当前位置:首页 » 基础知识 » 均匀数学基础知识
扩展阅读
钟馗哪个版本最经典 2024-11-20 04:36:52
怎么放弃同班同学的爱情 2024-11-20 04:29:16
被同学单删很生气怎么办 2024-11-20 04:27:07

均匀数学基础知识

发布时间: 2022-12-28 22:23:09

A. 数学基础知识有哪些

什么是数学基础知识
众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手. 概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来. 因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法. 一、从概念的产生背景着手,层层深入 对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它. 教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍? 这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题? 紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 . 在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解. 二、从概念的生活背景出发,创设学习情境 很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸. 等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中. 为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念: 阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当......>>
小学数学的基础知识有哪些
小学数学学习概述

数学学习主要是对学生数学思维能力的培养.这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学.

学习类型分析

1.方式性分类

(1)接受学习与发现学习

定义:将学习的内容以定论的形式呈现给学习者的学习方式.

模式:呈现材料—讲解分析—理解领会—反馈巩固

(2)发现学习

定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式.

模式:呈现材料—假设尝试—认知整合—反馈巩固.

2.知识性分类一

(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动.过程:选择—领会—习得——巩固

(2)技能学习

定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程.

过程:演示—模仿—练习—熟练—自动化

(3)问题解决学习

以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动.

提出问题—分析问题—解决问题—反思过程

3.知识性分类二

(1)概念性(陈述性)知识的学习

把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识.

概念学习:同化与形成.

利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成.概念形成是小学生获得数学概念的主要形式.

(2)技能性(程序性)知识的学习

小学数学技能主要是运算技能. 运算技能的形成分为三个阶段:

①认知阶段:“引导式”的尝试错误.从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征.②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确.③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率.

(3)问题解决(策略性知识)的学习

通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习.

小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性

尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一

定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别.

4.任务性分类

(1)记忆操作类学习

如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等.

(2)理解性的学习

如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题.

(3)探索性的学习

如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等.

小学生数学认知学习

一、小学生数学认知学习的基本特征

1.生活常识是小学生数学认知的起点

要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”.

2.小学生数学认知是一个主体的数学活动过程

数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力......>>
小学数学基础知识包括哪几个方面?
数学与计算、量与计量、百分数、比和比例、应用题、代数初步知识、几何初步知识、统计初步知识八大部分
初中数学基础知识点有哪些
初中数学基础知识大全:直角座标系与点的位置

1. 直角座标系中,点A(3,0)在y轴上。

2. 直角座标系中,x轴上的任意点的横座标为0。

3. 直角座标系中,点A(1,1)在第一象限。

4. 直角座标系中,点A(-1,1)在第二象限。

5. 直角座标系中,点A(-1,-1)在第三象限。

6. 直角座标系中,点A(1,-1)在第四象限。

初中数学基础知识大全:特殊三角函数值

1.cos30°=√3/2

2.sin2 60°+ cos2 60°= 1

3.2sin30°+ tan45°= 2

4.tan45°= 1

5.cos60°+ sin30°= 1

初中数学基础知识大全:圆的基本性质

1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆.

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。
数学的基础理论有哪些
“数与代数”领域中主要是最基本的数、式、方程(及不等式)和函数的内容.

⑴在顾及知识的纵向逻辑结构的前提下,突出重点,适当精简整合.

⑵螺旋上升地呈现重要的概念和思想,不断深化对它们的认识,例如:使方程和函数交替出现,即按一次方程“组”,一次函数,二次方程,二次函数的顺序螺旋上升.

⑶联系实际,体现知识的形成和应用过程,突出建立数学模型的思想.
初三数学基础知识有哪些?
方程,平面几何,概率

B. 程序员必备的一些数学基础知识

作为一个标准的程序员,应该有一些基本的数学素养,尤其现在很多人在学习人工智能相关知识,想抓住一波人工智能的机会。很多程序员可能连这样一些基础的数学问题都回答不上来。

作为一个傲娇的程序员,应该要掌握这些数学基础知识,才更有可能码出一个伟大的产品。

向量 向量(vector)是由一组实数组成的有序数组,同时具有大小和方向。一个n维向量a是由n个有序实数组成,表示为 a = [a1, a2, · · · , an]

矩阵

线性映射 矩阵通常表示一个n维线性空间v到m维线性空间w的一个映射f: v -> w

注:为了书写方便, X.T ,表示向量X的转置。 这里: X(x1,x2,...,xn).T,y(y1,y2,...ym).T ,都是列向量。分别表示v,w两个线性空间中的两个向量。A(m,n)是一个 m*n 的矩阵,描述了从v到w的一个线性映射。

转置 将矩阵行列互换。

加法 如果A和B 都为m × n的矩阵,则A和B 的加也是m × n的矩阵,其每个元素是A和B相应元素相加。 [A + B]ij = aij + bij .

乘法 如A是k × m矩阵和B 是m × n矩阵,则乘积AB 是一个k × n的矩阵。

对角矩阵 对角矩阵是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。一个n × n的对角矩阵A满足: [A]ij = 0 if i ̸= j ∀i, j ∈ {1, · · · , n}

特征值与特征矢量 如果一个标量λ和一个非零向量v满足 Av = λv, 则λ和v分别称为矩阵A的特征值和特征向量。

矩阵分解 一个矩阵通常可以用一些比较“简单”的矩阵来表示,称为矩阵分解。

奇异值分解 一个m×n的矩阵A的奇异值分解

其中U 和V 分别为m × m和n×n 的正交矩阵,Σ为m × n的对角矩阵,其对角 线上的元素称为奇异值(singular value)。

特征分解 一个n × n的方块矩阵A的特征分解(Eigendecomposition)定义为

其中Q为n × n的方块矩阵,其每一列都为A的特征向量,^为对角阵,其每一 个对角元素为A的特征值。 如果A为对称矩阵,则A可以被分解为

其中Q为正交阵。

导数 对于定义域和值域都是实数域的函数 f : R → R ,若f(x)在点x0 的某个邻域∆x内,极限

存在,则称函数f(x)在点x0 处可导, f'(x0) 称为其导数,或导函数。 若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。连续函数不一定可导,可导函数一定连续。例如函数|x|为连续函数,但在点x = 0处不可导。

加法法则
y = f(x),z = g(x) 则

乘法法则

链式法则 求复合函数导数的一个法则,是在微积分中计算导数的一种常用方法。若 x ∈ R,y = g(x) ∈ R,z = f(y) ∈ R ,则

Logistic函数是一种常用的S形函数,是比利时数学家 Pierre François Verhulst在 1844-1845 年研究种群数量的增长模型时提出命名的,最初作为一种生 态学模型。 Logistic函数定义为:

当参数为 (k = 1, x0 = 0, L = 1) 时,logistic函数称为标准logistic函数,记 为 σ(x) 。

标准logistic函数在机器学习中使用得非常广泛,经常用来将一个实数空间的数映射到(0, 1)区间。标准 logistic 函数的导数为:

softmax函数是将多个标量映射为一个概率分布。对于 K 个标量 x1, · · · , xK , softmax 函数定义为

这样,我们可以将 K 个变量 x1, · · · , xK 转换为一个分布: z1, · · · , zK ,满足

当softmax 函数的输入为K 维向量x时,

其中,1K = [1, · · · , 1]K×1 是K 维的全1向量。其导数为

离散优化和连续优化 :根据输入变量x的值域是否为实数域,数学优化问题可以分为离散优化问题和连续优化问题。

无约束优化和约束优化 :在连续优化问题中,根据是否有变量的约束条件,可以将优化问题分为无约束优化问题和约束优化问题。 ### 优化算法

全局最优和局部最优

海赛矩阵

《运筹学里面有讲》,前面一篇文章计算梯度步长的时候也用到了: 梯度下降算法

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

梯度下降法
梯度下降法(Gradient Descent Method),也叫最速下降法(Steepest Descend Method),经常用来求解无约束优化的极小值问题。

梯度下降法的过程如图所示。曲线是等高线(水平集),即函数f为不同常数的集合构成的曲线。红色的箭头指向该点梯度的反方向(梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达函数f 值的局部最优解。

梯度上升法
如果我们要求解一个最大值问题,就需要向梯度正方向迭代进行搜索,逐渐接近函数的局部极大值点,这个过程则被称为梯度上升法。

概率论主要研究大量随机现象中的数量规律,其应用十分广泛,几乎遍及各个领域。

离散随机变量

如果随机变量X 所可能取的值为有限可列举的,有n个有限取值 {x1, · · · , xn}, 则称X 为离散随机变量。要了解X 的统计规律,就必须知道它取每种可能值xi 的概率,即

称为离散型随机变量X 的概率分布或分布,并且满足

常见的离散随机概率分布有:

伯努利分布

二项分布

连续随机变量
与离散随机变量不同,一些随机变量X 的取值是不可列举的,由全部实数 或者由一部分区间组成,比如

则称X 为连续随机变量。

概率密度函数
连续随机变量X 的概率分布一般用概率密度函数 p(x) 来描述。 p(x) 为可积函数,并满足:

均匀分布 若a, b为有限数,[a, b]上的均匀分布的概率密度函数定义为

正态分布 又名高斯分布,是自然界最常见的一种分布,并且具有很多良好的性质,在很多领域都有非常重要的影响力,其概率密度函数为

其中, σ > 0,µ 和 σ 均为常数。若随机变量X 服从一个参数为 µ 和 σ 的概率分布,简记为

累积分布函数
对于一个随机变量X,其累积分布函数是随机变量X 的取值小于等于x的概率。

以连续随机变量X 为例,累积分布函数定义为:

其中p(x)为概率密度函数,标准正态分布的累计分布函数:

随机向量
随机向量是指一组随机变量构成的向量。如果 X1, X2, · · · , Xn 为n个随机变量, 那么称 [X1, X2, · · · , Xn] 为一个 n 维随机向量。一维随机向量称为随机变量。随机向量也分为离散随机向量和连续随机向量。 条件概率分布 对于离散随机向量 (X, Y) ,已知X = x的条件下,随机变量 Y = y 的条件概率为:

对于二维连续随机向量(X, Y ),已知X = x的条件下,随机变量Y = y 的条件概率密度函数为

期望 对于离散变量X,其概率分布为 p(x1), · · · , p(xn) ,X 的期望(expectation)或均值定义为

对于连续随机变量X,概率密度函数为p(x),其期望定义为

方差 随机变量X 的方差(variance)用来定义它的概率分布的离散程度,定义为

标准差 随机变量 X 的方差也称为它的二阶矩。X 的根方差或标准差。

协方差 两个连续随机变量X 和Y 的协方差(covariance)用来衡量两个随机变量的分布之间的总体变化性,定义为

协方差经常也用来衡量两个随机变量之间的线性相关性。如果两个随机变量的协方差为0,那么称这两个随机变量是线性不相关。两个随机变量之间没有线性相关性,并非表示它们之间独立的,可能存在某种非线性的函数关系。反之,如果X 与Y 是统计独立的,那么它们之间的协方差一定为0。

随机过程(stochastic process)是一组随机变量Xt 的集合,其中t属于一个索引(index)集合T 。索引集合T 可以定义在时间域或者空间域,但一般为时间域,以实数或正数表示。当t为实数时,随机过程为连续随机过程;当t为整数时,为离散随机过程。日常生活中的很多例子包括股票的波动、语音信号、身高的变化等都可以看作是随机过程。常见的和时间相关的随机过程模型包括贝努力过程、随机游走、马尔可夫过程等。

马尔可夫过程 指一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态。

其中X0:t 表示变量集合X0, X1, · · · , Xt,x0:t 为在状态空间中的状态序列。

马尔可夫链 离散时间的马尔可夫过程也称为马尔可夫链(Markov chain)。如果一个马尔可夫链的条件概率

马尔可夫的使用可以看前面一篇写的有意思的文章: 女朋友的心思你能猜得到吗?——马尔可夫链告诉你 随机过程还有高斯过程,比较复杂,这里就不详细说明了。

信息论(information theory)是数学、物理、统计、计算机科学等多个学科的交叉领域。信息论是由 Claude Shannon最早提出的,主要研究信息的量化、存储和通信等方法。在机器学习相关领域,信息论也有着大量的应用。比如特征抽取、统计推断、自然语言处理等。

在信息论中,熵用来衡量一个随机事件的不确定性。假设对一个随机变量X(取值集合为C概率分布为 p(x), x ∈ C )进行编码,自信息I(x)是变量X = x时的信息量或编码长度,定义为 I(x) = − log(p(x)), 那么随机变量X 的平均编码长度,即熵定义为

其中当p(x) = 0时,我们定义0log0 = 0 熵是一个随机变量的平均编码长度,即自信息的数学期望。熵越高,则随机变量的信息越多;熵越低,则信息越少。如果变量X 当且仅当在x时 p(x) = 1 ,则熵为0。也就是说,对于一个确定的信息,其熵为0,信息量也为0。如果其概率分布为一个均匀分布,则熵最大。假设一个随机变量X 有三种可能值x1, x2, x3,不同概率分布对应的熵如下:

联合熵和条件熵 对于两个离散随机变量X 和Y ,假设X 取值集合为X;Y 取值集合为Y,其联合概率分布满足为 p(x, y) ,则X 和Y 的联合熵(Joint Entropy)为

X 和Y 的条件熵为

互信息 互信息(mutual information)是衡量已知一个变量时,另一个变量不确定性的减少程度。两个离散随机变量X 和Y 的互信息定义为

交叉熵和散度 交叉熵 对应分布为p(x)的随机变量,熵H(p)表示其最优编码长度。交叉熵是按照概率分布q 的最优编码对真实分布为p的信息进行编码的长度,定义为

在给定p的情况下,如果q 和p越接近,交叉熵越小;如果q 和p越远,交叉熵就越大。

C. 数学基础知识

七年级到九年级数学必记重要知识点
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:
如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d>R+r
②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r)
⑤两圆内含 d<R-r(R>r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角

D. 怎样才能学好数学

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

E. 数学基础知识

数学是一门应用性极强的工具学科,所以在初、高中阶段,数学一直都被视为三大主要学科之一。下面我给你分享数学基础知识,欢迎阅读。

数学基础知识平面图形的认识和计算

■三角形

1、三角形是由三条线段围成的图形.它具有稳定性.从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高.一个三角形有三条高.

2、三角形的内角和是180度

3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形

4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形

■四边形

1、四边形是由四条线段围成的图形.

2、任意四边形的内角和是360度.

3、只有一组对边平行的四边形叫梯形.

4、两组对边分别平行的四边形叫平行四边形,它容易变形.长方形、正方形是特殊的平行四边形;正方形是特殊的长方形.

■圆

圆是平面上的一种曲线图形.同圆或等圆的直径都相等,直径等于半径的2倍.圆有无数条对称轴.圆心确定圆的位置,半径确定圆的大小.

■扇形

由圆心角的两条半径和它所对的弧围成的图形.扇形是轴对称图形.

■轴对称图形

1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴.

2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等.

■周长和面积

1、平面图形一周的长度叫做周长.

2、平面图形或物体表面的大小叫做面积.

3、常见图形的周长和面积计算公式

数学基础知识之比和比例

■比和比例应用题

在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.

■解题策略

按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答

■正、反比例应用题的解题策略

1、审题,找出题中相关联的两个量

2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.

3、设未知数,列比例式

4、解比例式

5、检验,写答语

数学基础知识之简易方程

■用字母表示数

用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.

■用字母表示数的注意事项

1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写.数与数相乘,乘号不能省略.

2、当1和任何字母相乘时,“ 1” 省略不写.

3、数字和字母相乘时,将数字写在字母前面.

■含有字母的式子及求值

求含有字母的式子的值或利用公式求值,应注意书写格式。

■等式与方程

表示相等关系的式子叫等式.

含有未知数的等式叫方程.

判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.

■方程的解和解方程

使方程左右两边相等的未知数的值,叫方程的解.

求方程的解的过程叫解方程.

■在列方程解文字题时,

如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.

■解方程的方法

1、直接运用四则运算中各部分之间的关系去解.如x-8=12

加数+加数=和,一个加数=和-另一个加数。

被减数-减数=差,减数=被减数-差,被减数=差+减数。

被乘数×乘数=积,一个因数=积÷另一个因数。

被除数÷除数=商,除数=被除数÷商,被除数=除数×商。

2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41。先把3x看作一个数,然后再解.

3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.

4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20。先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.

F. 初中数学之基础知识点总结

有关初中数学之基础知识点总结

在日常生活或是工作学习中,大家一定都或多或少地接触过一些化学知识,下面是我为大家收集的有关初中数学之基础知识点总结相关内容,仅供参考,希望能够帮助到大家。

一、数与代数

数与式:

1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN 除法一样。

整式的.乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:

①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:

①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

直线的位置与常数的关系

①k>0则直线的倾斜角为锐角

②k<0则直线的倾斜角为钝角

③图像越陡,|k|越大

④b>0直线与y轴的交点在x轴的上方

⑤b<0直线与y轴的交点在x轴的下方

;