1. 初三数学圆知识点总结
圆是初三数学几何部分的重要内容,特别是切线的判定与性质的考题已成为多地中考数学几何压轴题的热点题型。下面我为大家整理了初三数学圆知识点,供大家参考。
一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点、直线、圆和圆的位置关系
1.点和圆的位置关系
①点在圆内<=>点到圆心的距离小于半径;
②点在圆上<=>点到圆心的距离等于半径;
③点在圆外<=>点到圆心的距离大于半径。
2.过三点的圆不在同一直线上的三个点确定一个圆。
3.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
4.直线和圆的位置关系
相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。
相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
相离:直线和圆没有公共点叫这条直线和圆相离。
5.直线和圆位置关系的性质和判定
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
①直线l和⊙O相交<=>d<>;
②直线l和⊙O相切<=>d=r;
③直线l和⊙O相离<=>d>r。
三、正多边形和圆
1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。
2、正多边形与圆的关系:
(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。
(2)这个圆是这个正多边形的外接圆。
3、正多边形的有关概念:
(1)正多边形的中心——正多边形的外接圆的圆心。
(2)正多边形的半径——正多边形的外接圆的半径。
(3)正多边形的边心距——正多边形中心到正多边形各边的距离。
(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。
4、正多边形性质:
(1)任何正多边形都有一个外接圆。
(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。
四、有关圆的公式
(1)给直径求圆的周长:c=πd。
(2)给半径求圆的周长:c=2πr。
(3)给直径求圆的半径:r=d÷2。
(4)给周长求圆的半径:r=c÷π÷2。
(5)给半径求圆的直径:d=2r。
(6)给周长求圆的直径:d=c÷π。
(7)给直径求半圆周长:c=πr+d。
(8)给半径求半圆周长:c=πr+2r。
(9)给半径求圆的面积:s=πr²。
(10)给直径求圆的面积:s=π(d÷2)²。
(11)给周长求圆的面积:s=π(c÷π÷2)²。
(12)给半径求半圆面积:s=πr²÷2。
(13)给直径求半圆面积:s=π(d÷2)²÷2。
(14)给大圆和小圆半径求圆环面积:s=π(R²-r²)。
(15)给大圆和小圆半径求圆环面积:s=πR²-πr²。
2. 高中数学平面解析几何知识点归纳
高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!
目录
高中数学平面解析几何知识点
平面解析几何基本理论
高中数学平面几何解析
高中数学平面几何的学习技巧
高中数学平面解析几何知识点平面解析几何初步:
①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。
②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的'集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中 热点 为圆的切线问题。③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学平面解析几何知识点
平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
坐标
在解析几何当中,平面给出了坐标系,即每个点都有对应的一对实数坐标。最常见的是笛卡儿坐标系,其中,每个点都有x-坐标对应水平位置,和y-坐标对应垂直位置。这些常写为有序对(x,y)。这种系统也可以被用在三维几何当中,空间中的每个点都以多元组呈现(x,y,z)。坐标系也以 其它 形式出现。在平面中最常见的另类坐标系是极坐标系,其中每个点都以从原点出发的半径r和角度θ表示。在三维空间中,最常见的另类坐标系统是圆柱坐标系和球坐标系。
曲线方程
在解析几何当中,任何方程都包含确定面的子集,即方程的解集。例如,方程y=x在平面上对应的是所有x-坐标等于y-坐标的解集。这些点汇集成为一条直线,y=x被称为这道方程的直线。总而言之,线性方程中x和y定义线,一元二次方程定义圆锥曲线,更复杂的方程则阐述更复杂的形象。通常,一个简单的方程对应平面上的一条曲线。但这不一定如此:方程x=x对应整个平面,方程x2+y2=0只对应(0,0)一点。在三维空间中,一个方程通常对应一个曲面,而曲线常常代表两个曲面的交集,或一条参数方程。方程x2+y2=r代表了是半径为r且圆心在(0,0)上的所有圆。
距离和角度
在解析几何当中,距离、角度等几何概念是用公式来表达的。这些定义与背后的欧几里得几何所蕴含的主旨相符。例如,使用平面笛卡儿坐标系时,两点A(x1,y1),B(x2,y2)之间的距离d(又写作|AB|被定义为
上述可被认为是一种勾股定理的形式。类似地,直线与水平线所成的角可以定义为
其中m是线的斜率。
变化
变化可以使母方程变为新方程,但保持原有的特性。
交集
主题问题编辑解析几何中的重要问题:
向量空间
平面的定义
距离问题
点积求两个向量的角度
外积求一向量垂直于两个已知向量(以及它们的空间体积)
平面解析几何基本理论
平面解析几何初步综合检测
高中数学平面几
1圆的知识应用
圆的方程有这两个表达方式,
(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标,r是圆的半径。
(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2+4F>0),圆心坐标为:(-2/D,-2/E),半径为:r=。
例:设f(x)=(x-2005)(x+2006)的图像与坐标有三个交点A、B、C,则过圆与坐标轴的另一交点D坐标为多少?我们可以进行如下分析:
若求得函数f(x)=(x-2005)(x+2006)与坐标轴的交点A(2005,0)B(-2006,0),C(0,-2005×2006),然后求出A、B、C三点的圆的方程,最后求圆与坐标轴的另一交点显然运算量过大,若考虑过三点A、B、C的圆与O点的关系,设另一交点D,则可借助相交弦定理:|OA|·|OB|=|OC|·|OD|,可以得到2005×2006=2005×2006·|OD|,则|OD|=1,因此D点的坐标为(0,1),因此在做题时应当注意思维的发散运用。
3.2双曲线的知识应用
由双曲线的标准方程为:
(1)-=1(a>1,b>0)焦点为(±c,0)
(2)-=1(a>0,b>0)焦点为(0,±c)
A、b、c的关系为:c2=a2+b2
双曲线的渐近线方程:y=±x
例:已知双曲线-=1(a>1,b>0)的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=|PF2|。求双曲线离心率e的最大值,并写出此时双曲线的渐近线方程。我们可以这样考虑:
由|PF1|=3|PF2|,|PF1|-|PF2|=2a得到|PF2|=a,c-a≤|PF2|,则c≤2a,所以e=≤2,当e取最大值2时,==
所以双曲线的渐近线方程为:y=±
3.3线性关系证明应用
如下图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F,证明∠DEN=∠F。分析如下:
以M为原点,AB为X轴,以垂直方向线段为Y轴建立坐标系,可以把CD看做是圆周上的动点,设AD=BC=r,则C点可以看做是以B为圆心,r为半径的圆周上的动点,D点同样对待,这样我们就可以得到:
C(rcosθ,rsinθ)、D(-a+rcosφ,rsinφ),由此可得,
N(,)所以=tan
从而证明出∠DEN=∠F。
何的学习技巧
高中数学平面几何的学习技巧几何学被广泛应用在科学研究和生活建筑的各个方面,要学好平面几何,可以从以下几个方面把握相关技巧:
第一,在概念和定理的学习中,概念要学会转化成几何语言来表述,定理要分清适用条件和适用图形。例如一个简单的例子,对于线段中点的定义,我们可以转化成这样的几何方式:点A、B、C在同一直线上,由于AC=BC,所以C点是线段中点,我们还可以倒过来想,若C是中点,可以得到2AC=2BC=AB,这样我们就能清楚地看到其包含的计算关系。
第二,在例题和练习题的学习中,例题能够促进课文中基本概念、定理等基础知识的掌握,练习题则可以考验学生对其运用的灵活度,若能有效地进行练习,就能达到举一反三的效果。
知识点归纳相关 文章 :
★ 高中数学复习方法及解析几何知识点整理
★ 高中数学必考知识点归纳整理
★ 怎样学习高中数学平面解析几何怎样才最有效
★ 高一数学解析几何题答题全攻略
★ 高中数学必考知识点归纳
★ 高考数学知识点归纳整理
★ 高中数学考点整理归纳
★ 高中数学知识点总结
★ 高考数学知识点整理
★ 高考数学复习知识点整理
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();3. 初三数学圆知识点归纳有哪些
数学几何中圆是比较重要的一部分,所以对圆进行复习是很有必要的。以下是我分享给大家的初三数学圆知识点归纳,希望可以帮到你!
初三数学圆知识点归纳
一、圆的相关概念
1、圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
二、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB)
(2)直径
经过圆心的弦叫做直径。(如途中的CD)
直径等于半径的2倍。
(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
三、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径 平分弦 知二推三
平分弦所对的优弧
平分弦所对的劣弧
四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d
d=r 点P在⊙O上;
d>r 点P在⊙O外。
八、过三点的圆
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
九、反证法
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交 d
直线l与⊙O相切 d=r;
直线l与⊙O相离 d>r;
十一、切线的判定和性质
1、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理
圆的切线垂直于经过切点的半径。
十二、切线长定理
1、切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
十三、三角形的内切圆
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十四、圆和圆的位置关系
1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距
两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离 d>R+r
两圆外切 d=R+r
两圆相交 R-r
两圆内切 d=R-r(R>r)
两圆内含 dr)
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十五、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十六、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
十七、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
十八、弧长和扇形面积
1、弧长公式
n°的圆心角所对的弧长l的计算公式为 2、扇形面积公式
其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的地面半径。
初中几何掌握知识点然后灵活应用比较重要,希望大家牢记知识点然后灵活应用。
初三数学重点知识点归纳
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48 定理 四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理 n边形的内角的和等于(n-2)×180°
51 推论 任意多边的外角和等于360°
52 平行四边形性质定理1 平行四边形的对角相等
53 平行四边形性质定理2 平行四边形的对边相等
54 推论 夹在两条平行线间的平行线段相等
55 平行四边形性质定理3 平行四边形的对角线互相平分
56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60 矩形性质定理1 矩形的四个角都是直角
61 矩形性质定理2 矩形的对角线相等
62 矩形判定定理1 有三个角是直角的四边形是矩形
63 矩形判定定理2 对角线相等的平行四边形是矩形
64 菱形性质定理1 菱形的四条边都相等
65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66 菱形面积=对角线乘积的一半,即S=(a×b)÷2
67 菱形判定定理1 四边都相等的四边形是菱形
68 菱形判定定理2 对角线互相垂直的平行四边形是菱形
69 正方形性质定理1 正方形的四个角都是直角,四条边都相等
70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71 定理1 关于中心对称的两个图形是全等的
72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75 等腰梯形的两条对角线相等
76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77 对角线相等的梯形是等腰梯形
78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
初三数学期末易错点总结
函数部分:
易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,一般情况下有几个的待定系数就要几个点的坐标代入。
易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点5:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点6:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
圆:
易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。
易错点4:与圆有关的位置关系把握好 d 与 R之间的关系求解。
易错点5:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角,90 度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点6:圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
旋转与相似:
易错点1:对于常见旋转模型不熟悉,不能通过题目判断出旋转特征。
易错点2:相似对应关系不明确时注意分类讨论。
易错点3:线段乘积转比例时,注意比例的顺序。
易错点4:常见几何条件运用要熟练、比如中点、角平分线、垂直平分线、等腰直角三角形、等边三角形、线段的和差,角度的二倍关系、平行等条件,要熟记相应的辅助线。
易错点5:过于依赖图形,从图中看着像的结论揪住不放,但实际是错误的。
易错点6:旋转方向要看清楚,分清顺时针和逆时针。
锐角三角函数:
易错点1:应用三角函数定义时,要保证直角三角形这个前提.
易错点2:在求解直角三角形的有关问题时,要画出图形,以利于分析解决问题.
易错点3:选择关系式时,要尽量利用原始数据,以防止“累积误差”.
易错点4:遇到不是直角三角形的图形时,要添加适当的辅助线,将其转化为直角三角形求解.
猜你喜欢:
1. 中考数学知识点总结
2. 初三数学知识点整理
3. 初三数学重点知识点
4. 初中数学知识点归纳
5. 初三数学备战中考知识点大全
4. 高中数学解析几何知识点是什么啊
目录:
基础篇
第一讲 平面解析几何初步
1.1 直线与(直线的)方程
1.2 圆与(圆的)方程
1.3 空间直角坐标系
高考热点题型评析与探索
本讲测试题
第二讲 椭圆
2.1 椭圆
2.2 直线与椭圆的关系
高考热点题型评析与探索
本讲测试题
第三讲 抛物线
3.1 抛物线
3.2 直线与抛物线的关系
高考热点题型评析与探索
本讲测试题
第四讲 双曲线
4.1 双曲线
4.2 直线与双曲线的关系
高考热点题型评析与探索
本讲测试题
综合应用篇
解析几何的理论应用
一、集合问题
二、方程、不等式问题
三、最大(小)值、取值范围问题
四、函数问题
理论应用综合测试题
解析几何的实际应用
一、直线型应用题
二、圆型应用题
三、椭圆型应用题
四、抛物线型应用题
五、双曲线型应用题
实际应用综合测试题
资料来源:龙门专题 高中数学---解析几何
5. 初二数学几何知识点归纳有哪些
数学的几何题是同学们的一大死穴,想要学好初二数学几何需要找到正确的学习方法。为了帮助大家更好的学习初二数学几何,下面是我分享给大家的初二数学几何知识点,希望大家喜欢!
初二数学几何知识点一
四边形(含多边形)知识点、概念总结
一、平行四边形的定义、性质及判定
1. 两组对边平行的四边形是平行四边形。
2. 性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3. 判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4. 对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1. 定义:有一个角是直角的平行四边形叫做矩形
2. 性质:矩形的四个角都是直角,矩形的对角线相等
3. 判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4. 对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1. 定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2. s菱=争6(n、6分别为对角线长)
3. 判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4. 对称性:菱形是轴对称图形也是中心对称图形
四、正方形定义、性质及判定
1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形
2. 性质:
(1)正方形四个角都是直角,四条边都相等
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形
(4)正方形的对角线与边的夹角是45°
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形
3. 判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等
(2)先判定一个四边形是菱形,再判定出有一个角是直角
4. 对称性:正方形是轴对称图形也是中心对称图形
五、梯形的定义、等腰梯形的性质及判定
1. 定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯
形.一腰垂直于底的梯形是直角梯形
2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
3. 等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形
4. 对称性:等腰梯形是轴对称图形
六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。
八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。
九、多边形
1. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2. 多边形的内角:多边形相邻两边组成的角叫做它的内角。
3. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
4. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5. 多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
6. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
7. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
8. 公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
9. 多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
10. 多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形
(2)n边形共有n(n-3)/2条对角线
初二数学几何知识点二
圆知识点、概念总结
1. 不在同一直线上的三点确定一个圆。
2. 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ① (不是直径)的直径垂直于弦,并且平分弦所对的两条弧
② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3. 圆是以圆心为对称中心的中心对称图形
4. 圆是定点的距离等于定长的点的集合
5. 圆的内部可以看作是圆心的距离小于半径的点的集合
6. 圆的外部可以看作是圆心的距离大于半径的点的集合
7. 同圆或等圆的半径相等
8. 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9. 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11. 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12. ① 直线L和⊙O相交 d
② 直线L和⊙O相切 d=r
③ 直线L和⊙O相离 d>r
13. 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14. 切线的性质定理:圆的切线垂直于经过切点的半径
15. 推论1 经过圆心且垂直于切线的直线必经过切点
16. 推论2 经过切点且垂直于切线的直线必经过圆心
17. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18. 圆的外切四边形的两组对边的和相等 ,外角等于内对角
19. 如果两个圆相切,那么切点一定在连心线上
20. ① 两圆外离 d>R+r
② 两圆外切 d=R+r
③ 两圆相交 R-rr)
④ 两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21. 定理:相交两圆的连心线垂直平分两圆的公共弦
22. 定理:把圆分成n(n≥3):
(1)依次连结各分点所得的多边形是这个圆的内接正n边形
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23. 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24. 正n边形的每个内角都等于(n-2)×180°/n
25. 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26. 正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27. 正三角形面积√3a/4 a表示边长
28. 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29. 弧长计算公式:L=n兀R/180
30. 扇形面积公式:S扇形=n兀R^2/360=LR/2
31. 内公切线长= d-(R-r) 外公切线长= d-(R+r)
32. 定理:一条弧所对的圆周角等于它所对的圆心角的一半
33. 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35. 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初二数学几何知识点三
三角形知识点、概念总结
1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形的分类
3. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7. 高线、中线、角平分线的意义和做法
8. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9. 三角形内角和定理:三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于和它不相邻的两个内角和
推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半
10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11. 三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
猜你喜欢:
1. 初三上数学知识点归纳
2. 初中数学知识点归纳
3. 高考必备数学公式知识点
4. 初中数学圆的知识点归纳
5. 3年级数学归纳知识点有哪些
6. 初中数学几何知识点有哪些是比较重要的
每个知识点都是很重要的,建议你到 火星学习网 看同步教学视频,希望可以帮到你。我去看了,挺有帮助的