当前位置:首页 » 基础知识 » 数学旋转知识点
扩展阅读
新手怎么看基础图纸 2024-11-20 01:14:53

数学旋转知识点

发布时间: 2022-12-28 18:13:24

① 九年级数学上册"旋转"知识点

一、本节学习指导

本节我们重点了解旋转、平移性质,其次还有一个重点是点的对称变换。本节有配套免费学习视频。

二、知识要点

1、旋转:将一个图形绕着某点O转动一个角度的变换叫做旋转。其中,O叫做旋转中心,转动的角度叫做旋转角。

2、旋转性质

① 旋转后的图形与原图形全等

② 对应线段与O形成的角叫做旋转角

③ 各旋转角都相等

3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。其中,该直线的方向叫做平移方向,该距离叫做平移距离。

4、平移性质

① 平移后的图形与原图形全等

② 两个图形的对应边连线的线段平行相等(等于平行距离)

③ 各组对应线段平行且相等

5、中心对称与中心对称图形

① 中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。

② 中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。其中,这个点叫做该图形的对称中心。

6、轴对称与轴对称图形

(1)、轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。其中,这条轴叫做对称轴。

注:轴对称的性质:① 两个图形全等;② 对应点连线被对称轴垂直平分

(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。

7、点的对称变换

(1)、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P‘(-x,-y)

(2)、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

(3)、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P‘(-x,y)

(4)、关于直线y=x对称

两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即:P(x,y)关于直线

y=x的对称点为P’(y,x)

(5)、两个点关于直线y=-x对称时,横坐标与纵坐标与之前完全相反,即:P(x,y)关于直线y=x的对称点为P‘(-y,-x)

注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。

② 小学二年级数学知识点归纳整理

每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些 二年级数学 知识点的学习资料,希望对大家有所帮助。

小学二年级上册数学知识点归纳

1.角的动态定义

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

2.角的种类

角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

3.乘法的运算定律

整数的乘法运算满足:交换律,结合律, 分配律,消去律。

随着数学的发展, 运算的对象从整数发展为更一般群。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

二年级数学知识点之公式大全

1、长方形的周长=(长+宽)×2C=(a+b)×2

2、正方形的周长=边长×4C=4a

3、长方形的面积=长×宽S=ab

4、正方形的面积=边长×边长S=a。a=a

5、三角形的面积=底×高÷2S=ah÷2

6、平行四边形的面积=底×高S=ah

7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2

8、直径=半径×2d=2r半径=直径÷2r=d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr

10、圆的面积=圆周率×半径×半径?=πr

11、长方体的表面积=(长×宽+长×高+宽×高)×2

12、长方体的体积=长×宽×高V=abh

13、正方体的表面积=棱长×棱长×6S=6a

14、正方体的体积=棱长×棱长×棱长V=a。a。a=a

15、圆柱的侧面积=底面圆的周长×高S=ch

16、圆柱的表面积=上下底面面积+侧面积

S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch

17、圆柱的体积=底面积×高V=Sh

V=πrh=π(d÷2)h=π(C÷2÷π)h

小学二年级下册数学知识点及练习题

知识点:

1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

3、旋转:物体绕着某一点或轴进行圆周运动的现象就是旋转。

练习题:

一、填一填

1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形叫做()图形,这条直线就是()

2、长方形有()条对称轴,正方形有()条对称轴。

3、小明向前走了3米,是()现象。

二、判断

1、圆有无数条对称轴。()

2、张叔叔在笔直的公路上开车,方向盘的运动是旋转现象。()

3、所有的三角形都是轴对称图形。()

参考答案:

一、填一填

1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形叫做( 轴对称 )图形,这条直线就是( 对称轴 )

2、长方形有( 两 )条对称轴,正方形有( 四 )条对称轴。

3、小明向前走了3米,是( 移动 )现象。

二、判断

1、圆有无数条对称轴。( √ )

2、张叔叔在笔直的公路上开车,方向盘的运动是旋转现象。( √ )

3、所有的三角形都是轴对称图形。( × )


小学二年级数学知识点归纳整理相关 文章 :

★ 小学二年级上册数学重点知识整理

★ 小学二年级上册数学知识点归纳

★ 二年级数学上册概念知识点整理

★ 二年级数学考试知识点整理汇总

★ 小学二年级数学学习方法归纳总结

★ 二年级数学知识点

★ 二年级数学学习方法及重难知识点总结

★ 二年级数学下册知识点知识归纳(2)

★ 一二年级数学知识点

★ 有关小学二年级的数学学习方法整理

③ 初二数学知识点归纳整理

学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二下册数学知识点归纳

第一章一元一次不等式和一元一次不等式组

一、不等关系

1、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式.

2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.

3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.

非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0

非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0

二、不等式的基本性质

1、掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c,a-c>b-c.

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果a>b,并且c>0,那么ac>bc,.

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果a>b,并且c<0,那么ac

2、比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:

a>b<===>a-b>0

a=b<===>a-b=0

aa-b<0

(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.

三、不等式的解集:

1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.

2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.

3、不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:

①边界:有等号的是实心圆圈,无等号的是空心圆圈;

②方向:大向右,小向左

八年级 上册期末数学复习资料

第一章勾股定理

1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。

第二章实数

1.平方根和算术平方根的概念及其性质:

(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

(2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。

2.立方根的概念及其性质:

(1)概念:若,那么是的立方根,记作:;

(2)性质:①;②;③=

3.实数的概念及其分类:

(1)概念:实数是有理数和无理数的统称;

(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。

5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。

第三章图形的平移与旋转

1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3.作平移图与旋转图。

八年级数学 学习方法技巧

自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

自信才能自强

在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。


初二数学知识点归纳整理相关 文章 :

★ 初二数学知识点复习整理

★ 初二数学知识点归纳

★ 初二数学知识点归纳上册人教版

★ 八年级数学知识点整理归纳

★ 八年级下册数学知识点整理

★ 初二数学上册知识点总结

★ 初二数学知识点整理

★ 初二数学重点知识归纳整理

★ 初二数学知识点归纳总结

★ 初二数学知识点整理归纳

④ 数学旋转的知识点提纲

数学旋转的知识点提纲1

1、定义

把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)

多做题是学好初中数学的关键

想要学好初中数学,就要多做数学题。只有学生掌握了各种各样的题型,那么你对于初中数学的`解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开始的时候,可以从最简单的基础题入手,学生最好是以课本上的习题为主,一定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好准备。然后在开始做一些课外的有难度的习题,目的是为了帮助学生开拓自己的思路,提高自己分析能力。

学数学的方法有哪些:

抓好预习环节预习

这是上课前做好接受新知识的准备过程。有些学生由于没有预习习惯,对老师一堂课要讲的内容一无所知,坐等教师讲课,显得呆板被动。有些学生虽能预习,但看起书来却似走马观花,,这种预习一点也达不到效果。

认真做题

课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

及时纠错

课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

总结那些相似的数学题目

当我们养成了总结归纳的习惯,那么初一的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。

同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初一数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初一学生不会做到这一点那么久而久之,不会的数学题目还是不会。

数学旋转的知识点提纲2

1. 图形的旋转:在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转。这个定点称为旋转中心,旋转的角度称为旋转角。

注意:图形旋转后一对对应点与旋转中心的连线就是旋转角。图形的旋转不改变图形的形状、大小,只改变图形的位置.

2. 旋转的基本性质

(1)旋转前、后的图形全等

(2)对应点到旋转中心的距离相等

(3)每一对对应点与旋转中心的连线所成的角彼此相等.

(4)图形的旋转是由旋转中心和旋转的角度决定.

3. 旋转的要素:旋转中心,旋转方向,旋转角度;

4. 明白顺时针旋转和逆时针旋转

5. 中心对阵

中心对称定义:把一个图形绕着某一点旋转180度,如果它能与另一个图形重合,就说这两个图形关于这个点成中心对称. 所有的中心对称图形都是旋转对称图形。

中心对称的性质:

(1)中心对称的两个图形是全等图形

(2)关于中心对称的两个图形,对称点连线都经过对称中心且被对称中心平分

(3)关于中心对称的两个图形,对称线段平行且相等

中心对称与中心对称图形是两个既有联系又有区别的概念

区别: 中心对称指两个全等图形的相互位置关系; 中心对称图形指一个图形本身成中心对称。

联系: 如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形

如果将中心对称图形,把对称的部分看成两个图形,则它们是关于中心对称。

6. 轴对称

定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴;这时,我们也说这个图形关于这条直线对称。比如说圆、正方形等。例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴. 圆有无数条对称轴,都是经过圆心的直线。

要特别注意线段,有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线.

性质:

(1)对称轴是一条直线。

(2)垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

(3)在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

(4)在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

(5)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

(6)图形对称。

7.总结

轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。

现将教材中常见的图形归类如下:

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等。

只是轴对称图形的有:射线,角?等腰三角形,等边三角形,等腰梯形等。

只是中心对称图形的有:平行四边形等;中心对称的多边形很多,如边数为偶数的正多边形都是中心对称图形。

既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。

轴对称图形中心对称图形有一条对称轴——直线有一个对称中心图形沿轴对折图形绕这个点旋转180度对称对折部分与另一部分重合旋转后与原图重合

数学旋转的知识点提纲3

一、平移

1、定义

在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

2、性质

平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

二、旋转

1、定义

在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

2、性质

旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

⑤ 初三数学知识点整理归纳

为了方便大家系统的复习初三数学的重要知识点,现将我整理归纳的初三数学知识点分享出来,供参考。

旋转的相关知识点

1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角。如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。

2.旋转的性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前后的图形全等。

3.作图:

在画旋转图形时,要把握旋转中心与旋转角这两个元素。确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。

作图的步骤:

(1)连接图形中的每一个关键点与旋转中心;

(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);

(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;

(4)连接所得到的各对应点。

二次函数

(一)二次函数的三种表达式

二次函数的一般式为:y=ax²+bx+c(a≠0)。

二次函数的顶点式:y=a(x-h)²+k 顶点坐标为(h,k)

二次函数的交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0)

(二)二次函数的性质

(1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。

(2)二次项系数a决定抛物线的开口方向和大小。

(3)一次项系数b和二次项系数a共同决定对称轴的位置。

(4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。

(三)二次函数的对称轴公式

二次函数图像是轴对称图形。对称轴为直线x=-b/2a。

对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

a,b同号,对称轴在y轴左侧;

a,b异号,对称轴在y轴右侧。

中心对称与中心对称图形

1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。

2.中心对称的两条基本性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

3.中心对称图形

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

圆的必考知识点

(一)圆

在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。

(二)圆的相关特点

1.径

连接圆心和圆上的任意一点的线段叫做半径,字母表示为r

通过圆心并且两端都在圆上的线段叫做直径,字母表示为d

直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r

2.弦

连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。

3.弧

圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。

在同圆或等圆中,能够互相重合的两条弧叫做等弧。

4.角

顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。

⑥ 初三上册数学旋转知识点总结

首先记住旋转的性质:
1 对应点到旋转中心的距离相等
2 对应点与旋转中心所连线段的夹角等于旋转角
其次是坐标系与对应点的关系,比如原点、轴对于点的坐标求法
最后要注意区别中心对称与中心对称图形的区别

⑦ 初三数学图形的旋转知识点与圆的知识点

初三数学的图形学习无非就是常规图形,难度比较高的就是圆,这里的知识点大家要用心学习好,我在这里整理了相关资料,希望能帮助到您。

初三数学图形的旋转知识点

1、定义

把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

5、坐标系中对称点的特征

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)

初三数学圆的知识点

一 圆的定理

1.1不共线的三点确定一个圆

经过一点可以作无数个圆

经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上

定理:过不共线的三个点,可以作且只可以作一个圆

推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心

三角形的三条高线的交点叫三角形的垂心

1.2垂径定理

圆是中心对称图形;圆心是它的对称中心

圆是周对称图形,任一条通过圆心的直线都是它的对称轴

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

1.3弧、弦和弦心距

定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

二 圆与直线的位置关系

2.1圆与直线的位置关系

如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离

如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点

定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

定理:圆的切线垂直经过切点的半径

推论1:经过圆心且垂直于切线的直线必经过切点

推论2:经过切点且垂直于切线的直线必经过圆心

如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点

直线和圆的位置关系只能由相离、相切和相交三种

2.2三角形的内切圆

如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆

定理:三角形的三个内角平分线交于一点,这点是三角形的内心

三角形一内角评分线和其余两内角的外角评分线交于一点,这一点叫做三角形的旁心。以旁心为圆心可以作一个圆和一边及其他两边的延长线相切,所作的圆叫做三角形的旁切圆

2.3切线长定理

定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

2.4圆的外切四边形

定理: 圆的外切四边形的两组对边的和相等

定理:如果四边形两组对边的和相等,那么它必有内切圆

三 圆与圆的位置关系

3.1两圆的位置关系

在平面内,不重合的两圆。它们的位置关系,有以下五种情况:外离、外切、相交、内切、外切

经过两个圆的圆心的直线,叫做两圆的连心线,两个圆心之间的距离叫做圆心距

定理:两圆的连心线是两圆的对称轴,并且两圆相切时,它们切点在连心线上

(1)两圆外离d>R+r

(2)两圆外切d=R+r

(3)两圆相交R-rr)

(4)两圆内切d=R-r(R>r)

(5)两圆内含dr)

特殊情况,两圆是同心圆d=0

3.2两圆的公切线