c)=a÷b÷c
5、四则运算的顺序:
在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。
有括号的算式里,要先算括号里的,再算括号外的。
二、代数的初步知识
(一)简易方程
1、用字母表示数:
(1) 用字母可以表示我们学过的自然数、整数、小数、百分数……
(2) 用含有字母的式子,可以简明地表达数学概念、运算定律和数学计算公式。还可以简明地表达数量关系。
2、简易方程
(1) 等式:表示相等关系的式子。
(2) 方程:含有未知数的等式。
(3) 方程的解:使方程左右两边相等的未知数的值。
(4) 解方程:求方程的解的过程。
(5) 解方程的依据:等式的基本性质(天平平衡的道理)
(二)比和比例:
1、 比和比例的意义与性质
比 比例
意义 两个数相除又叫做两个数的比 表示两个比相等的式子叫做比例
基本
性质 比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。 在比例里,两个内项的积等于两个外项的积。
2、 比、分数与除法的关系
比 比号 前项 后项 比值
分数 分数线 分子 分母 分数值
除法 除号 被除数 除数 商
3、 求比值和化简比的区别与联系
一般方法 结果
求比值 根据比值的意义,用前项除以后项。 是一个商,可以是整数,小数或分数。
化简比 根据比的基本性质,把比的前项和后项同时乘上或同时除以相同的数(0除外)。 是一个比 ,它的前项和后项都是整数。
4、 比例尺
图上距离和实际距离的比,叫做这幅图的比例尺。
5、正比例和反比例的区别与联系
相同点 不同点
特征 关系式
正比例关系 两种相关联的量,一种量变化,另一种量也随着变化。 两种量中相对应的两个数的比值一定。
反比例关系 两种量中相对应的两个数的积一定。
ху=k (一定)
三、应用题
(一) 一般复合应用题
1、一般复合应用题的解法
(1)分析法:从问题入手,逐步分析题里的已知条件。
(2)综合法:从应用题的已知条件入手,逐步推出未知。
(3)分析综合法:将分析法、综合法结合起来交替使用的方法。当已知条件中有明显计算过程时就用综合法顺推,遇到困难时再转向原题所提的问题用分析法帮忙,逆推几步,顺推和逆推联系上了,问题便解决了。
2、一般复合应用题的解题步骤:
(1)审清题意,并找出已知条件和所求问题;
(2)分析题目里的数量间的关系,从而确定先算什么,再算什么,最后算什么;
(3)列式,算出结果;
(4)进行检验,写出答案。
(二)典型应用题(有一定解答规律的应用题)
1、求平均数问题
(1) 求平均数问题的特点:把各“部分量”合并为“总量”,然后按“总份数”平均,求其中一份是多少。
(2) 求平均数问题的解题规律:关键是先求出“总量”和“总份数”,然后用“总量÷总份数=平均数”,特殊情况可用“移多补少法”解答。
2、归一应用题
(1) 归一应用的特点:从已知条件中求出“单一量”,再以“单一量”为标准去计算所求的量。归一问题通常分为正归一和反归一。
(2) 归一问题的解题规律:首先求出一个单位数量,然后以这个“单位量”为标准,根据题目的要求,用乘法算出若干个“单位量”是多少,这是正归一的解题规律。或用除法算出总量包含多少个“单位量”,这是反归一的解题规律。归一问题还可以用倍比问题的解题方法求解。
3、相遇问题
(1)特点:A、两个运动物体;B、运动方向相向;C、运动时间同时。
(2)解题规律:速度和×相遇时间=路程
路程 ÷速度和=相遇时间
路程 ÷相遇时间=速度和
(三)分数、百分数应用题
1、分数乘法应用题
已知一个数,求它的几分之几(百分之几)是多少,用乘法。即:“一个数×几分之几(百分之几)”。
已知条件:表示单位“1”的量;单位“1”的几分之几(或百分之几)(又称:分率)
特征:
所求问题:求单位“1”的几分之几(百分之几)是多少(又称:部分量)
用等式表示三量的关系:单位“1”的量×分率=部分量
对应关系
2、分数除法应用题
(1)已知一个数的几分之几(百分之几)是多少,求这个数,用除法。即“多少÷几分之几”
已知条件:单位“1”的几分之几(分率);单位“1”的几分之几是多少
(部分量)
特征
所求问题:单位“1”的量
用等式表示三量的关系:部分量÷分率=单位“1”的量
对应关系
(2)求一个数是另一个数的几分之几(百分之几)用除法。即“一个数÷另一个数”。
已知条件:表示单位“1”的量;单位“1”的几分之几是多少(部分量)
特征
所求问题:求部分量是单位“1”的几分之几(百分之几)
用等式表示三量的关系:部分量÷单位“1”的量=分率
对应关系
3、工程问题的应用题
把工作总量用“1”表示,工作效率用单位时间内做工作总量的“几分之一”表示。根据工作总量与工作效率,就能求出合作完成的工作时间。
三量之间的关系式:工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间= 工作效率
(四)列方程解应用题
1、列方程解应用题的思考方法:用字母代替应用题中的未知数,根据数量间的相等关系列方程,解方程。
2、列方程解应用题的一般步骤
(1)弄清题意,找出未知数并用X表示。
(2)找出数量间的相等关系,列出方程。
(3)解方程。
(4)检验并答。
(五)比和比例应用题
比和比例应用题包括:比例尺、按比例分配、和正反比例应用题。
1、比例尺中解题关系式:图上距离∶实际距离=比例尺
2、按比例分配应用题 :要分配的总量×各部分量的分率=各部分量。
3、正比例 у/χ=X/Y 反比例χу=XY(正、反比例应用题已删去)
四、量与计量
(一)量、计量和计量单位的意义
事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。
(二)常用的计量单位及其进率
1、长度、面积、地积、体积、容积、重量单位及其进率
长度 1千米(km)=1000米(m) 1米(m) =10分米 (dm)
1分米(dm)=10厘米(cm) 1厘米(cm)=10毫米(mm)
面积 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地积 1平方千米=100公顷
1公顷=10000平方米
体积 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容积 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1吨=1000千克 1千克=1000克
2、常用时间单位及其关系
世纪 年 月 日 时 分 秒
100 12 24 60 60
每月31天的有1、3、5、7、8、10、12各月;每月30天的有4、6、9、11各月;平年全年365天,平年二月28天;闰年全年366天,闰年二月29天。
3、人民币:1元=10角 1角=10分
(三)同类计量单位之间的转化
(化法)乘以进率
高级单位的数 低级单位的数
(化法)除以进率
五、空间与图形
(一)平面图形的认识和计算
1、线
线段:用直尺把两点连接起来就得到一条线段。
线段的长就是这两点间的距离。(有两个端点)
直线:把线段的两端无限延 平行线:在同一平面内不相交的两条直线,叫做
长可以得到一条直线 平行线。
(没有端点) 垂线:两条直线相交成直角,这两条直线叫做互
相垂直,其中一条直线叫另一条直线的垂线。
射线:把线段的一端无限延长可以得到一条射线。(有一个端点)
2、角:从一点引出两条射线所组成的图形
锐角:小于90度的角
直角:等于90度的角
钝角:大于90度而小于180度的角
平角:180度的角
周角:360度的角
3、平面图形
(1)三角形:由三条线段首尾相互连接围成的图形
锐角三角形:三个角都是锐角
按角分 直角三角形:有一个角是直角
钝角三角形:有一个角是钝角
三角形
等腰三角形:两条边相等
按边分 等边三角形:三条边相等
不等边三角形:三条边都不相等
(2)四边形:由四条线段首尾依次连接围成的图形。 扇形
平行四边形 长方形 正方形 (3)圆形
四边形 环形
直角梯形
梯形
等腰梯形
(画线段、画角、画高、量线段、画垂线、画圆、画对称轴)
(4)特征及周长、面积计算公式:
名称 图形 字母意义 特 征 周长面积公式
正方形
a a:边长 四条边都相等,四个角都是直角 C=4a
S=a²
长方形 b
a a:长
b:宽 对边相等,四个角都是直角 C=2(a+b)
S=ab
平行四 边形 h
a a:底
h:高 两组对边分别平行且相等 S=ah
三角形 h
a a:底
h:高 有三条边,三个角,内角的和是180度 S=ah÷2
梯形 a
h
b a:上底
b:下底
h:高 只有一组对边平行 S=(a+b)h÷2
圆 d
r d:直径
r:半径 同圆内半径相等,直径相等,直径是半径的2倍 C=πd=2πr
S=πr²
(二)立体图形的认识和计算
1、长方体与正方体特征的区别与联系
特征
名称 相同点 不同点
面 棱 顶点 面的特点 棱长
长方体
6个 12条 8
个 6个面一般都是长方形(也可能有两个相对的面是正方形),相对的面的面积相等 每组(有3组,分别叫长、宽、高)互相平行的4条棱相等
正方体
6个 12条 8
个 6个面都是相等的正方形 12条棱都相等
2、圆柱、圆锥的特征
名称 图形 特征
圆
柱
上、下底面是面积相等的圆,两个底面之间的距离叫做高。侧面沿高展开是长方形(或正方形)。有无数条高
圆
锥
底面是圆形,顶点到底面圆心的距离叫做高。只有一条高。
3、立体图形的表面积和体积的计算公式
名称 图形 字母意义 表面积s , 体积v
正方体
a:棱长 S=6a² V=a³
长方体
a:长 b:宽
h:高 S=(ab+ah+bh)x 2 V=abh
圆柱体
r:底面半径 h:高
c:底面周长 S侧=ch=πdh =2πrh
S表=S侧 +2S底面 V=sh=πr²h
圆锥体
r:底面半径
h:高 V=sh÷3
=πr²h÷3
六、统计与概率
单式统计表
统计表 复式统计表
百分数统计表
统计表包括:总标题、纵栏标题、横栏标题、数据资料栏、数量单位、制表日期
条形统计图(单式、复式)
统计图 折线统计图(单式、复式)
扇形统计图
统计图的制法与特点
制法 特点
条形
统计图 1、 整理数据,画出横、纵轴,单位长度表示一定的数量2、根据数量多少画直条
3、写名称、制表日期、图例 很容易看出数量的多少
折线
统计图 1、 整理数据,画出横、纵轴,单位长度表示一定的数量
2、 根据数量多少描点,再把各点用线段顺次连接起来。
3、 写名称、制表日期、图例 不但可表示数量的多少,而且能够表示数量的增减变化
扇形
统计图 1、计算各部分占总数的百分比,再算出与各部分所对应的扇形的圆心角的度数。2、取适当半径画圆,用量角器量出各扇形的圆心角,作扇形。3、注明各扇形表示内容和所占百分比,并用不同的标记加以区别,4、写上标题及制图日期。 清楚的表示出各部分与总数及部分与部分的关系
数学《北师大版》与(人教版)增、删知识
《北师大版》比(人教版)新增知识
1、分类(按一定标准或不同标准进行分类)
2、位置与顺序(前、后、左、右、上、下)
3、位置与方向(东、南、西、北)
4、方向与路线(东南、东北、西南、西北)
5、观察物体(正面、上面、左面或右面)
6、可能性(大、小;可能、不可能、一定;分数表示、几种结果)
7、生活中的推理(列表解决)
8、对称、平移或旋转(轴对称图形、方向、几格)
9、图形变换(绕点、方向、旋转90°、平移几格)
10、确定位置(方向、北偏××度,距离;数对)
11、生活中的负数(0既不是正数,也不是负数)
12、数图形(数角、数三角形、数长方形)
13、游戏公式(公平性)
14、图形规律(摆三角形、摆正方形、列表解决)
15、尝试与猜测(鸡兔同笼、点阵中的规律,图表解决)
16、生活中的数(数据世界、数字用处、身份证)
17、看图找关系(足球场内声音、行为、成员间关系)
18、中位数和众数
19、成数、折数
20、因数、公因数、最大公因数
21、字母单位:m、dm、cm、mm、km;g、kg、t、L、ML
22、搭配的学问(两种物品以上)
23、比赛场次(循环赛)
24、组合图形面积(只限两个图形)
25、观察范围
26、方程(加减或乘除同一个数、等式性质)
《北师大版》比《人教版》删去知识
1、约数、公约数、最大公约数
2、互质数
3、分解质因数
4、用比例知识解应用题
E. 小学数学知识点
一、教学目标
1、知识目标与技能:
①通过学习,学生能应用百分数解决实际问题。理解税率、利率、折扣的含义。
②学生在经历观察、操作等活动的过程中认识圆柱和圆锥的特征,能正确地判断圆柱和圆锥,理解、掌握圆柱的表面积、圆柱和圆锥体积的计算方法,会正确地进行计算。
③学生结合实例认识扇形统计图,理解众数和平均数。
④初步掌握用方向和距离确定物体位置的方法。
⑤学生在解决实际问题的的过程中,学会用转化的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效地觯决问题。
⑥学生理解比例的意义和基本性质,会解比例;认识比例尺,会看比例尺,会进行比例尺的有关计算;理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,理解用比例关系解应用题的方法,学会用比例知识解答比较容易的应用题。
⑦学生通过系统的复习,巩固和加深理解小学阶段所学的数学知识,更好地培养比较合理的、灵活的计算能力,发展思维能力和空间观念,并提高综合运用所学数学知识解决简单的实际问题的能力。
2、过程与方法:
本学期教学内容要紧密联系学生生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流,使学生通过观察、操作、归纳、交流、反思活动,获得基本的数学知识、技能,进一步发展思维能力,让学生在情境体验中,理解数学,增强空间观念,发展形象思维,重视学生应用数学的意识和能力。能应用“转换”的策略解决一些简单的实际问题,进一步增强解决问题的策略意识和反思意识,体会解决问题策略的多样性,培养根据实际问题的特点选择相应策略的能力。
3、情感态度与价值观:
①能积极参与各项数学活动,感受自己在数学知识和方法等方面的收获与进步,增强对数学的好奇心与求知欲,进一步树立学好数学的信心。
②在探索和理解百分数的计算方法,比例的基本性质,圆柱和圆锥的体积公式等活动中,进一步感受数学思考的严谨和数学结论的确定性,获得一些成功的体验,锻炼克服困难的意志。
③通过阅读“你知道吗”以及参与“实践与综合应用”等活动,进一步了解有关数学知识的背景,体会数学对人类历史发展的作用,培养民族自豪感,增强创新意识,锻炼实践能力。
4、质量目标:
各单元测试平均分达83以上,期末质量验收平均分达85以上,优秀率、及格率分别达40%及95%以上。
二、教材分析
1、本学期教材的知识结构体系分析和技能训练要求:
这册教材包括下面地些内容:百分数的应用、圆柱和圆锥、比例、确定位置、正反比例、解决问题的策略、统计以及小学六年来所学数学内容的总复习。 本册教材的这些内容是在前几册的基础上按照完成小学数学的全部教学任务安排的,着重使学生认识一些常见的立体图形,掌握它们的体积等计算方法,进一步发展空间观念;进一步形成统计的观念,掌握用扇形统计图表示数据整理结果的方法,提高依据统计数据的分析、预测、判断能力;理解比例、正比例、反比例的概念,加深认识一些常见的数量关系,会用比例知识解答比较容易的应用题。然后把小学数学的主要内容加以系统的整理和复习,巩固所学的数学知识,使学生能够综合运用所学的数学知识解决比较简单的实际问题;结合新的教学内容与系统的整理和复习,进一步发展思维能力,培养思维品质,进行思想品德教育。
2、教学重点:
本册教材中的圆柱和圆锥、比例都是小学数学的重要内容。首先,认识圆柱和圆锥的特征,掌握圆柱和圆锥的一些计算,既可以为进一步学习其他形体的表面积和体积及其计算打好基础,进一步发展空间观念,也可以增强解决问题的策略和方法,逐步增强学生收集、处理信息的意识和能力。最后学习好比例的知识,不仅可以增强学生用数学方法处理数学问题的能力,而且也使学生获得初步的函数观念,为进一步学习相关知识作初步的准备。因此,让学生认识这些内容的概念,学会应用这些概念、方法和计算解决一些实际问题,是教学的重点。
F. 小学数学里的综合与实践可以分为哪些知识点
第一在数与代数领域,看起来简单实则内容加深。第二,在空间与图形领域,变简单。第三,在统计与概率领域,由简便难。由认识到自己作图。第四,在实践与综合应用领域,应用题基本和实际相结合。
G. 小学一至六年级数学知识点
小学数学知识点总结
一年级上册
1、 数一数(1~10)
2、 比一比(多少、长短、高矮、)
3、 1~5的认识和加减法(比大小、第几、几和几、加法、减法、0的认识)
4、 认识物体和图形(长方体、正方体、圆柱、球、长方形、正方形、三角形、圆)
5、 分类
6、 6~10的认识和加减法(连加、连减、加减混合)
7、 11~20个数的认识(数位的认识)
8、 认识钟表(整时、半时)
9、 20以内的进位加法 (凑十、9、8、7、6加几,5、4、3、2加几)
10、 总复习
一年级下册
1、 位置(上下、左右、前后、位置)
2、 20以内的退位加法
3、 图形的拼组
4、 100以内数的认识(数数、数的组成,读数、写数,数的顺序、比较大小、整十数加一位数及相应的减法)
5、 认识人民币(简单的计算)
6、 100以内的加法和减法(一)(1、整十数加减整十数2、两位数加一位数和整十数3、两位数减一位数和整十数)
7、 认识时间
8、 找规律
9、 统计(条形统计图)
10、 总复习
二年级上册
1、 长度单位
2、 100以内的加法和减法(二)(1、两位数加两位数、不进位加、进位加2、两位数减两位数、不退位减、退位减3、连加、连减和加减混合、加减混合、加减估算)
3、 角的初步认识
4、 表内乘法(一)(1、乘法的初步认识2、2~6的乘法口诀)
5、 观察物体
6、 表内乘法(二)(7、8、9的乘法口诀)
7、 统计
8、 数学广角
9、 总复习
二年级下册
1、 解决问题
2、 表内除法(一)(1、除法的初步认识、平均分、除法2、用2~6的乘法口诀求商)
3、 图形与转换(锐角和钝角、平移和旋转)
4、 表内除法(二)(用7、8、9的乘法口诀求商、解决问题)
5、 万以内数的认识(1000以内数的认识、10000以内数的认识、整百整千数的加减法)
6、 克和千克
7、 万以内的加法和减法(一)
8、 统计
9、 找规律
10、 总复习
三年级上册
1、 测量(毫米、分米的认识,千米的认识,吨的认识)
2、 万以内的加法和减法(二)(1、加法,2、减法3、加减法的验算)
3、 四边形(四边形、平行四边形、周长、长方形和正方形的周长、估计)
4、 有余数的除法
5、 时、分、秒(秒的认识、时间的计算)
6、 多位数乘一位数(1、口算乘法,2、笔算乘法)
7、 分数的初步认识(1、分数的初步认识<几分之一、几分之几>,2、分数的简单计算)
8、 可能性
9、 数学广角
10、 总复习
三年级下册
1、 位置和方向
2、 除数是一位数的除法(1、口算除法,2、笔算乘法)
3、 统计(1、简单的数据分析,2、平均数)
4、 年、月、日(年月日、24小时计时法)
5、 两位数乘两位数(1、口算乘法,2、笔算乘法)
6、 面积(面积和面积单位、长方形和正方形面积的计算、面积单位间的进率、公顷与平方千米)
7、 小数的初步认识(认识小数、简单的小数加减法)
8、 解决问题
9、 数学广角
10、 总复习
四年级上册
1、 大数的认识(亿以内数的认识、数的产生、亿以上数的认识、计算工具的认识、用计算器计算)
2、 角的度量(直线、射线和角,角的度量、角的分类、画角)
3、 三位数乘两位数(1、口算乘法,2笔算乘法)
4、 平行四边形和梯形(垂直与平行、平行四边形与梯形)
5、 除数是两位数的除法(1、口算除法,2、笔算除法)
6、 统计
7、 数学广角(烙饼问题)
8、 总复习
四年级下册
1、 四则运算
2、 位置和方向
3、 运算定律与简便计算(1、加法运算定律,2、乘法运算定律,3、简便计算)
4、 小数的意义和性质(1、小数的意义和读写法<小数的产生和意义、小数的读法和写法>,2、小数的性质和大小比较<小数的大小比较、小数点移动>,3、生活中的小数,4求一个小数的近似数)
5、 三角形(三角形的特性、三角形的分类、三角形的内角和、图形的拼组)
6、 小数的加法和减法
7、 统计
8、 数学广角
9、 总复习
五年级上册
1、 小数乘法(小数乘整数、小数乘小数、积的近似数,连乘、乘加、乘减,整数乘法定律推广到小数)
2、 小数除法(小数除以整数、一个数除以小数、商的近似数、循环小数、用计算器探索规律、解决问题)
3、 观察物体
4、 简易方程(1、用字母表示数,1、解建议方程<方程的意义、解方程、稍复杂的方程>)
5、 多边形的面积(平行四边形的面积、三角形的面积、梯形的面积、组合图形的面积)
6、 统计与可能性
7、 数学广角
8、 总复习
五年级下册
1、 图形的变换(轴对称、旋转、欣赏设计)
2、 因数与倍数(1、因数和倍数,2、2、5、3倍数的特征,指数和和数)
3、 长方体和正方体(1、长方体和正方体的认识,2、长方体和正方体的表面积,3、长方体和正方体的体积、体积单位间的进率、容积和容积单位)
4、 分数的意义和性质(1、分数的意义<分数的产生\分数的意义\分数与除法>,2、真分数和假分数,3、分数的基本性质,4、约分<最大公因数、约分>,5、通分<最小公倍数、通分>,6、分数和小数的互化)
5、 分数的加法和减法(1、同分母分数加减法,2、异分母分数加减法,3、分数加减混合运算)
6、 统计
7、 数学广角
8、 总复习
六年级上册
1、 位置
2、 分数的乘法(1、分数乘法,2、解决问题,3、倒数的认识)
3、 分数的除法(1、分数的除法,2、解决问题,3、比和比的应用<比的意义、比的基本性质、比的应用>)
4、 圆(1、认识圆,2、圆的周长,3、圆的面积)
5、 百分数(1、百分数的意义和写法,2、百分数和分数、小数的互化,3、用百分数解决问题、折扣、纳税、合理存款)
6、 统计
7、 数学广角
8、 总复习
六年级下册
1、 负数
2、 圆柱与圆锥(1、圆柱<圆柱的认识、圆柱的表面积、圆柱的体积>,2、圆锥<圆锥的认识、圆锥的体积>)
3、 比例(1、比例的意义和基本性质<比例的意义、比例的基本性质、解比例>,2、正比例和反比例的意义<成正比例的量、成反比例的量>3、比例的应用<比例尺、图形的放大与缩小、用比例解决问题>)
4、 统计
5、 数学广角
6、 整理和复习(1、数和代数、数的运算、式与方程、常见的量、比和比例,2、空间与图形<图形的认识和测量、图形与变换、图形与位置>、3、统计与可能性,4、综合应用)
以上回答你满意么?
H. 小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
I. 一年级数学重要基础知识点
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些 一年级数学 的知识点,希望对大家有所帮助。
一年级数学基本知识点
前后(前后的位置关系)
【知识点】:
1、注意用前、后等词语描述物体的顺序与描述物体的准确位置两者之间的区别。
2、鹿在最前面,谁在它的后面?这个答案不,不仅仅有一个松鼠,还有兔子、乌龟和蜗牛都在鹿的后面。
3、注意让学生会用前、后等词语描述物体的相对位置。
上下(上下的位置关系)
【知识点】:
1、在具体的情境中理解“上下”的相对性。
2、能用语言表达实际情境中物体的“上下”位置关系。
左右(左右的位置关系)
【知识点】:
1、能用语言描述物体的左右位置关系。
2、能在情境中体会左右位置的相对性。进一步再体会:两人如果面向同一方向,他们所看到的左右位置与顺序是一致的;如果面对着面,他们看到的左右位置与顺序是相反的。
教室(前后、上下、左右综合应用)
【知识点】:
综合运用前面三课所学的知识,进行物品的位置与顺序的描述活动
小学一年级数学知识点
1. 数的认识
(1)数数,读数,写数
(2)比大小(“<”或“>”〉,排序
(3)数的组成
(4)基数,序数
2.0的认识---表示没有,表示起点。
3.计算:
加法计算---意义的理解,认识加号。
减法计算---意义的理解,认识减号。
会相关的计算(5以内):加法、减法、0的计算。
1到5的加减法练习题:
1 + 3 =( )1 + 1 =( )3 - 3 =( )2 + 3 =( )
4 - 4 =( )3 - 3 =( )3 - 1 =( )2 - 2 =( )
1 + 1 =( )3 + 1 =( )2 + 3 =( )1 + 4 =( )
1 + 2 =( )3 - 2 =( )4 - 3 =( )2 - 2 =( )
1 + 1 =( )2 - 1 =( )3 - 1 =( )4 + 1 =( )
2 - 2 =( )4 - 2 =( )3 - 3 =( )2 + 3 =( )
4 - 3 =( )2 + 2 =( )3 - 2 =( )2 + 2 =( )
4 - 4 =( )3 - 1 =( )2 + 2 =( )3 - 2 =( )
4 - 4 =( )2 + 3 =( )3 + 1 =( )3 + 1 =( )
1 - 1 =( )4 - 3 =( )4 - 1 =( )4 + 1 =( )
3 + 1 =( )1 + 2 =( )4 - 2 =( )2 - 2 =( )
3 - 1 =( )3 + 1 =( )4 + 1 =( )1 + 1 =( )
2 + 2 =( )1 - 1 =( )3 + 1 =( )2 + 1 =( )
数学学习方法 技巧
.复习是一个巩固和改进你所学到的东西的过程
三十二知道事情应该是什么意味着你是聪明的;知道事情是什么,你是有 经验 的;知道如何使事情变得更好意味着你是有才华的
人们常说,时间就是生命,所以要控制时间控制的生活,学会管理自己的时间,我们可以做时间的主人、生活的主人,自己的主人
碎片似乎是麻烦,但实际上它是非常有效的,因为它符合人脑记忆的规则,但可以节省时间
.隐喻可以将枯燥的知识转化为生动有趣的知识教师总是善于运用隐喻来加深学生的理解学生也应该善于使用隐喻来帮助他们记忆
.深入理解的基础是深层记忆,以理解和应用记忆的方式教学知识是最合适的,如果有类似的公式、定理等,可以用列表记忆的方式进行比较
.不要把学习看成是一个枯燥的 逻辑思维 过程,在自己的学习生活中,大胆运用 想象力 ,对提高学业成绩很有帮助
如果我们把每节课都看成是一场小小的战斗,那么在课前进行充分的预习是非常必要的,就像战前的警察一样
岁面对挫折,有意识地调整自己的心理状态,不要专注于痛苦的经验
四十保持健康,保持机体活力,是一项持久的工作,应注重培养自己的良好习惯,坚持锻炼,保证生活节欲有序
.学会清理和表达自己的情绪和情绪,了解情绪与身心健康之间的巨大关系,学会调节和控制自己的情绪,拥有健康快乐的青春
学习是一项长期而艰巨的脑力劳动如果学习过于紧张,持续时间过长,就会导致学习疲劳
.学习疲劳不仅会影响你的学习效率,更重要的是过度的学习疲劳也会伤害你的身体,影响你的健康
.俗话说,一分钟辛苦,一分钟收获要长大,我们必须付出努力,学习不是一件容易的事情,为了取得好的结果,我们必须付出相应的劳动
.数字与形式的内在关系,特别是其本质属性和科学规律,仅靠感觉、感知或表象是难以理解的只有通过思考,它们才能被深刻地理解和牢牢地抓住
.一个人不仅要靠与生俱来的东西,还要靠他从学习中学到的东西来塑造自己
、急功近利容易导致失败,学习应循序渐进
针对不同类型的问题,我们可以使用各种各样的方法,在实践中根据实际情况选择正确的方法,它可以节省时间和精力完成的问题
.听课教师应始终遵循思路,善于掌握教师讲解中的关键词,建立自己的知识结构
五十通过对上节课解题过程中的分析推理过程进行 反思 和提炼,有助于理解新课程的内容
使用图表进行比较和复习可以帮助我们准确地、准确地复习知识
.对于具有明显递进关系的知识,可以绘制知识电路图
.做练习是巩固知识最有效的方法,是学习过程中的一个重要环节
.不要以为教科书上的老师说过,即使过去,要知道这些例子往往是的考试,你的基础知识是否掌握牢固
.问题后思维是提高知识水平、深化思维深度、提高思维紧张度的有效途径
.将已完成的结果替换为问题,看原问题所给出的已知量是否可以反向求解,或者从得到的结论到已知条件是否与原问题的已知条件一致
“做一个好工作,必须首先加强他的“——好学生非常善于使用学习材料来巩固记忆,从而提高成绩
.教科书一直是学生学习的重点因此,我们不仅要把握教科书中的概念和公式,而且不能忽视教科书中的一些细节
.参考书上不需要做三类问题:完全掌握的问题不必做,超出考试大纲的问题不必做,太奇怪的问题不必做
教师提问往往是相关知识、难点或学生容易犯错的地方当其他学生说话时,他们应该注意听,听和分析
一年级数学重要基础知识点相关 文章 :
★ 一年级数学的学习重点
★ 一年级数学重点知识点总结
★ 小学一年级数学重点知识点总结
★ 小学一年级数学知识点
★ 一年级数学知识点难点及学习方法总结
★ 一年级数学上册知识点学习
★ 一年级数学上册知识点
★ 小学一年级,数学学习方法与知识点总结
★ 各年级数学学习方法大全
J. 小学六年级数学应用题知识点归纳
小学六年级数学应用题知识点归纳
1 简单应用题
(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2 复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的`数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3、典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
(7)行程问题:
关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
;