⑴ 扬声器基本工作原理知识
扬声器基本工作原理知识
扬声器是能把电信号转换成声信号并辐射到空气中去的电声换能器。下面是由我为大家分享有关于扬声器基本工作原理知识,欢迎大家阅读浏览。
一、术语
扬声器(speaker loudspeaker),俗称喇叭;1993年出版的《电声辞典》指出:扬声器是能把电信号转换成声信号并辐射到空气中去的电声换能器。
据有关资料记载,最早发明扬声器在1877年,德国人西门子(D.W.Scimens)指出了扬声器雏型专利,他首先提出了由一个圆形线圈放置在经向磁场组成的电动结构。
924年,美国的赖斯(C.W.Rice)和凯洛格(E.W.Kollogg)发明了电动式扬声器。
二、扬声器原理
扬声器应用了电磁铁来把电流转化为声音。原来,电流与磁力有很密切的关系。试试把铜线绕在铁板上,然后再接上小电池,你会发现铁板可以把万字夹吸起。当电流通过线圈时会产生磁场,磁场的方向就由右手法则来决定。
扬声器同时运用了电磁铁和永久磁铁,假设现在要播放C调(频率为256Hz,即每秒振动256次),唱机就会输出256Hz的交流电,换句话说,在一秒钟内电流的方向会改变,256次。每一次电流改变方向时,电磁铁上的线圈所产生的磁场方向也会随着改变。我们都知道磁力是同级相拒,异极相吸的,线圈的磁极不停地改变,与永久磁铁一时相吸,一时相斥,产生了每秒钟256次的振动。线圈与一个薄膜相连,当薄膜与线圈一起振动时,便会推动了周围的空气。振动的空气,不就是声音吗?这就是扬声器的运动原理了。
三、扬声器在全世界每年的产量数以亿计,它在通信、广播、教育、日常生活等方面有广泛的用途,和布、帛、菽、粟一样成为人们不可须夷离开的东西。对从事扬声器的设计、制造的技术人员来说,对扬声器的理论、实践、工艺等方面需要深入,对系统全面的了解。有人讲扬声器很简单,不过是雕虫小技,谁都可以生产扬声器,这话不能说全无道理,声学本来就是一个小学科,扬声器更是一个小器件。不过十几个到几十个部件,生产的门槛的确不高,单问题的另一面是扬声器又不容易做好。
扬声器是一个电声器件,是电声学研究的内容之一。电声学是包括电子学、声学、电磁学、磁学等的交叉学科。扬声器虽然只有不多的几十个部件,但是其复杂繁难的程度远远超过我们的想象,这是因为以下几点:
(1)扬声器的能量转换层次多,反馈多。通常遇到的器件能量转换只是一种一次。例如电动机是将电能转换为机械能。发动机是将机械能转换为电能。电灯是将电能转换为光能。电池是将化学能转换为电能,这里发生的只是一种能量向另一种能量的转换。而扬声器有所不同,他是将电能转换为机械能,再将机械能转化成电能,这是在诸种转换器中不常见的。它的层次多、反馈多自然带来系统的复杂性和多样性。在一个扬声器系统中同时存在电学部分、声学部分、能和力学部分(机械振动部分)。
(2)扬声器工作状态不仅是静止的,而且是振动的,这种振动又是在三维空间。这个三维空间的振动系统具有多个边界条件,因此它的振动分析极为复杂,一般的数学工具已不够用。荷兰学者Frankort等导出锥体微分方程,具有14个变量的联立一阶微分方程,而且扬声器的振动还与频率和时间有关,实际上它处于多维空间之中。
(3)扬声器振动系统只在低频区为一集中参数系统。在频率升高时振动系统不再是刚体。在分析扬声器时,常采用等效电法,将扬声器看成由集中参数组成的.等效电路。因此我们对电路理论是熟悉的,所以用电路理论来分析扬声器会得心应手。在分析扬声器振动时,假设扬声器是一个刚体,这样扥洗起来相对方便。但是上述的假设只是在地音频段是合适的,在频率升高时,扬声器不再是集中参数元件,扬声器振膜会出现分割振动。因此在高频段,由刚体振动假设导出的分析一律失效,由等效电路推出的公式失效。
分布参数系统的特点还在于这些分散元件并不是彼此无关的。具体来说,振膜上的每一点振动都不相同,每一点振动都有不同的振幅与相位,而每一点又相互影响。
还可以同我们熟悉的电子技术相比较,因此有了物流性能为大家所熟悉的电学元件(电阻、电感、电容、晶体管、集成电路......),以及大家所熟悉的电路原理,按电路图可以装配一个放大器,用这些元件不论是经验丰富的工程师还是初出茅庐的中学生其差别是有限的。但是对于扬声器、音箱来说,就没有那么简单。相同的单元组装音箱,若经验不同,可能有相当大的差距。
(4)扬声器的评价不仅取决于众多的客观测试指标,而且目前客观测试指标不能完全概括扬声器的质量。
扬声器的客观测试指标有数10项之多,而且有增多的趋势。大多数测量要求在消声室内进行。尽管现在有了计算机辅助测量,但仍然代替不了消声室的测量。
扬声器的主观评价是不可缺失的,而主观评价又带有极大的离散性,它往往因人而异,因时而异,因地而异,因曲而异,并且自觉或不自觉地受到各种心理暗示的影响。评价的结果不仅取决于聆听者的修养、素质、心理状态,而声音本身是转瞬即逝的,其难度高于其他需主观评价的项目,比如评酒评茶等,它涉及心理声学、生理声学、环境声学、音乐声学、数理统计方法等。
(5)扬声器制造工艺又涉及造纸、化工、粘合剂、金属加工、磁体制造等许多工艺领域,提现了它的综合性与多样性。其中扬声器振膜材料的变化尤为重要,在几何形状不变的条件下仅仅改变振膜的材料,不仅客观测试指标会变,主观音质也会发生改变。
;⑵ 扬声器系统详细资料大全
《扬声器系统》是2010年国防工业出版社出版的图书,作者是(日)山本武夫。本书对扬声器的构造、特点、积极作用以及弊端做了充分地说明,使大家对扬声器有了深入的了解。
基本介绍
- 书名 :扬声器系统
- 作者 :(日)山本武夫
- 译者 :王以真,吴光威,张绍高 译校
- ISBN :9787118065725
- 定价 :42.00元
- 出版社 :国防工业出版社
- 出版时间 :2010-1-1
- 开本 :16开
概述
扬声器系统 是由一个或几个扬声器和相应的附属档案如障板、喇叭、分频网路等组成的,作为驱动电路和周围空气间耦合的设备。目的是为了获得所需频率特性、声场分布以及特殊声效果等。常用的扬声器有直射式电动扬声器、喇叭式电动扬声器和各种组合扬声器。仅用直射式扬声器辐射声功率大小,且在服务区内声压级不均匀度较大。使用声功率较大的喇叭式电动扬声器基本上可以使扩声区域内得到足够大的声强和较均匀的声场,但其频率范围较窄,不能满足高质量音乐扩声的要求。因此,常采用组合扬声器。这样既宽频率范围又增大辐射声功率。套用各种扬声器箱和喇叭能够改进扬声器的低频特性、指向性和效率;采用各种扬声器组后,就可以进一步控制它的声功率和辐射特性。至于特殊声效果,如远距离和强噪声情况下的扩声,要数百以致数千瓦声功率,此时可使用气流扬声器。内容简介
本书详细介绍了纸盆扬声器、球顶形扬声器、号筒扬声器和各种扬声器箱的结构、工作原理及特性,以及与扬声器有关的声学知识。全书分为16章,包括声音重放的物理过程,听觉心理,节目声的性质,高保真扬声器应有的性能,纸盆扬声器、球顶形扬声器、号筒扬声器,扬声器箱、扬声器系统,监听扬声器,其他类型扬声器,放大器与扬声器,重放声音与房间的声学性质,扩声用扬声器系统,耳机和扬声器特性的测量方法。 本书可供扬声器制造厂的技术人员和工人、相关科研单位的研究人员以及高等院校有关专业的师生阅读和参考。对于广大的扬声器使用者也有一定的参考价值。图书目录
第1章 声音重放的物理过程1.1 声波……………………1
1.1.1 声音……………………1
1.1.2 声音三要素……………………2
1.2 声场的理论……………………3
1.2.1 声场方程式……………………4
1.2.2 速度势……………………6
1.2.3 平面波声场……………………7
1.2.4 驻波……………………9
1.2.5 球面波声场……………………9
1.2.6 声波的折射……………………11
1.2.7 声波的衍射……………………12
1.3 声音辐射系统……………………13
1.3.1 圆形活塞振动板产生的声场……………………13
1.3.2 辐射声的指向性……………………15
1.3.3 辐射阻抗……………………18
1.3.4 障板附近点声源的辐射功率……………………21
1.4 机械振动系统……………………23
1.4.1 单一自由度振动系统……………………23
1.4.2 膜振动……………………25
1.4.3 板的振动……………………25
1.5 声音振动系统……………………26
1.5.1 声管中传播的声波……………………26
1.5.2 声学元件……………………27
1.5.3 声变数器……………………29
1.6 电—力—声系统类比……………………29
1.6.1 机械系统的等效电路……………………29
1.6.2 声音系统的等效电路……………………30
1.6.3 电—力—声类比……………………32
1.7 电声换能器……………………33
1.7.1 电动式换能器……………………34
1.7.2 静电式换能器……………………36
参考文献……………………39
第2章 听觉心理
2.1 人耳和听觉……………………40
2.1.1 人耳的构造……………………41
2.1.2 听觉的机理……………………42
2.2 声音的属性……………………43
2.3 听阈……………………43
2.4 音调(声音的高低) ……………………44
2.4.1 影响音调的主要因素……………………44
2.4.2 音调的量度……………………45
2.5 声音的响度和等响曲线……………………45
2.5.1 声音的强度和响度……………………45
2.5.2 等响曲线……………………45
2.5.3 宋尺度……………………46
2.5.4 声音的响度和持续时间……………………46
2.6 噪声公害……………………47
2.6.1 噪声强度的表示方法……………………47
2.6.2 NRN 曲线……………………47
2.7 掩蔽……………………48
2.7.1 掩蔽效应……………………48
2.7.2 纯音相互间的掩蔽……………………49
2.7.3 由掩蔽引起的音色变化……………………50
2.7.4 临界频带的宽度……………………50
2.8 对声音变化的感觉……………………51
2.8.1 辨别阈……………………51
2.8.2 频率的辨别阈……………………51
2.8.3 声强的辨别阈……………………51
2.8.4 调频的辨别阈……………………52
2.8.5 调幅的辨别阈……………………52
2.8.6 频率特性变化的辨别阈……………………52
2.8.7 失真的辨别阈……………………53
2.8.8 相位变化的辨别阈……………………54
2.9 对音色的感觉……………………56
2.9.1 关于音色……………………56
2.9.2 决定音色的因素……………………56
2.9.3 音质的评价术语……………………57
2.9.4 音质评价术语与物理特性的关系……………………61
2.10 两声道重放声的方向定位……………………62
2.10.1 方向定位能力……………………62
2.10.2 两声道的方向定位……………………63
2.10.3 两声道重放……………………63
2.10.4 关于立体声声场的牧田理论……………………64
2.10.5 声像的性质……………………65
2.11 多声道重放的方向定位……………………66
2.11.1 真实声源在水平面内的方向定位……………………66
2.11.2 合成声源在水平面内的方向定位……………………69
2.11.3 多声道立体声用扬声器的排列……………………70
2.11.4 各声道间的相位差和压迫感……………………71
2.11.5 声场的广度感觉……………………71
参考文献……………………73
第3章 节目声的性质
3.1 声源的性质……………………75
3.1.1 表示声源性质的方法……………………75
3.1.2 频带……………………76
3.1.3 动态范围……………………76
3.1.4 指向性……………………77
3.2 节目声的性质……………………77
3.2.1 广播节目声性质的表示方法……………………77
3.2.2 频谱……………………78
3.2.3 电平分布……………………78
3.2.4 频谱—电平分布……………………80
3.2.5 两声道立体声与四声道信号……………………81
参考文献……………………82
第4章 高保真扬声器应有的性能
4.1 声频重放装置的组成和扬声器的任务……………………83
4.1.1 声频重放装置的组成……………………83
4.1.2 影响重放音质的各种因素……………………84
4.2 输出声压级……………………84
4.2.1 输出声压级和效率……………………84
4.2.2 额定输入功率和最大输入功率……………………86
4.2.3 最大输出声压级……………………86
4.3 失真……………………87
4.3.1 谐波失真……………………87
4.3.2 互调失真……………………87
4.3.3 异常声……………………88
4.4 输出声压频率特性……………………88
4.4.1 重放频带……………………88
4.4.2 输出声压频率特性……………………89
4.4.3 功率回响……………………90
4.5 指向性……………………90
4.5.1 高保真扬声器的指向性……………………90
4.5.2 扩声用扬声器的指向性……………………91
4.6 电阻抗特性……………………92
4.7 瞬态特性……………………92
4.8 相位特性……………………93
4.9 扬声器系统的形状和设计……………………95
4.10 立体声重放用扬声器应有的性能……………………95
4.10.1 频率特性……………………95
4.10.2 相位特性……………………96
4.10.3 指向性……………………97
4.11 高保真扬声器应有的音质……………………98
4.12 扬声器系统的物理特性和综合优良度……………………99
参考文献……………………102
第5章 锥形扬声器
5.1 锥形扬声器的结构与工作原理……………………103
5.1.1 锥形扬声器的结构……………………103
5.1.2 锥形扬声器的工作原理……………………105
5.2 振动系统的等效电路……………………105
5.2.1 机械振动系统的等效电路……………………106
5.2.2 电系统的等效电路……………………107
5.3 低声频段的特性……………………108
5.3.1 低频共振……………………108
5.3.2 低声频段的特性……………………109
5.3.3 低声频段的电阻抗特性……………………110
5.4 中声频段的特性……………………111
5.4.1 折环共振……………………111
5.4.2 锥体的分割振动……………………112
5.5 高声频段的特性……………………113
5.5.1 高声频重放上限……………………113
5.5.2 高声频段的特性……………………114
5.5.3 高声频段指向性及其改善方法……………………114
5.6 效率……………………116
5.7 锥形扬声器的失真……………………116
5.7.1 由驱动力引起的失真……………………117
5.7.2 由悬置系统的非线性引起的失真……………………119
5.7.3 由锥体引起的失真……………………120
5.7.4 都卜勒失真及其他失真……………………120
5.8 瞬态特性……………………122
5.8.1 猝发声的瞬态特性……………………122
5.8.2 瞬态失真特性……………………123
5.8.3 采用脉冲测量瞬态特性……………………124
5.9 相位特性……………………125
5.10 锥形扬声器的一般特性……………………127
5.10.1 输出声压频率特性和指向频率特性……………………127
5.10.2 标称阻抗与阻抗特性……………………127
5.10.3 谐波失真特性……………………128
5.10.4 输出声压级……………………129
5.11 锥形扬声器的部件……………………130
5.11.1 锥体及悬置系统……………………130
5.11.2 音圈……………………136
5.11.3 磁路……………………137
5.11.4 盆架……………………139
参考文献……………………139
第6章 球顶形扬声器
6.1 球顶形扬声器的结构及工作原理……………………141
6.1.1 球顶形扬声器的结构……………………141
6.1.2 球顶形扬声器的工作原理……………………142
6.1.3 硬球顶形扬声器与软球顶形扬声器……………………143
6.2 球顶形扬声器的输出声压频率特性……………………144
6.2.1 球顶形扬声器的低声频段特性……………………144
6.2.2 球顶形扬声器的中声频段特性……………………145
6.2.3 球顶形扬声器的高声频段特性……………………145
6.3 球顶形扬声器的一般特性……………………147
6.3.1 输出声压指向频率特性……………………148
6.3.2 电阻抗特性……………………148
6.3.3 球顶形扬声器的失真特性……………………149
6.4 球顶形扬声器的部件……………………150
6.4.1 振膜与支撑材料……………………150
6.4.2 音圈……………………152
6.4.3 磁路系统……………………152
6.4.4 喉塞……………………153
6.4.5 后腔罩……………………154
参考文献……………………155
第7章 号筒扬声器
7.1 号筒扬声器的结构及工作原理……………………156
7.1.1 号筒扬声器的结构……………………157
7.1.2 力阻抗的匹配……………………158
7.1.3 号筒扬声器的种类……………………159
7.2 号筒……………………160
7.2.1 号筒内的声波方程式……………………161
7.2.2 指数形号筒……………………161
7.2.3 号筒长度……………………163
7.2.4 双曲线号筒……………………164
7.3 振动系统的等效电路与效率……………………165
7.3.1 振动系统的等效电路……………………165
7.3.2 号筒扬声器的电声转换效率……………………166
7.4 号筒扬声器的特性……………………168
7.4.1 振膜的速度频率特性……………………168
7.4.2 输出声压频率特性……………………170
7.4.3 指向性……………………172
7.4.4 由于空气非线性引起的失真……………………174
7.4.5 容许输入功率……………………175
参考文献……………………176
第8章 扬声器箱
8.1 扬声器箱的种类……………………177
8.2 障板……………………178
8.2.1 平面障板……………………178
8.2.2 敞开式扬声器箱……………………179
8.3 封闭式扬声器箱……………………181
8.3.1 安装在封闭式声箱中的扬声器的等效电路……………………181
8.3.2 设计扬声器箱时所需的扬声器参数……………………182
8.3.3 封闭式声箱的设计……………………183
8.3.4 书架式扬声器箱……………………186
8.4 倒相式扬声器箱……………………187
8.4.1 装入倒相式扬声器箱中的扬声器的等效电路……………………188
8.4.2 倒相式扬声器箱的理想条件……………………189
8.4.3 非理想条件时的特性……………………191
8.4.4 倒相式扬声器箱的优点……………………193
8.4.5 倒相式扬声器箱的设计……………………193
8.5 特殊障板……………………198
8.5.1 倒相式扬声器箱的变形……………………198
8.5.2 前载入号筒扬声器箱……………………201
8.5.3 后载入号筒扬声器箱……………………203
8.5.4 无指向性扬声器箱……………………209
8.6 扬声器箱的外形……………………210
8.6.1 声箱外形对低声频特性的影响……………………211
8.6.2 扬声器箱的尺寸比……………………211
8.6.3 安装孔及安装方法……………………212
8.7 扬声器箱用材料……………………213
8.7.1 板材……………………213
8.7.2 板振动与加固材料……………………214
8.7.3 吸声材料及其效果……………………215
8.7.4 网罩……………………218
8.7.5 箱体的加工及声压泄漏的影响……………………219
参考文献……………………220
第9章 扬声器系统
9.1 组合型的目的……………………221
9.1.1 高保真扬声器的条件……………………221
9.1.2 单锥形扬声器存在的问题……………………221
9.1.3 组合扬声器的优点……………………224
9.2 扬声器系统的组成方法……………………224
9.2.1 频段的划分法……………………224
9.2.2 低音扬声器必须具备的性能……………………225
9.2.3 中、高音扬声器必须具备的性能……………………228
9.2.4 各频段扬声器的组合方法……………………229
9.2.5 各频段扬声器的排列方法……………………230
9.2.6 组合扬声器系统的种类……………………232
9.3 分频网路……………………232
9.3.1 定阻型分频网路……………………232
9.3.2 扬声器阻抗的校正……………………236
9.4 网路用元件……………………237
9.4.1 电容器……………………237
9.4.2 线圈……………………239
9.4.3 衰减器……………………241
9.5 多路放大器用滤波器……………………242
9.5.1 多路放大器用滤波器的基本单元……………………242
9.5.2 NF 型RC 滤波器组成的注意事项……………………244
9.5.3 各种截止特性的组成法……………………244
9.6 扬声器系统的一般特性……………………245
9.6.1 输出声压频率特性及指向频率特性……………………247
9.6.2 谐波失真特性……………………249
9.6.3 瞬态特性……………………250
9.6.4 电阻抗特性……………………251
参考文献……………………252
第10章 监听扬声器
10.1 对监听扬声器所要求的性能……………………253
10.2 对监听扬声器所要求的音色……………………256
10.3 监听扬声器的组成……………………257
10.3.1 组成……………………257
10.3.2 箱体……………………257
10.3.3 对驱动放大器要求的条件……………………258
10.4 监听扬声器的实例……………………258
10.4.1 录声室用监听扬声器……………………259
10.4.2 广播电台用监听扬声器……………………261
10.5 监听扬声器与高保真扬声器的不同点……………………263
参考文献……………………263
第11章 其他类型扬声器
11.1 扬声器的种类……………………264
11.2 海尔扬声器……………………265
11.3 电磁扬声器……………………266
11.4 静电扬声器……………………267
11.4.1 单端静电扬声器……………………267
11.4.2 推挽静电扬声器……………………268
11.4.3 驻极体静电扬声器……………………269
11.5 压电扬声器……………………270
11.5.1 纵振动子型扬声器……………………271
11.5.2 双压电晶片扬声器……………………272
11.5.3 高分子压电扬声器……………………272
11.6 放电型扬声器……………………274
11.7 带式扬声器……………………275
11.8 平板扬声器……………………276
11.9 乐器用扬声器……………………278
11.9.1 对乐器用扬声器所要求的性能……………………278
11.9.2 乐器用扬声器的结构……………………278
参考文献……………………279
第12章 放大器与扬声器
12.1 主放大器与扬声器的关系……………………280
12.1.1 主放大器的最大输出功率与扬声器所能承受的输入功率……………………280
12.1.2 主放大器的输出阻抗与扬声器的特性……………………282
12.1.3 主放大器与扬声器产生的特殊现象……………………283
12.2 扬声器的连线法……………………284
12.2.1 几个扬声器的连线方法……………………284
12.2.2 音量调整方法……………………285
12.3 动反馈扬声器……………………287
12.3.1 动反馈(MFB)的原理……………………287
12.3.2 动反馈的方式……………………287
参考文献……………………290
第13章 重放声音与房间的声学特性
13.1 瞬态声场……………………291
13.1.1 室内声音的建立和衰减……………………292
13.1.2 混响声……………………292
13.1.3 混响时间与房间的关系……………………293
13.1.4 最佳混响时间……………………294
13.1.5 直达声和混响声(分散声) ……………………295
13.2 稳态的声场……………………297
13.2.1 房间的声压分布……………………297
13.2.2 指向性的影响……………………298
13.3 房间的波动现象……………………299
13.3.1 房间的固有振动……………………300
13.3.2 固有振动的简并……………………300
13.3.3 房间的大小与固有振动密度……………………301
13.3.4 驻波的防止方法……………………302
13.4 扬声器的放置地点及特性……………………303
13.4.1 镜像……………………303
13.4.2 扬声器放置地点与特性……………………304
13.5 吸声和隔声……………………306
13.5.1 吸声和吸声材料……………………306
13.5.2 隔声和隔声材料……………………308
13.6 立体声听声范围的扩大……………………309
13.6.1 立体声听声位置与声压级差……………………309
13.6.2 利用指向性扩大听声范围……………………311
13.6.3 利用反射声的方法……………………313
13.6.4 利用指向性和反射声的方法……………………314
参考文献……………………315
第14章 扩声用扬声器系统
14.1 扩声用扬声器的布置设计……………………317
14.1.1 房间形状与扩声用扬声器的布置方式……………………318
14.1.2 关于声压级的研究……………………319
14.1.3 关于声压分布的研究……………………320
14.2 扩声用扬声器……………………321
14.2.1 对扩声用扬声器所要求的性能……………………321
14.2.2 指向性设计……………………321
14.2.3 剧场用扬声器的种类及其举例……………………326
14.3 抑制啸叫型扬声器……………………329
14.3.1 扩声装置的啸叫……………………329
14.3.2 抑制啸叫型扬声器……………………331
14.3.3 厅堂中的实际套用……………………333
14.4 扩声用扬声器的施工方法……………………335
参考文献……………………338
第15章 耳 机
15.1 耳机的结构和工作原理……………………340
15.2 对耳机所要求的性能……………………341
15.2.1 人耳的特性与仿真耳……………………341
15.2.2 对耳机所要求的性能……………………342
15.3 振动系统的等效电路……………………343
15.4 对低声频特性的研究……………………344
15.4.1 低声频段的等效电路……………………344
15.4.2 提高低声频段特性的声学等效电路……………………345
15.4.3 由耳垫泄漏所导致的低声频特性下降与振膜……………………345
15.5 对高声频段特性的研究……………………347
15.5.1 降低高声频段特性的声学等效电路……………………347
15.5.2 综合特性的设计……………………348
15.5.3 影响高声频段重放上限的主要原因……………………349
15.6 耳机的一般特性……………………349
15.7 耳垫……………………351
15.7.1 耳垫的种类……………………351
15.7.2 实际佩戴时的特性……………………352
15.8 各种耳机……………………352
15.8.1 耳机的种类……………………352
15.8.2 开放式耳机……………………353
15.8.3 静电式耳机……………………354
15.8.4 驻极体耳机……………………355
15.8.5 压电式耳机……………………356
15.8.6 电动全面驱动式耳机……………………357
15.9 耳塞机……………………358
15.10 仿真头录声……………………359
参考文献……………………361
第16章 扬声器特性的测量方法
16.1 测量设备……………………362
16.1.1 消声室……………………362
16.1.2 混响室……………………363
16.1.3 标准障板……………………364
16.1.4 传声器……………………367
16.1.5 其他测量设备……………………367
16.2 扬声器特性测量法……………………368
16.2.1 输出声压频率特性……………………368
16.2.2 声功率频率特性……………………369
16.2.3 相位特性……………………370
16.2.4 群迟延时间频率特性……………………371
16.2.5 瞬态特性……………………372
16.2.6 谐波失真特性……………………373
16.2.7 振幅互调失真(AIM 失真)特性……………………374
16.2.8 差频失真(DF 失真)特性……………………376
16.2.9 动态失真特性……………………377
16.2.10 指向性……………………377
16.2.11 电阻抗特性……………………379
16.3 利用脉冲测量扬声器特性的方法……………………380
16.3.1 脉冲回响测量用设备……………………380
16.3.2 由脉冲回响求得的特性……………………382
参考文献……………………386
符号表……………………387
⑶ 关于音响的一些知识
扬声器的振膜,有纸质,也有塑料的,不管它的材料是什么,扬声器在工作时,振膜就会不停的前后运动,来推动空气,进而把振动传入人耳,使人听到声音。普通倒相式音箱把扬声器振膜露在外面来发声,而扬声器的后方也会有振动,如果把扬声器向后方的振动也利用起来,就会使声波加强,重低音加强,安装倒相管之后,由于倒相管的直径比扬声器直径小,所以就会有比较强的声波从倒相管冲出,这样一来,扬声器向前方和向后方的声波都得到了利用,使音箱音质提高。而普通倒相式音箱的倒相管安装位置是不同的,市面的有的产品把倒相管安装在音箱后方,扬声器安装在音箱前方,这种音箱在摆放时应注意不要把音箱后部贴在墙上,因为这样会阻止倒相管发音;而有的产品则把扬声器安装在音箱前方,倒相管也安装在音箱前方;有的产品把扬声器安装在音箱底部,倒相管安装在音箱前方,这样的产品被称作“底面增压式音箱”,以漫步者和菲利浦的居多。不管扬声器和倒相管的位置如何,实际上它们的放音效果都比较相近,重低音效果都差不多。下面介绍一下超重低音音箱。
超重低音音箱是近几年来才比较普及的产品,图一中右则的图片显示出了此类音箱的基本构造,上面我们已经知道了扬声器工作时同时向前方和后方发出声音,实际上有经验的人就会知道,任何一个扬声器向前发出的振动比向后发出的振动幅度要大,这是肯定的,不然为什么普通倒相式音箱不把扬声器反的安装呢?这里面的原因在于扬声器前方的振膜比后方的振膜面积要大。大家不难想到,如果把扬声器向前方发出的振动全部用倒相管排出,重低音效果就会特别强,超重低音音箱就是这样的,这种音箱的扬声器内置在音箱中,整个音箱只有一个倒相管露在外面,而扬声器向后方的振动则由减震材料去除了,一般的超重低音音箱是用棉花作为消音材料的。在市面上超重低音音箱很多见,大家看到音箱前部只有一个倒相管的音箱,那这就是了。这种音箱重低音效果比普通倒相式音箱强很多。
⑷ 音响的基本知识
音响的基本知识
音响基本上是由三大部分组成的:喇叭,分频器,箱体。按照喇叭只数的多少分为两单元,三单元。。。。还有一种是把高音喇叭与低音喇叭做成一体的,称为同轴单元,从外表上看是一个单元,实际上仍属两单元。
分频器顾名思义就是把可闻声音的频段[20--20000Hz]分成几个频段,分别送往对应的喇叭单元。按照频段划分的多少,分成高,低音两段的叫两分频分成高,中,低三段的叫三分频,依次类推。
箱体,一般由原木或中密度板作成,按照箱体结构又分为密闭箱[无倒相孔,箱体内部空气与外部绝缘],倒相箱[有倒相孔]。还有一些不大多见的箱体构造:迷宫式,指数式,负阻式,号筒式等。
按照音响的使用范围分为:专业箱[用于演出,厅,堂,场,馆的扩声]
监听箱[用于各种录音机构的.专业监听]民用箱。
按照音响的放置方式又分为书架箱和落地箱,书架箱多是两单元,两分频结构,多使用在20平方以内的房间内。落地箱多是多单元,多分频结构。多使用在20平方以上。
音响的性能指标:
一般音响都标明他的许多应用参数最常见的有:
功率:一般用W或VA 计量,常见的为 标称功率[额定功率,不失真功率]是指非线形失真不超过该音响标准范围的条件下的最大输入功率。他是该音响的正常工作功率,长期连续工作不致损坏。
灵敏度: 他的定义是,在音响上施加1瓦功率的粉红噪声电压时,在离参考点一米处所产生的声压。以分贝[db]表示。音响的灵敏度越高,在同样的驱动功率下就越响,这在使用小功率的功放时,灵敏度就显得很重要了。
阻抗:它是指音频信号加在音响输入端,音响所呈现出的一个纯阻。常见的有4欧,8欧,国外也有3欧,5欧系统的。使用时注意要与功放的输出阻抗相匹配。特别是胆机对音响阻抗的匹配尤其重要。
频响范围:
它的定义三言两语不好说清,一般的是指音响在音频范围内高低两端下降负 3 db时的频率重放范围。自然是越宽越好了,现在的HI-FI音响在高频端做到20000HZ乃至30000HZ的重放以不成问题,低频段由于受扬声器口径的限制和箱体容积的限制,做到20HZ就很不容易了,一般书架式音响的低频段就更差了。
好了,现在你已经对音响有所认识了。说真的它很简单,但是要做好却极不简单。对于初烧友来说在掌握了一定的音响知识基础后,自己动手制作一对入门级的HI-FI音响也不是很难的。特别是现在一些商家推出了不少音响套件,你只要按照制作图纸仔细安装,成功率是极高的,而且由于这些套件已经经过厂家精心设计和搭配,所以音质和效果就有了一定的保证,而其成本只有成品的二分之一到四分之一。笔者用绅士宝8545K单元精心制作的音响与用一套单 元的进口音响相比较,经多位资深发烧友听音评价,音效绝不在洋货之下,而成本只有三千多元,只有进口货的四分之一。
制作音响千万不要拉郎配,买几个单元和分频器,买个成品箱体往上一装完事。这样制作出来的音响是绝对不会好的。而且现在市场上伪劣假冒产品太多,质量得不到保证。比较保险的办法是从一些信誉较高的销售单位邮购成套套件。如果你的木工手艺不错的话,自己按照推荐图纸打造箱体也是完全可以的,或者找木工师傅代劳,只要箱体容积和低音单元推荐容积相配即可。
;⑸ 喇叭线基本知识
喇叭线基本知识
音响系统中的线材,其基本任务是将不同的相关的器材连接起来,最终令扬声器发声。下面是我为大家整理的喇叭线基本知识,欢迎大家阅读浏览。
一、概述
在音响器材中,相互连接的线材,对整个音响系统中的音质影响究竟有多大,在音响界中已争论了很久,但都没有结果。最主要的原因是,音响效果的好坏是很主观的,所以很难有一个客观的定论。但大家都有一个共识,线材对音响效果会产生一决定性的影响。
当您把大笔的钱投资在发烧喇叭在线,其最终目标是要让音乐信号在传输过程中没有改变,也就是零失真;但在实际使用中,它们内部是存在着电阻、电容、电感等,会对通过的音乐信号产生影响,使得信号在传输中形成欠阻尼,漏失音乐信息和细节模糊等现象。设计精良的线材,能传送最清晰和无损的音乐信号,并具有平衡和易控制的特性,任何喇叭线都可等效为由电阻、电容和电感所组成的分布系统,由于内存电容和电感,所以喇叭线就具有其特殊的频率特性,也就是说对不同频率的信号,会产生不同的时间延长,它会造成传输速率不一样,和呈现不同的阻抗,这就是造成信号失真的最主要原因。
二、器材与线材之间关系是相辅相成
音响系统中的线材,其基本任务是将不同的相关的器材连接起来,最终令扬声器发声。高档的线材,能保持较低的自身失真,和具备抗外来干扰的能力。但由于线材并不具备主动放大或修正功能,所以也无法将器材的本质转劣为佳。许多时候我们察觉到,系统用上某名线后,效果突飞猛进,这是由于线材扭曲音乐信号的程度比较小,或者是能量感方面,刚好与系统的表现相反。例如,低音薄者配上低音厚的线材,便产生了互补作用;但是,如果系统本身没有良好的低频响应,再好的线材也帮不了忙。喇叭线是音响器材中,专门用于扩大机与喇叭间连接的线材,由于喇叭线传送的是功率信号,因此不会有太大的信号损失,优质的喇叭线具有良好的导电性,良好的导电性,使得线材拥有极佳的传送能力。专业喇叭线内部的直流电阻,与一般的导线是没有什么太大的区别,但在交流阻抗、分布电容量和抗干扰方面就会有一定的差别。
三、喇叭线的长度会影响音响系统整体的声音
喇叭线应以控制力强、声音清晰者为首选。理论上,线材应以短的能获得较好的效果。有人说:喇叭线在一个指定的长度里,表现得特别好,并指出这与声波的长度有关系,但反对此论调的人指出:不同的频率会有不同的波长,而且彼此相差甚远,那么一条固定长度的喇叭线,如何去迎合不同波长而决定其应有的长度?再说,波长和喇叭线的传递质量没任何关系。其实喇叭单体的活塞运动,明显的受制于扩大机的阻尼系数值。假若因喇叭线太长,导致存在较大的阻力,它便会大幅度降低扩大机的阻尼系数,令声音肥肿不易受控制。所以信号线与喇叭线越短越好,因为它自身的失真会减少。总之长短适中的优质喇叭线,可以将扩大机与扬声器之间的距离拉近,低频紧凑受控制,音乐旋律分明。而某些长喇叭线,听感上虽不会对系统造成太大的影响,但却控制不了扬声器喇叭单体的线性活塞动作。不过喇叭线也不宜过短,喇叭线太短,会导致两个喇叭距离太近,因而造成无法调出音场、左右声道混浊等问题。
四、喇叭线的粗细
过细的喇叭线因它的电阻大,会导致扩大机更多的输出功率,耗损在导线的电阻上,低音的损失尤其严重。过粗的导线虽然电阻小,但相对成本亦高,当然此花费或许是值得投资的。就电阻而言,乃是线材将电流转换为热能,其内部导体的多寡决定其电阻值。通常导体的平方数【截面积】愈大,其单位电阻值愈小,但是仅从外观尺寸来判断常常产生误导,因为有些线材将披覆层做得极厚,而导体却不成比例,所以应从截断面来确认,4N 无氧电解铜(OFC)200 ~ 300 芯即可,或是截面积在 2.5 ~ 4 平方毫米左右的多股无氧铜发烧线亦可。
五、喇叭线的电气规格
以最常使用的铜线来说,包括以下几种:(1) 材料就包括便宜的电解铜 TPC ( Tough Pitch Copper )。(2) 进一步除去 TPC 内所含的氧化杂质等不纯物的高纯度无氧铜 OFC。(3) 让铜形成大的.结晶,使其结晶粒子的界面空隙减少,而成的 LCOFC ( 线形结晶无氧铜 )。(4) 讯号传送方向的结晶粒子界面理论上为零的 OCC ( 单结晶状高纯度无氧铜 )。
市面上有太多号称6N甚至8N的线材,最离谱的还有所谓9N银线。N是金属材料纯度的表示,与材料的种类无关,例如:99.99% 即有4个9,称为4N材质。高纯度无氧铜OFC以上的铜大都为4N,这也是音响导线使用最多最普遍的材料,稍具规模的炼铜厂都可以生产4N铜;进一步以化学方式,除去含氧量与其它微量金属,是可以让纯度再提升,但仪器不一定测得出来。万隆的高董事长就说,他们与工研院合作进行量测,但国家级的工研院也只能测量到5N ,再来的误差就太大了。那么6N或8N怎么来的?一般在科学量测时,有所谓的加法与减法,假设同样的材质以加法量测,将氢分子等微量元素按比例计算,得到其纯度为5N 。以减法量测,这些微量元素含量极低,几乎无法计算,就当成零,于是最后其纯度变成8N。一个 5N,一个8N,但它们其实是同样的东西哪!
六、发烧线的迷思
有些发烧友将线材视为音响的万灵丹,认为什么问题,都可以通过更换线材来解决,其实这个观点是十分错误的。不同的线材有不一样的效果,这种效果很难用文字来描述,一定要经过试听、比较,才会建立正确的认识。线材的作用和效果是不能用价格来衡量的,简单的说:不是越贵就越好,最重要的关键是要适用。就发烧线而言,价格有的高达几十万元一对的,价格低的,有十多元一对的。不一定是价格高的线材就一定效果好。在一套音响器材中,线材的比例是多少,是没有一个确切的数字的,需要依不同的组合,经反有覆试听、比较才能确定的。
七、煲线?
各位经常听到的是煲机,大概要煲机半小时后,管味才会源源的跑出来。针对发烧线,也需要”煲线”,没有煲过的线,是很难得到好的声音的。线材一般因材质的不同,而所需要煲的时间长短也不同。一般煲5到6个小时,就开始有明显的变化,而有些线材为了得到更好的声音,要煲400 到500小时。不但是新线要煲,如果音响器材搁置较长时间而不使用,在下次使用之前,都需要进行一段时间的煲线,这样才能让你的线材发挥其威力。真的吗?
八、玩线的要诀
为了把线材玩好,一定要对线材有一定了解才行。首先,要肯定档次不同的线材,其存在的作用也不同。而要做的就是,把目前手中所拥有的线材的最大潜能发挥出来。为了把线材的最大潜能发挥出来,线材走线要直来直往,不要让音响线材有变弯曲曲(或卷成圈)以减少应力,如果音响线材在长度上要多留余地,也应让其悬吊起来;在线材的旁边不要有发生震动的物体存在,尽可能减少线材产生震动的可能性。
;⑹ 谁能提供详细的关于扬声器的知识原理,感激不尽!
动圈式扬声器是由磁铁,音圈和纸盆组成,当音圈通入电流时就会产生磁场,这个磁场和原磁铁磁场相互作用,就会使音圈移动,这时音圈会带动连接它的纸盆运动,纸盆运动我们就可以听到声音了。压电式扬声器,是由压电陶瓷代替音圈和磁铁。压电陶瓷是一种可以把电压转换为机械振动,同样也可以把机械振动转换为电压的特殊材料。当他通入音频电压,他就会产生随外加电压变化而不断变化的振动,这个振动就使我们听到了声音。
⑺ 音响师入门基础知识
音响师入门基础知识
音响师们不仅需要具备电子学、声学、音响学、自然声效果以及电声技术等多方面的专业知识,而且还应具备一定的音乐知识和艺术修养。那么音响师的入门基础知识到底有哪些?下面跟我一起来涨姿势吧!
1.什么是音场的宽度及深度
一般理解是二声道(或多声道)扩声时,声音辐射的水平角度。深度就是纵深感了。这些就是平常我们所说的声音的立体感。
2.什么是音场?
音场就是声场,就是音源辐射的声能,通过媒体质点的运动以球面方式向四周扩散。媒体中有声波存在的区域称为声场。说明白一点,就听得声音的范围。
3.什么是激励器,激励器的工作原理过程是怎么样的啊?
声音激励器又称频谱增强器,它与混响效果器一样,是美化声音效果的一种装置。它的作用是对高音细节和低音分别进行激励和提升,并能滤除“咝咝”声和发闷的低音频率。使低音更加丰满浑厚,中高音更加明亮,人声更有感染力,提高了声音的清晰度,减少了声音背景的咝咝声和低音的模糊度。把声音修饰得更丰满、更透亮、更完美。
声音激励器低音提升的原理是通过一个低音激励器,把音乐信号中的基音激励产生极为丰富的偶次谐波(偶次泛音),这些新的偶次谐波恰好是在基音的八度音范围,产生特别适合人的听觉感受。与此同时,还能滤除50-80Hz之间发闷的低音频率,把低音修饰得柔而不闷,人声更为透亮。
声音激励器对高音细节的激励是通过连续不断分析音源信号中的高音成分,自动修饰激励高频分量不足的声音信号,并能滤除由于高音提升后出现的咝咝声。
4.什么是均衡器?主要有哪几种?
均衡器是频率均衡器的简称。主要对音频范围内的设备或系统频率进行调整(提升或衰减)。
一般可分为图示式均衡器及参量式均衡器。
图示式均衡器,一般将需要调整的电位器做成滑杆式。针对不同频点,对应的调整电位器进行向上提升或向下衰减。从电位器滑杆的不同位置,看出各频点的补偿状况即为图示式。
参量式均衡器就是参数可调的音调控制器。可对2-4个频段中的频点作提升或衰减(俗称音调控制器)。调音台各通道中的音调控制即为参量式均衡器。
5.声场布置的原则有哪些啊?
其实所说的声场布置得原则,应该是采用什么形式来布置声场。谈到声场布置,其实质是扬声器的布置。而扬声器的布置形式就是集中布置和分散布置,以及二种形式的结合。
所谓分散布置,就是依据听音者的情况,在整个场所内,均匀布置扬声器使各位置均能清晰地听到声音。比如商场的公共广播、主题公园的草坪广播等。所谓集中布置,就是在一个扩声场所内,音箱从一个位置向整个声场辐射声能。这种形式往往在剧场、电影院、演播中心等,能取得声像一致的效果。至于第三种形式则在体育场馆、大型会议室中应用的较多,既有声像一致的效果,又可保证在大范围的场地中都有清晰、均匀的声音。
6.(10、15、31)段均衡器分别表示多少倍程的关系
音响师实用基础知识大全音响师实用基础知识大全
一般来说10段均衡器的频率点是以倍频程间隔分布,使用在一般的.场合下。
15段均衡器的频率点的以2/3倍频程均衡器,使用在专业扩音上。
31段均衡器的频率点是以1/3倍频程均衡器,多数使用在比较重要的,需要精细补偿的场合下,图示均衡器结构简单,直观明了,故在专业音响中应用非常广泛。
7.监听音箱和普通音箱区别在哪里?
1.使用的场合不同
监听音箱主要用于电台播音室、录音室、音控室等,而就普通音箱则不能应用于此。
2.音箱的品质不同
监听音箱由于使用环境要求较高,对它的音质要求也必较高,而普通音箱则视具体使用场合有高有低。
3.风格要求不同
监听音箱由于作监听用,本身要求音色纯正,不带任何风格或特色,而普通音箱没有此限制,根据风格可选用各种音色的音箱
4.体积大小不同
监听音箱由于使用场合的特点,箱体一般不大,以二分频(低音单元以8-10")的居多,而普通音箱款式、形状五花八门,太多了。
8.演出音响系统,公共广播音响系统,会议音响系统的区别?
很多人确实难以分辨,事实上,这个几个系统本质上都是音响系统,但很明显侧重、场合都不相同,下面根据我的理解作一分析说明,首先,上述三各系统的应用场合是不同的,所谓演出音响系统,也就是主要用于演出扩声,这当中,又可以分为室内演出与室外演出,针对上述不同的场合其要求所不同。
公共广播音响系统,一般就是指在大型建筑中,如商场、机场、火车站、展览中心、综合办公区等,用于播放背景音响、广播通知等。而会议音响系统,则主要用于会议、讲座等的扩声。其次,是三个系统的要求不一样。
就演出系统来说。它要针对各种不同的演出:戏曲、演唱会、音乐会、话剧等,突出特点进行系统配置,布置等;至于公共广播系统,一般只要考虑语言或背景音乐,在与消防应急广播联动的系统中,专门有触发强切功能,在音箱(喇叭)的布置方面,要考虑声音覆盖的均匀度,纯碎的会议系统,我们只要考虑采用会议专用扩声系统(俗称手拉手)或常规扩声系统,配置相应的会议话筒等。
再是,三个系统的设备组成不同。
由于系统应用场合不同,在输出功率、频响应、周边设备、音箱配置等可大相径庭,一般来说,演出音响系统要求最高,系统组成也较为复杂、灵活,比如均衡、延时、压限、分频、混响、激励等周边设备,均要具有频响范围较宽,在35~20k之间,输出功率在几千瓦至上万瓦,音箱在十几只到几十只,所有设备均工作在高保真模式中,而公共广播系统则设备组成简单多了,仅配置一些信号源,简单的程序控制功能及相应的定压或功放等,程式相对固定,频响也在100~10k之间。会议音响则可以用理解为演出系统的简化、缩小版,这就是会议中心、会议室往往与多功能剧院、大会堂等共用一个系统,至于小型会议系统,最尚可只配置调音台、功放及一对音箱,其他中高档配置可选配周边设备或音频综合处理器及反馈抑制器等,一些系统指标视使用档次及投资额定。
;⑻ 扬声器的发声基本原理是什么
扬声器是我们经常在用的机器之一,那么你知道扬声器是怎么发出声音的呢?下面是我给大家带来的扬声器的发声原理的相关知识,欢迎阅读!
扬声器的发声原理
电动式扬声器又称为动圈式扬声器;它是应用电动原理的电声换能器件;它是目前运用最多、最广泛的扬声器,究其原因主要有三条:
1.电动式扬声器结构简单、生产容易,而且本身不需要大的空间,导致价格便宜,可以大量普及。
2.这类扬声器可以做到性能优良,在中频段可以获得均匀的频率响应。
3.这类扬声器在不断改进中,几十年扬声器发展史,就是扬声器设计、工艺、材料不断改进的历史,也是性能与时俱进的历史。
电动式扬声器其形状大多是锥形、球顶形;锥形扬声器(cone speaker)的结构。
锥形扬声器的结构可以分为三个部分:
1>振动系统包括振膜、音圈、定心支片、防尘罩等
2>磁路系统包括导磁上板、导磁柱、导磁下板、磁体等
3>辅助系统包括盆架、压边、接线架、相位塞条。
根据法拉第定律,当载流导体通过磁场时,会受到一个电动力,其方向符合弗来明左手定则,力与电流、磁场方向互相垂直,受力大小与电流、导线长度、磁通密度成正比。当音圈输入交变音频电流时,音圈受到一个交变推动力产生交变运动,带动纸盆振动,反复推动空气而发声。
使电动式扬声器的振膜发生振动的力,即为磁场对载流导体的作用力,这个效应我们称它为电动式换能器的力效应,其大小由下式规定:
F=B L i
式中:B为磁隙中的磁感应密度(强度),其单位为N/(A.m)<牛顿/(安培。米)>又称为特斯拉(T)
L为音圈导线的长度,单位:米
i为流经音圈的电流,单位:安培
F为磁场对音圈的作用力,单位:牛顿
但是,在通电音圈受力运动的同时,由于会切割磁隙中的磁力线从而在音圈内产生感应电动势,这个效应我们称它为电动式换能器的电效应,其感应电动势的大小为:
е=Вiν
式中:v为音圈的振动速度,其单位为:米/秒
е为音圈中感应电动势,单位为:伏特
电动式扬声器力效应与电效应是同时存在、相伴而行的。
其它 扬声器工作原理:
〈一〉磁式扬声器:亦称“舌簧扬声器”,其结构如图4所示,在永磁体两极之间有一可动铁心的电磁铁,当电磁铁的线圈中没有电流时,可动铁心受永磁体两磁极相等级吸引力的吸引,在中央保持静止;当线圈中有电流流过时,可动铁心被磁化,而成为一条形磁体。随着电流方向的变化,条形磁体的极性也相应变化,使可动铁心绕支点作旋转运动,可动铁心的振动由悬臂传到振膜(纸盆)推动空气热振动。
〈二〉静电扬声器:它是利用加到电容器极板上的静电力而工作的扬声器,就其结构看,因正负极相向而成电容器状,所以又称为电容扬声器。如图所示,有两块厚而硬的材料作为固定极板,极板上有此可以透过声音,中间一片极板则用薄而轻的材料作振膜(如铝膜)。将振膜周围固定、拉紧而与固定极保持相当距离,即使在大振膜上,亦不致与固定极相碰。
在两电极间原有一直流电压(称之为偏压)。若在两电极间加由放大器输出的音频电压,与原来的输出电压相重叠,形成交变的脉动电压,这个脉动电压产生于两极间隙吸引力的强弱变化,而振膜因此振动而发声。
静电扬声器的优点是整个振膜同相振动,振膜轻,失真小,可以重放极为清脆的声音,有很好的解析力、细节清楚、声音逼真。它的缺点是效率低,需要高压直流电源,容易吸尘,振膜加大失真亦会加大,不适合听摇滚、重金属音乐,价格相对贵一些。
〈三〉压电扬声器:利用压电材料的逆压电效应而工作的扬声器称为压电扬声器。电介质(如石英、酒石酸钾钠等晶体)在压力作用下发生极化使两端表面间出现电势差的现象,称之为“压电效应”。它的逆效应,即置于电场中的电介质会发生弹性形变,称为“逆压电效应”或“电致伸缩”。
压电扬声器同电动式扬声器相比不需要磁路,和静电扬声器相比不需要偏压,结构简单、价格便宜,缺点是失真大而且工作不稳定。
〈四〉离子扬声器:在一般的状态下,空气的分子量中性的、不带电。但经过高压放电后就成为带电的粒子,这种现象称游离化。把游离化的空气利用音频电压振动,则产生声波,这就是离子扬声器的原理。
为了离子化,就要加20MHz的高频电压,而在其上重叠音频信号压电。可见,离子扬声器由高频振荡部分,音频信号调制部分,放电腔及号筒组成。
放电腔采用将直径8mm的石英棒在中心开孔,开成石英管,将一个电极插入其中,另一个电极所示,呈圆筒形套在石英管外面,由于采用无声放电形式,只有中心的针头电极有损耗,可以定期更换中心电极。离子扬声器与其他扬声器不同之处在于没有振膜,所以瞬态特性和高频特性都很好,但结构太复杂。
〈五〉火焰扬声器:当空气和煤气燃烧的火焰通过电极,电极加有直流电压和高频信号,火焰受音频信号调制而发声。火焰几乎无质量,声音动态极好。但它有致命的缺点:不安全,不方便。
〈六〉气流调制扬声器:又称气流扬声器。它是利用压缩空气作能源,利用音频电流调制气流发声的扬声器。它由气室、调制阀门、号筒和磁路组成。压缩空气气流由气室经过阀门里,受外加音频信号调制,使气流的波动按照外加音频信号而变化,同时被调制的气流经号筒耦合,以提高系统的效率。它主要用做高强度噪声环境试验的声源或远距离广播等。
〈七〉磁致失真扬声器。这是一种特殊的强磁体,它能在磁场作用下振动发声。
扬声器的种类
电动号筒式扬声器
电动号筒式扬声器又称为高音喇叭,其构造如图1所示。主要由磁路系统、振动系统和助音筒三部分组成。磁路系统和振动系统装在一起,称为发音头。发音头和助音简可以分开,各成一体。
磁路系统由永久磁铁和软铁组成,磁场集中在缝隙处。振动系统由带着音圈的振动膜构成,音圈位于磁隙正中。音频电流通过音圈时,受磁场力的作用,音圈便带动振动膜前后运动,使空气发生振动。由于发音头前面装有助者简,可使空气共鸣,从而发出宏亮的声音。
电动纸盆式扬声器
电动纸盆式扬声器又称为低音喇叭,其构造如图2所示。主要由磁路系统和振动系统两部分组成。
磁路系统由环形永久磁铁和软铁组成,磁场集中在缝隙处。振动系统由带着音圈的纸盆构成,弹性片把音圈固定在磁隙的正中。有音频电流通过时,音圈在磁场力的作用下,带着纸盆前后运动,从而发出声音。
组合式扬声器
为了提高放音质量,扩展有效频率范围,通常将几只不同频率响应范
围的扬声器组合在一起,装入同一助音箱内,构成组合音箱。它可以使得在整个音频范围内的频率响应曲线得到显着改善。
扬声器的基本特征
(1)扬声器有两个接线柱(两根引线),当单只扬声器使用时两根引脚不分正负极性,多只扬声器同时使用时两个引脚有极性之分。
(2)扬声器有一个纸盆,它的颜色通常为黑色,也有白色。
(3)扬声器的外形有圆形、方形和椭圆形等几大类。
(4)扬声器纸盆背面是磁铁,外磁式扬声器用金属螺丝刀去接触磁铁时会感觉到磁性的存在;内磁式扬声器中没有这种感觉,但是外壳内部确有磁铁。
(5)扬声器装在机器面板上或音箱内。
扬声器的安装技巧
号筒式扬声器在农村和城镇的一些集市上仍在广泛使用,而号筒式扬声器的音膜一旦损失后,要保证音膜位置的正确安装下面介绍一种 方法 ,能够比较容易地解决这个问题。安装可分两步进行。
第一步,选取适当厚度纸张,裁两条宽松~10mm,长度比中心片的直径大20mm的纸条。然后把两纸条互相垂直地放在中心片上(位置要取中)。为了防止它们移动,可用一点浆糊把它们粘住。将纸条的两端插入磁隙中。把音膜上的音圈对准磁隙,轻轻压下去。由于纸条的存在,这时音圈的位置正好在磁隙中间,而不会偏斜。在音膜边缘上测涂上测涂上万能胶,并把音头的上盖盖好。对正螺孔,把螺拧紧。并在适当位置记好上盖上与音头的相对位置。放置8小时,待万能胶完全干透后,便可拧开螺丝,取下上盖。这时,音膜已粘在上盖上了。
⑼ 音箱小知识
1. 一些关于音箱的知识
音箱无论是2.0还是X.1结构,都需要进行一段时间的使用,才能达到最佳效果。但是,如何正确使用,很多人可能还不了解,现在将一些秘技教给大家。
01 音箱的正确操作顺序
为了延长音箱的寿命,我们在接通音箱电源时,应该先把音箱的音量调整到比较小的数值后再正常开机,然后再缓慢将音量调整到合适的大小,这样做的目的是为了避免音箱内置的功放芯片受到开机产生的瞬间电流的冲击而受到损伤 ;同样在关闭电源时,也要注意先将音箱音量调整小后再关闭。另外长时间工作后,音箱的内部温度会逐步升高,这时应该让音箱“休息”一会,或降低音量,避免损坏音箱。在不使用音箱时,应切断音箱电源,同时拔出电源插头,以避免静电电流损坏音箱内部的芯片。
02 煲好音箱 才能听好音乐
音箱就像汽车一样,需要磨合后才能达到最佳使用效果。如AX-煲箱宝宝等专业软件,可以帮助你把音箱尽快“调校”到一个理想的工作状态。
1. 煲箱时建议用中等音量进行煲箱,使用过大音量长时间煲箱有可能导致线圈发热音箱损坏。在软件中可以选用-6dB的信号来进行煲箱。
2. 将音箱面对面地放好。保证音箱的前面板相互平行,如果音箱是倒相结构,可用布堵住倒相孔,保证信号是朝一个方向发出。
2. 求音响知识大全
音响大概包括功放、周边设备(包括压限器、效果器、均衡器、激励器等)、扬声器(音箱、喇叭)、调音台、声源(如麦克风、乐器、VCD、DVD)显示设备等等加起来一套。
其中,音箱就是声音输出设备、喇叭、低音炮等等。一个音箱里包括高、低、中三种扬声器,三种但不一定就三个。
组合音响确切的说就是厂商推出的整体性的音响套装机,其功能尽可能齐全,使用方便,外观华丽。组合音响的所有的组成部分,如音箱、功放、卡座、CD座都是由一家厂商提供的,整体的配合性较好,并且在外形上也比较统一、美观;购买之后也不需要用户花很多的时间去进行调试,一般来说直接就可以使 先锋plc音响 用,在操作上较为方便,功能性也比较齐全。
很多人认为组合音响的品质不高,但实际上随着电子技术的发展,组合音响的性能也有了极大的提升,因此对于大多数的用户来说,组合音响已经完全可以满足需要了。当然,组合音响的价格、品质性能也是有极大的差距的,有千元级的产品,也有数万元的产品,需要哪一种,完全可以根据用户自己的经济实力和需求来进行选择。
分类 组合音响一般可以分为迷你组合音响和家庭影院套装。 数字音响的主要特点 1. 信噪比高 数字音响记录形式是二进制码, 重放时只需判断“0”或“1”。
因此, 记录媒介的噪声对重放信号的信噪比几乎没有影响。而模拟音响记录形式是连续的声音信号, 在录放过程中会受到诸如磁带噪声的影响, 要叠加在声音信号上而使音质变差。
尽管在模拟音响中采取了降噪措施, 但无法从根本上加以消除。 2. 失真度低 在模拟音响录放过程中, 磁头的非线性会引入失真, 为此须采取交流偏磁录音等措施, 但失真仍然存在。
而在数字音响中, 磁头只工作在磁饱和及无磁两种状态, 表示1 和0, 对磁头没有线性要求。 3. 重复性好 数字音响设备经多次复印和重放, 声音质量不会劣化。
传统的模拟盒式磁带录音, 每复录一次, 磁带所录的噪声都要增加, 致使每次复录要降低信噪比约3 dB, 子带不如母带, 孙带不如子带, 音质逐次劣化。 4. 抖晃率小 数字音响重放系统由于时基校正电路作用, 旋转系统, 驱动系统的不稳不会引起抖晃,因而不必要求像模拟记录中那样的精密机械系统。
5. 适应性强 数字音响所记录的是二进制码, 各种处理都可作为数值运算来进行, 并可不改变硬件, 仅用软件操作, 便于微机控制, 故适应性强。 6. 便于集成 由于数字化, 因而便于采用超大规模集成电路, 并使整机调试方便, 性能稳定, 可靠性高, 便于大批量生产, 可以降低成本。
编辑本段介质共振混合音响 发声原理 振动器振动发声(振动音响)+纸质鼓膜喇叭发声。 传统(普通)音响与振动音响相结合的音响,既有振动音响的振动发声,又有传统音响的喇叭发声。
介质混合音响主要是结合了振动音响的振动发声技术原理和普通音响纸质鼓膜喇叭发声原理,将二者融合;其实介质共振混合音响还是很好理解的,介质共振就是通过振动介质发声,而混合则是结合了传统音响喇叭发声,总的来说就是传统普通音响和振动音响的结合体,音质清澈不说,重低音效果更是显着,现在全国主要城市应该都有得卖了,没有见过此类音响的音乐发烧友们,可以去体验下,应该不会让你失望的! 普通(喇叭)音响发声原理 介质共振混合音响,发声原理,采用的是振动器振动发声+纸质鼓膜喇叭发声,我们经常用音响的人都知道,普通音响除了专业音响,一般的普通音响重低音都是不够的,低音好点的一般体积都不小,这主要是由于采用喇叭发声的音响受发声单元体大小的影响很大,所以很多多媒体音响直接采用低音炮,外接音箱,充分扩大其发声单元体体积范围,但这样对于音响的外形就有很大的限制了,这就是为什么我们在市面见到的音响一般都是四方四正有棱有角的原因,且低音效果也不是很好。 振动音响发声原理 而近几年才出现的振动音响,采用的则是振动介质发声的原理,一般重低音效果不错,体积纤小形状也是千奇百怪,估计很多音乐发烧友都会惊呼,这也是音响?!!但振动音响也有其致命缺陷,中高音不足或者是几乎没有,且离开介(也就是音响接触面),一旦离开介质,声音就几乎没有了,这些都是我们购买振动音响所要考虑的问题,离不开介质,那就对播放场地有所限制了。
音响 介质共振混合音响发声原理 介质共振混合音响刚好就是这二者的结合体,采用振动音响的振动介质传声则刚好解决了普通音响低音不足且体积过大的问题,而结合普通音响喇叭发声则就很好的解决了振动音响无中高音,离不开振动介质的缺陷,可以说介质共振混合音响还是很好的在普通音响和振动音响之间找到了一个平衡点,优势互补,有着专业的音效不说,它还没有“方”或者“圆”之类的局限性,任由设计师去天马行空地塑造。 介质共振混合音响使用范围 介质共振混合音响使用范围也很广泛,可以与手机、MP3-5、笔记本、台式电脑、游戏机、移动DVD等个人设备搭配使用,家庭及个人扩音设备使用。
特别是配备了锂电池的,既可以在室内使用也可以拿到户外使用,像鹏逸音响几乎都是配备了锂电池,单放时长更是。
3. 关于音响的一些知识
扬声器的振膜,有纸质,也有塑料的,不管它的材料是什么,扬声器在工作时,振膜就会不停的前后运动,来推动空气,进而把振动传入人耳,使人听到声音。普通倒相式音箱把扬声器振膜露在外面来发声,而扬声器的后方也会有振动,如果把扬声器向后方的振动也利用起来,就会使声波加强,重低音加强,安装倒相管之后,由于倒相管的直径比扬声器直径小,所以就会有比较强的声波从倒相管冲出,这样一来,扬声器向前方和向后方的声波都得到了利用,使音箱音质提高。而普通倒相式音箱的倒相管安装位置是不同的,市面的有的产品把倒相管安装在音箱后方,扬声器安装在音箱前方,这种音箱在摆放时应注意不要把音箱后部贴在墙上,因为这样会阻止倒相管发音;而有的产品则把扬声器安装在音箱前方,倒相管也安装在音箱前方;有的产品把扬声器安装在音箱底部,倒相管安装在音箱前方,这样的产品被称作“底面增压式音箱”,以漫步者和菲利浦的居多。不管扬声器和倒相管的位置如何,实际上它们的放音效果都比较相近,重低音效果都差不多。下面介绍一下超重低音音箱。
超重低音音箱是近几年来才比较普及的产品,图一中右则的图片显示出了此类音箱的基本构造,上面我们已经知道了扬声器工作时同时向前方和后方发出声音,实际上有经验的人就会知道,任何一个扬声器向前发出的振动比向后发出的振动幅度要大,这是肯定的,不然为什么普通倒相式音箱不把扬声器反的安装呢?这里面的原因在于扬声器前方的振膜比后方的振膜面积要大。大家不难想到,如果把扬声器向前方发出的振动全部用倒相管排出,重低音效果就会特别强,超重低音音箱就是这样的,这种音箱的扬声器内置在音箱中,整个音箱只有一个倒相管露在外面,而扬声器向后方的振动则由减震材料去除了,一般的超重低音音箱是用棉花作为消音材料的。在市面上超重低音音箱很多见,大家看到音箱前部只有一个倒相管的音箱,那这就是了。这种音箱重低音效果比普通倒相式音箱强很多。
4. 家用音响使用小常识,选择怎样的中置音箱
一般的家庭影院系统可以分为音源、功放和发音单元三大部分。作为家用来讲,音源可以选用常见的碟机或者比较专业的激光唱机。如果您选择的是DVD播放机,那么背后的5.1声道插孔是绝对不可少的,对于杜比AC-3解码、DTS解码也要提供支持。
功放的选择固然重要,但是有个重要的原则就是功放和音箱要尽量做到逗功率匹配、阻抗匹配地。匹配原则是首先要做到的。否则音箱系统不是显得乏力、干涩,就是显得声嘶力竭。除了纯音乐功放外,AV功放是家用音响或者家庭影院选用比较多的功放。不过由于全部音箱单元的功放都集中于此,因此在高、中、低不同音域的表现会受限制,这就要看您更看重什么样的音色了。一般我们建议功放的最大输出功率是扬声器额定功率的1.5倍,低音部分的倍数要求更高些。
不过配音响切忌用功放逗找地音箱,音箱可以说是音响当中最重要的部分,毕竟整套系统的逗嗓门地在它这里,质地分毫之差都会直接影响到最终音质的表现。因此我们比较提倡先选音箱再定功放。 目前市面上的音箱产品主要由单元和箱体两部分组成,根据组成分为高音单元、中音单元、低音单元和超重低音单元。
箱体是我们最先看到和接触到的音箱部分。从技术上讲,木质箱体比其他材质的箱体声效更好,而实木箱体又是木质箱体中的上品。在挑选箱体的时候我们可以通过敲击以及搬动来感觉箱体木板的音感和质感,一般声音干净、清脆,手感厚重的箱体音响效果也更好。
5. 音响知识
功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。
一套良好的音响系统功放的作用功不可没。 功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。
功放分类按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类功放(又称D类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。
甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。
乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。
甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。
这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。 按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。
单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。
推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。
尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。 按功放中功放管的类型不同,可以分为胆机和石机。
胆机是使用电子管的功放。 石机是使用晶体管的功放。
按功能不同,可以前置放大器(又称前级)、功率放大器(又称后级)与合并式放大器。 功率放大器简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。
不带信号源选择、音量控制等附属功能的功率放大器称为后级。 前置放大器是功放之前的预放大和控制部分,用于增强信号的电压幅度,提供输入信号选择,音调调整和音量控制等功能。
前置放大器也称为前级。 将前置放大和功率放大两部分安装在同一个机箱内的放大器称为合并式放大器,我们家中常见的功放机一般都是合并式的。
按用途不同,可以分为AV功放,Hi-Fi功放。 AV功放是专门为家庭影院用途而设计的放大器,一般都具备4个以上的声道数以及环绕声解码功能,且带有一个显示屏。
该类功放以真实营造影片环境声效让观众体验影院效果为主要目的。 Hi-Fi功放是为高保真地重现音乐的本来面目而设计的放大器,一般为两声道设计,且没有显示屏。
按照使用元器件的不同,功放又有“胆机”[电子管功放],“石机”[晶体管功放],“IC功放”[集成电路功放]。近年来由于新技术,新概念在胆机中的使用,使得电子管这个古老的真空器件又大放异彩,它的优美的声音,令许多烧友拜倒。
资深的发烧友几乎都有一台。“IC功放”由于他的音色比不上上两种功放所以在HI-FI功放中很少看到他的影子。
功放大体上可分为三大类“专业功放”“民用功放”“特殊功放”。 专业功放”一般用于会议,演出,厅,堂,场,馆的扩音。
设计上以输出功率大,保护电路完善,良好的散热为主。大多数“专业功放”的音色用于HI-FI重放时,声音干硬不耐听。
“民用功放”详细分类又有“HI-FI功放”“AV功放”“KALAOK功放”以及把各种常用功能集于一体的所谓“综合功放”。 “HI-FI功放”就是我们发烧友的功放了,它的输出功率一般大都在2X150瓦以下。
设计上以“音色优美,高度保真”为宗旨。各种高新技术集中体现在这种功放上。
价格也从千余元到几十万元不等。“HI-FI功放”又分“分体式”[把前级放大器独立出来],和“合并式”[把前级和后机做成一体]。
一般的讲,在同档次的机型中“分体式”在信噪比,声道分割度等指标上高于“合并机”[不是绝对的]。且易于通过信号线较音。
合并式机则有使用方便,相对造价低的优点,平价合并机输出功率一般大都设计在2X100W以下,也有不少厂家生产2X100W以上的高档合并机。“AV”功放是近年脱缰而出的一匹黑马,随着大屏幕电视,多种图象载体的普。
6. HIFI音响常识都有什么啊
HIFI。是一个系统,音源,功放,音箱,线材,听音环境等等。
音源。 有很多种,目前比较普遍的是光盘播放器(CD.DVD.BD)等。发烧友常玩的还有LP黑胶,甚至开盘机。。还有一个PCHIFI。是以PC为音源,一般播放APE等无损压缩的歌,曲等。
功放。 这个三天三夜都说不完。 简单说吧,常用的有,合并式功放和分体式功放(前级+后级)。 从放大方式分的话,有电子管功放(胆机)和晶体管功放(常见的功放),D类放大的功放等等。
音箱。 大小分的话,有落地箱,书架箱和卫星箱等等很多种。落地箱一般为3分频,也就是有高中低音喇叭。 书架箱一般为2分频,也就是高低音喇叭。卫星箱比较好的是全频的喇叭外加单独的低音箱体(低音炮)。 箱体不同各有优劣,比如:落地箱表现大动态场面好些。书架箱听人声,弦乐等好些。 卫星箱比较小巧适合家居。 当然世事无绝对,说的优劣只是一般情况下来说。
线材。 这个是HIFI领域争论较大的地方。争论焦点是线材到底有没有用和有多大用。所有的信号都是要经过线材传输的,线材品质的高低对音质的影响到底有多大,嘿嘿,还是您自己试试吧。
环境。 听音环境非常重要。 不是说一套好的设备放到哪里都好听的。
音响是门高深的学问,需要慢慢来了解,集中大家的智慧会更有效率,让自己成为高手,给您推荐下我喜欢的音响,首先惠威和BOSS这两款还是不错的,惠威做工还有待加强,箱角贴皮脱落翘起的情况比较多,这点需要注意,bose是美系产品,可能是由于美国的民族音乐原因吧,bose音响再搭配偏硬的功放或低音开大时会有嗡嗡的低音共鸣,个人对此不是很能接受,简单和您说一下BT-audio玫瑰红家庭影院,玫瑰红是一款美国声音场系影院,具有极佳的空间定位感和临场感。采用寂静箱体技术和动态均衡单元技术设计,展现出令人惊讶的音准、空间感极强的音场、针点般的定位能力,清晰、有力、无音染的低频以及惊人的动态范围,各频段音色均。
采用了中国传统的红木家居设计理念,在外观和效果方面都堪称上乘之作,称得上是一款真正意义上的平价超值影院。
希望回答能帮到您
7. HIFI音响常识都有什么啊
HIFI。
是一个系统,音源,音箱,音箱,线材,听音环境等等。音源。
有很多种,目前比较普遍的是光盘播放器(CD.DVD.BD)等。发烧友常玩的还有LP黑胶,甚至开盘机。
还有一个PCHIFI。
是以PC为音源,一般播放APE。----主要为音箱,是重中之重,观注功率与频响,易影响邻里的请选小功率的,大了一点用都没有,频响尽量选宽点的.,其次是驱动,也就是音箱,这个依个人听音环境选择,一般城市家庭选功率小点的即可50W左右,有大的听音环境的话可以。
----Hi-Fi音响常识就是:音响系统还原录音出来的声音能接近真实的声音,也就是所谓的Hi-Fi(高保真)。刚入门也没关系,都去实体店听一听、比较比较,耳朵就会听了;起码声音哪个好听哪个不好听要懂得区分。
Hi-Fi的组成。----三大主件:信号源(CD)+功率放大器+音箱----。
8. 小音箱的保养常识
科学地保养音响器材,是延长其寿命的关键。下面介绍一些日常维护的基本常识:
1、音响器材正常的工作温度应该为18℃~45℃。温度太低会降低某些机器(如电子管机)的灵敏度;太高则容易烧坏元器件,或使元器件提早老化。夏天要特别注意降温和保持空气流通;
2、音响器材切忌阳光直射,也要避免靠近热源,如取暖器;
3、音响器材用完后,各功能键要复位。如果功能键长期不复位,其牵拉钮簧长时期处于受力状态,就容易造成功能失常;
4、开关音响电源之前,把功放的音量电位器旋至最小,这是对功放和音箱的一项最有效的保护手段。这时候功放的功率放大几乎为零,至少在误操作时也不至于对音箱造成危害;
5、开机时由前开至后,即先开CD机,再开前级和后级,开机时把功放的音量电位器旋至最小。关机时先关功放,让功放的放大功能彻底关闭,这时候您再关掉前端设备时,不管产生再大的冲击电流也不会秧及功放和音箱了。同样关面时要把功放的音量电位器旋至最小,关或放后再关前能与CD机;
6、机器要常用。常用反而能延长机器寿命,如一些带电机的部体(录音座、激光唱机、激光视盘机等)。如果长期不转动,部分机件还会变形;
7、要定期通电。在长期不使用的情况下尤其在潮湿、高温季节,最好每天通电半小时。这样可利用机内元器件工作时产生的热量来驱除潮气,避免内部线圈、扬声器音圈、变压器等受潮霉断;
8、每隔一段时间要用干净潮湿的软棉布擦拭机器表面;不用时,应用防尘罩或盖布把机器盖上,防止灰尘入内。
9. 全面介绍一下有关音箱的知识
音箱基本上是由三大部分组成的:喇叭,分频器,箱体。按照喇叭只数的多少分为两单元,三单元。。
还有一种是把高音喇叭与低音喇叭做成一体的,称为同轴单元,从外表上看是一个单元,实际上仍属两单元。
分频器顾名思义就是把可闻声音的频段[20--20000Hz]分成几个频段,分别送往对应的喇叭单元。按照频段划分的多少,分成高,低音两段的叫两分频分成高,中,低三段的叫三分频,依次类推。
箱体,一般由原木或中密度板作成,按照箱体结构又分为密闭箱[无倒相孔,箱体内部空气与外部绝缘],倒相箱[有倒相孔]。还有一些不大多见的箱体构造:迷宫式,指数式,负阻式,号筒式等。
按照音箱的使用范围分为:专业箱[用于演出,厅,堂,场,馆的扩声]
监听箱[用于各种录音机构的专业监听]民用箱。
按照音箱的放置方式又分为书架箱和落地箱,书架箱多是两单元,两分频结构,多使用在20平方以内的房间内。落地箱多是多单元,多分频结构。多使用在20平方以上。
音箱的性能指标:
一般音箱都标明他的许多应用参数最常见的有:
功率:一般用W或VA 计量,常见的为 标称功率[额定功率,不失真功率]是指非线形失真不超过该音箱标准范围的条件下的最大输入功率。他是该音箱的正常工作功率,长期连续工作不致损坏。
灵敏度: 他的定义是,在音箱上施加1瓦功率的粉红噪声电压时,在离参考点一米处所产生的声压。以分贝[db]表示。音箱的灵敏度越高,在同样的驱动功率下就越响,这在使用小功率的功放时,灵敏度就显得很重要了。
阻抗:它是指音频信号加在音箱输入端,音箱所呈现出的一个纯阻。常见的有4欧,8欧,国外也有3欧,5欧系统的。使用时注意要与功放的输出阻抗相匹配。特别是胆机对音箱阻抗的匹配尤其重要。
频响范围:
它的定义三言两语不好说清,一般的是指音箱在音频范围内高低两端下降负 3 db时的频率重放范围。自然是越宽越好了,现在的HI-FI音箱在高频端做到20000HZ乃至30000HZ的重放以不成问题,低频段由于受扬声器口径的限制和箱体容积的限制,做到20HZ就很不容易了,一般书架式音箱的低频段就更差了。
好了,现在你已经对音箱有所认识了。说真的它很简单,但是要做好却极不简单。对于初烧友来说在掌握了一定的音箱知识基础后,自己动手制作一对入门级的HI-FI音箱也不是很难的。特别是现在一些商家推出了不少音箱套件,你只要按照制作图纸仔细安装,成功率是极高的,而且由于这些套件已经经过厂家精心设计和搭配,所以音质和效果就有了一定的保证,而其成本只有成品的二分之一到四分之一。笔者用绅士宝8545K单元精心制作的音箱与用一套单 元的进口音箱相比较,经多位资深发烧友听音评价,音效绝不在洋货之下,而成本只有三千多元,只有进口货的四分之一。
制作音箱千万不要拉郎配,买几个单元和分频器,买个成品箱体往上一装完事。这样制作出来的音箱是绝对不会好的。而且现在市场上伪劣假冒产品太多,质量得不到保证。比较保险的办法是从一些信誉较高的销售单位邮购成套套件。如果你的木工手艺不错的话,自己按照推荐图纸打造箱体也是完全可以的,或者找木工师傅代劳,只要箱体容积和低音单元推荐容积相配即可。
10. 我准备买HIFI音响,需要什么基本知识呢
hifi音响系统的组成包括三大部分,音源,功放,音箱。
1、音源举例来说可以是CD、DVD、电脑(PCHIFI),便携播放器。
2、功放由前级和后级部分组成合并机,从设计原理上又可分为甲类,甲乙类,乙类,甲类最理想,不过也最费电。电子管做的叫胆机,晶体管做的就叫石机。胆机失真大,不过音色温暖,老烧最喜欢,现在大家都喜欢石机,石机失真小,维护方便。
3、hifi音响的音箱是2声道音箱,这个区别于家庭影院的5.1或者7.1。
hifi音响的价格跨度很大,从几千元的小烧,到几十万元几百万元都有,对于入门用户来说还是千元起步吧。
可以去一些专业的hifi音响论坛学习下,比如“大喇叭论坛”