当前位置:首页 » 基础知识 » 六进七数学知识点
扩展阅读
新手怎么看基础图纸 2024-11-20 01:14:53

六进七数学知识点

发布时间: 2022-12-28 12:25:26

❶ 初一数学知识

第一章 有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程

2.1 从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步

3.1 多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段

线段公理:两点的所有连线中,线段最短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

第四章 数据的收集与整理

收集、整理、描述和分析数据是数据处理的基本过程。

第五章 相交线与平行线

5.1 相交线

对顶角(vertical angles)相等。

过一点有且只有一条直线与已知直线垂直(perpendicular)。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

5.2 平行线

经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

直线平行的条件:

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系

6.1 平面直角坐标系

含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

第七章 三角形

7.1 与三角形有关的线段

三角形(triangle)具有稳定性。

7.2 与三角形有关的角

三角形的内角和等于180度。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角

7.3 多边形及其内角和

n边形内角和等于:(n-2)?180度

多边形(polygon)的外角和等于360度。

第八章 二元一次方程组

8.1 二元一次方程组

方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2 消元

将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

第九章 不等式与不等式组

9.1 不等式

用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

9.3 一元一次不等式组

把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

第十章 实数

10.1 平方根

如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

0的算术平方根是0。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

求一个数a的平方根的运算,叫做开平方(extraction of square root)。

10.2 立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

求一个数的立方根的运算,叫做开立方(extraction of cube root)。

10.3 实数

无限不循环小数又叫做无理数(irrational number)。

有理数和无理数统称实数(real number)。

拓展: 初一语文上知识点

一、叙述人称(三种人称):

1、第一人称(“第一人称”能给人亲切自然、真实的感受。用“第一人称”写“我”,最适宜于写人物的心理活动,所见、所闻、所为、所感,都可以通过心理活动描写表现出来的。用第一人称写“他”时,最适宜写人物的外貌、语言、行动,因为用“我”的观感来写“他”的这些,较为客观。“第一人称”写“我”的外貌,写“他”的心理活动,必须加上摹拟的话,才能让读者心悦诚服。写“我”的外貌,可以这样写:“你们可以想象,我那时的脸是多么红。”写“他”的心理活动,可以这样写:“心里很轻松似的。”)

2、第二人称(作用:增强文章的抒情性和亲切感,便于感情交流。)

3、第三人称(作用:能比较直接客观地展现丰富多彩的生活,不受时间和空间限制,反映现实比较灵活自由。)

二、叙述方式(或者说“记叙的顺序”)(三种):

1、顺叙——按时间发生的先后顺序所作的叙述。顺叙型的结构模式是:总叙+分叙(分叙1+分叙2+分叙3+分叙n)+结尾。作用:条理清楚地进行记叙。

2、倒叙——把事件的结局或其发展过程中的某一重要断面提到文章前面,写完结局或断面,然后才按时间顺序写。作用:这种笔法能造成悬念,吸引读者。

3、插叙( 补叙属于插叙一种)——对全文来说,插叙仅是一个片断,插叙完后,文章仍回到原来的事件叙述上来。这种插叙不是叙述的主体部分,一般不发生在主流的时间范围内。若把这种插叙删去,虽会削弱主体的深刻性,但不明显影响主要情节的完整性。作用:使情节更加完整,结构更加严密,内容更加充实丰满。补叙作用:对上文内容加以补充解释,对下文做某些交代。

(有一种不常用的,叫“平叙”,即:俗称“花开两枝,各表一朵”,(指叙述两件或多件同时发生的事)使头绪清楚,照应得体。)

三、描写:

总体来说,描写有以下一些作用:①再现自然风光。②描绘人物的外貌及内心世界。③交代人物活动的自然及社会环境。

1、五种人物的描写方法:肖像(外貌)描写、语言描写、动作描写、心理描写、神态描写。

作用:更好展现人物的内心世界、性格特征。刻画人物性格,反映人物心理活动,促进故事情节的发展。等等。具体回答的时候要说明白是什么性格、什么心理等。

2、二种环境描写:自然环境描写——具体描写自然风光,营造一种气氛,烘托人物的情感和思想。烘托人物心情,渲染气氛等。

社会环境描写——交代人物活动的(时代)背景,写明事件发生的时间和地点,渲染气氛,更好地表现人物。

3、正面描写、侧面描写:正面直接表现人物、事物;侧面烘托突出人物、事物。

4、细节描写:刻画人物性格,反映人物心理活动,促进故事情节的发展。也可描摹人物的.语态,收到一种特殊的效果。

四、修辞:

1、比喻:使语言形象生动,增加语言色彩。化平淡为生动,化深奥为浅显,化抽象为具体形象。

2、拟人:把事物当人写,使语言形象生动。给物赋予人的形态情感(指拟人),描写生动形象,表意丰富。

3、排比:增强语言气势,加强表达效果。叙事透辟,条分缕析;长于抒情。

4、夸张:突出某一事物或强调某一感受。烘托气氛,增强感染力,增强联想;创造气氛,揭示本质,给人以启示。

5、反问:起强调作用,增强肯定(否定)语气。

6、设问:自问自答,提出问题,引发读者的注意、思考。

7、对偶:使语言简练工整、有音乐感;抒情酣畅;便于吟诵,易于记忆。

8、反复:多次强调,给人以深刻的印象;写景抒情感染力强;承上启下,分清层次。

注:上面只是简要给出各种修辞手法(方法)的作用,在回答问题的时候,一定要结合具体的内容具体来回答,避免空洞。

五、结构安排:

布局谋篇的技巧:开门见山、首尾呼应、卒章显志、伏笔照应、层层深入、过度铺垫、设置线索;结构严密,完整匀称;烘托铺垫,前后照应;设置悬念,制造波澜,起承转合,曲折有致。材料和中心的关系的处理,主次详略是否得当;材料是否典型、真实、新颖、有力。

记叙文常以时间推移、空间转换、情景变化、思维逻辑顺序等来安排层次。散文构思的线索,一般常见的有如下几种:以情为线索;以理为线索;以物为线索;以空间位置为线索。

从结构上明确不同位置的句子在文中所起的作用:

1、首句——统领全文、提纲挈领、引出下文,为后文做铺垫、埋下伏笔;

2、尾句——总结全文,深化主题,照应上文,前后呼应,言有尽而意无穷,回味深长。

3、转承句——承上启下,过渡,承接上文,引出下文;

4、中心句——点明中心、揭示主旨;

5、点睛句——点明全文中心,统领全文;句子含义深刻,耐人寻味,读后能给人以启迪。

6、情感句——抒发强烈内在情感,直抒胸臆;

7、矛盾句——从字面上看自相矛盾,但作者却寄寓了深刻的用意。揭示深刻内涵,表达深刻见解。

(1)记叙文(散文)的结构特点

①按时间顺序或事件发生、发展的顺序组织材料。

②按观察点的变换安排材料,如《我的空中楼阁》。

③按场面的安排安排材料,如《内蒙访古》。

④按材料性质归类安排结构,如《琐忆》。

⑤按作者认识的过程或感情的变化安排材料。如《荔枝蜜》。

⑥按作者的所见所闻所感所思作为行文线索安排材料。

六、表达方式入手分析句意:

五种表达方式:记叙、 描写、 说明、 抒情、 议论。

解释:用语言文字表情达意时,有一个方法或手段问题,人们习惯上将它称为表达方式。

比如:记叙文是以叙述、描写、抒情为主要表达方式,议论文是以议论为主要表达方式,而说明文则以说明为主要表达方式。

1、记叙文中的议论往往起画龙点睛、揭示记叙目的和意义的作用;

2、议论文中的记叙往往起到例证的作用;

3、说明文中描写、文艺性笔调起到点染作品使之更加生动形象的作用。

4、夹叙夹议,记叙与议论交叉运用的写法,使文章在轻松活泼之中,阐发议论,读来饶有兴味,深受教益,文章中的记叙是为议论服务的,而议论又以记叙为基础,叙为议提供了事实依据,使立论有根有据,具有很强的说服力。

七、标点符号:

1、引号的五种用法:①表引用 ②表讽刺或否定 ③表特定称谓 ④表强调或着重指出 ⑤特殊含义

2、破折号的五种用法:①表注释 ②表插说 ③表声音中断、延续 ④表话题转换 ⑤表意思递进

3、省略号的六种用法:①表内容省略 ②表语言断续 ③表因抢白话未说完 ④表心情矛盾 ⑤表思维跳跃 ⑥表思索正在进行

八、十种常用写作手法:

象征、对比、衬托、烘托、伏笔铺垫、照应(呼应)、直接(间接)描写、 扬抑(欲扬先抑、欲抑先扬)、借景抒情、借物喻人。

象征 通过某一特点的具体形象,表达某种人和某种社会现象的本质特点。例:《海燕》以海燕象征大智大勇的无产阶级革命先驱者的形象。

对比 把两种相反的事物或一种事物相对立的两个方面作比较,鲜明的突出主要事物或事物的主要方面的特征。例:《海燕》以海燕的高大形象与海鸭、海鸥、企鹅的卑怯形象作对比,突出海燕勇猛、敢于斗争的鲜明特征。

衬托 以他体从正面、反面两个角度陪衬本体,突出本体的主要特征。例:《白杨礼赞》开头描写白杨树的生长环境---西北高原的雄壮,衬托出白杨树傲然挺立的高大形象。

借景抒情 通过描写具体生动的自然景象或生活场景,表达作者真挚的思想感情。

例:《从百草园到三味书屋》文章从不同角度不同层次淋漓尽致的描摹百草园声色趣俱全的景观和三味书屋枯燥乏味的生活场景,表现作者热爱大自然,喜欢自由快乐生活和不满束缚儿童身心发展的封建教育的思想感情。

借物喻人 描写事物,突出其特点,并以此设喻,表现作者高尚的思想情操。 例:《白杨礼赞》以白杨树比喻北方军民,以白杨树正直、朴质、严肃、挺拔、力争上游的特点比喻北方军民为我国的解放事业而抗争、战斗的顽强精神。

先抑后扬 先否定或贬低事物形象,尔后深入挖掘事物特点及内在意义,再对事物予以肯定、褒扬,更突出地强调事物的特征。 例:《白杨礼赞》先说白杨树不是“好女子”,而后称颂其是“伟丈夫”,更突出的强调了白杨树的外在形象和内在神韵。

九、试卷题目常见的一些术语(问题):

1、有何作用 回答文章中某一内容的作用可从三个方面考虑,一是内容方面,如深化主题、强调感情等;二是结构方面的,如过渡、呼应等;三是语言方面,如引人入胜、生动活泼等。

2、思想内容——基本是指文章的中心思想或主旨。

3、思想感情——作者或作品中人物所表现出来的思想倾向,如善恶、好恶、褒贬等。

课外阅读 指课本(教材)之外的阅读内容。不管是课内读的还是课外读的内容。

4、感悟——多指发自内心的感受、理解、领悟等。

5、写作手法——考生要清楚,狭义的写作手法即“表达方式”,广义的是指写文章的一切手法,诸如表达方式、修辞手法,先抑后扬、象征、开门见山、托物言志等。

6、表现手法——从广义上来讲也就是作者在行文措辞和表达思想感情时所使用的特殊的语句组织方式。

分析一篇作品,具体地可以由点到面地来抓它的特殊表现方式,首先是字词、语句上的修辞技巧,种类很多,包括比喻、象征、夸张、排比、对偶、烘托、拟人、用典等等;从作品的整体上来把握它的表现手法时,就要注意不同文体的作品:抒情散文的表现手法丰富多彩,借景抒情、托物言志、抑扬结合、象征等手法;记叙文的写作手法如首尾照应、画龙点睛、巧用修辞、详略得当、叙议结合、正侧相映等;议论文写作手法如引经据典、巧譬善喻、逆向求异、正反对比、类比推理等;小说的描写手法、烘托手法、伏笔和照应、悬念和释念、实写与虚写等。

表现手法的分析是一种很泛的题目,答题时要注意完整地理解题目的答题要求,要简洁准确地答题,对有些题目如欣赏写作技巧的题,应结合上下文语境、文章题材与体裁风格等来准确把握,选取其中最主要的一种回答即可,不必面面俱到,如小说塑造人物的种种手法,如散文抒发情感的种种手法等,尽量抓到得分点。

7、注:要了解一些常用程式(句式),如体现了什么,强调了什么,强化了什么,营造了什么,表现了什么,还有深化了主题,点明了题旨等等。

十、其他:“一去二三里,烟村四五家。亭台六七座,八九十枝花。”

二种常见叙事线索:物线、情线。

二种语言类型:口语、书面语。(语言特点 一般指口语的通俗易懂,书面语的严谨典雅,文学语言的鲜明、生动、富于形象性和充满感情色彩的特点。分析时,一般从修辞上进行分析。)

二种抒情:1、直接抒情 指作者直接出面就某种事物或情况抒发感情,由于是作者直接出面,直接抒情时的语言往往有强烈的主观性色彩。 (1)为抒发感情而选择某种形象 (2)针对形象直接抒情

2、间接抒情 指作者不直接出面,通过其它方式来抒发感情,语言比较冷静客观。 (1)借人物之口来抒情。 (2)通过特定的语调来抒情。

三种感情色彩:褒义、 贬义、 中性。

语言运用三原则:简明(语句简洁、明了,一般有字数上的限制。)、 连贯、 得体(文明礼貌,人性化。)。

三种说明顺序:(1)时间顺序、 (2)空间顺序、

(3)逻辑顺序。逻辑顺序包括六种:①一般←到→个别 ②现象←→本质 ③原因←→ 结果④概括←→具体 ⑤部分←→整体 ⑥主要←→次要

四种文学体裁:小说、 诗歌、 戏剧、 散文。

小说三要素:人物(根据能否表现小说主题思想确定主要人物)情节(开端 /发展 /高潮 /结局 ) 环境(自然环境/ 社会环境。)

人物 主要掌握通过适当的描写方法、角度刻画人物形象,反映人物思想性格的阅读技巧。

情节 主要了解各部分的基本内容,以及理解、分析小说情节的方法、技巧。

小说情节四部分:开端、 发展、 高潮、 结局。

开端 交代背景,铺垫下文。

发展 刻画人物,反映性格。

高潮 表现冲突,揭示主题。

结局 深化主题,留下思考。

环境 主要理解自然环境和社会环境的作用。

自然环境 描写自然景观,渲染气氛、衬托情感、预示人物命运、揭示社会本质、推动情节发展。

社会环境 描写社会状况,交代故事背景,揭示社会本质,铺垫下文内容。

句子的四种用途:陈述句、 疑问句、 祈使句、 感叹句。

记叙文六要素:时间、 地点、 人物、 事件的起因、经过和结果。

六种病句类型:①成分残缺 ②搭配不当 ③关联词语使用不恰当 ④前后矛盾 ⑤语序不当 ⑥误用 滥用虚词(介词)

七种说明方法:举例子、 打比方、 作比较、 列数字、 分类别、 下定义、引用。

初一语文知识点大全,以供同学们学习和参考,希望同学们的语文成绩越来越棒!

❷ 初一数学上册知识点大全

初一数学上册知识点大全有哪些你知道吗?初一数学上册的学习,需要大家对知识点进行 总结 ,这样大家最大效率地提高自己的学习成绩,下面是我整理的初一数学上册知识点,欢迎大家查阅!

七年级数学 知识点

生活中的轴对称

1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。

3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。

联系:它们都是图形沿某直线折叠可以相互重合。

2、成轴对称的两个图形一定全等。

3、全等的两个图形不一定成轴对称。

4、对称轴是直线。

5、角平分线的性质

1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

6、线段的垂直平分线

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。

7、轴对称图形有:

等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。

8、等腰三角形性质:

①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。

9、①“等角对等边”∵∠B=∠C∴AB=AC

②“等边对等角”∵AB=AC∴∠B=∠C

10、角平分线性质:

角平分线上的点到角两边的距离相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。

∵OC垂直平分AB∴AC=BC

12、轴对称的性质

1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。

2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。

13、镜面对称

1.当物体正对镜面摆放时,镜面会改变它的左右方向;

2.当垂直于镜面摆放时,镜面会改变它的上下方向;

3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;

学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:

(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;

(3)可以把数字左右颠倒,或做简单的轴对称图形;

(4)可以看像的背面;(5)根据前面的结论在头脑中想象。



初一数学解题技巧

一、答题原则

大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时 报告 监考老师处理。

答题时,一般遵循如下原则:

1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。

2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。

3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。

4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。

5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。

6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。 另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到 “前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。

二、审题要点

审题包括浏览全卷和细读试题两个方面。

一是开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。

二是答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题 方法 和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。

1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。

2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。

3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。

三、时间分配

近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目

中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于 其它 时间段。

在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。

在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。

一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。

五、大题和难题

一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。

六、各种题型的解答技巧

1.选择题的答题技巧

(1)掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。三是辨析选项,排误选正。四是要正确标记和仔细核查。

(2)特值法。在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。

(3)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。

(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。除须计算的题目外,一般不猜A。

2.填空题答题技巧

(1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。

3.解答题答题技巧

(1)仔细审题。注意题目中的关键词,准确理解考题要求。

(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

(3)给出结论。注意分类讨论的问题,最后要归纳结论。

(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

七、如何检查

在考试中,主动安排时间检查答卷是保证考试成功的一个重要环节,它是防漏补遗、去伪存真的过程,尤其是考生如果采用灵活的答题顺序,更应该与最后检查结合起来。因为在你跳跃式往返答题过程中很可能遗漏题目,通过检查可弥补这种答题策略的漏洞。

检查过程的第一步是看有无遗漏或没有做的题目,发现之后,应迅速完成或再次思考解法。对各类题型的做答过程和结果,如果有时间要结合草稿纸的解题过程全面复查一遍,时间不够,则重点检查。

选择题的检查主要是查看有无遗漏,并复查你心存疑虑的题目。但是若没有充分的理由,一般不要改变你依据第一感觉作出的判断。

对解答题的检查,要注意结合审查草稿纸的演算过程,改正计算和推理中的错误。另外要补充遗漏的理由和步骤,删去或修改错误或不准确的观点。

计算题和证明题是检查的重点,要仔细检查是否完成了题目的全部要求;若时间仓促,来不及验算的话,有一些简单的验证方法:一是查单位是否有误;二是看计算公式引用有无错误;三是看结果是否比较“像”,这里所说的“像”是依靠 经验 判断,如应用题的答案是否符合实际意义;数字结论是否为整数、自然数或有规则的表达式,若结论为小数或无规则的数,则要重新演算,最好能用其他方法再试着去做

八、强调的一点是草稿纸,这是考试时和试卷同等重要的东西。

同学们拿到草稿纸后,请先将它三折。然后按顺序使用。草稿纸上每道题之间留空,标清题号。字迹要做到能够准确辨认,切不可胡写乱画。这样做的好处是:

1. 草稿纸展现的是你的答题思路。草稿纸清晰,答题思路也会清晰,最起码你清楚你已经做到了哪一步。如果草稿混乱的话,这一步推出来了,往往又忘了上一步是怎么得到的。

2. 对于前面提到的暂时不会,回头再做的题,由于你第一次做本题时已经进行了一定的思维过程。第二次做时如果重头再思考非常浪费时间。利用草稿纸,可以迅速找到上次的思维断点。从而继续攻破。关键结论要特殊标记。

3. 检查过程中,草稿纸更是最好的帮手。如果连演算过程都可从草稿纸上清晰找到的话,无疑会节省大量时间。

初一数学基本知识点归纳

第一章有理数

1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:

①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数

8、表示数a的点到原点的距离称为数a的绝对值

9、绝对值的三句:正数的绝对值是它本身,

负数的绝对值是它的相反数,

0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

12、乘除:同号得正,异号的负

13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数)

17、左边第一个非零的数字起,所有的数字都是有效数字。

【知识梳理】

1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

几何意义:一个数的`绝对值,就是在数轴上表示这个数的点到原点的距离.

5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

初一数学基本知识点总结

一元一次方程知识点

知识点1:等式的概念:用等号表示相等关系的式子叫做等式.

知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.

说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.

知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.

例2:如果(a+1) +45=0是一元一次方程,则a________,b________.

分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.

(2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.

即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.

说明:等式的性质是解方程的重要依据.

例3:下列变形正确的是( )

A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1

C.如果x=y,则x-5=5-y D.如果则

分析:利用等式的性质解题.应选D.

说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.

知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.

知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.

⑵移项时,一定记住要改变所移项的符号.

知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.

例4:解方程 .

分析:灵活运用一元一次方程的步骤解答本题.

解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.

说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.

知识点8:方程的检验

检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.

注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.

三、一元一次方程的应用

一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助.

一、行程问题

行程问题的基本关系:路程=速度×时间,

速度=,时间=.

1.相遇问题:速度和×相遇时间=路程和

例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?

解:设甲、乙二人t分钟后能相遇,则

(200+300)× t =1000,

t=2.

答:甲、乙二人2钟后能相遇.

2.追赶问题:速度差×追赶时间=追赶距离

例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲? 解:设t分钟后,乙能追上甲,则

(300-200)t=1000,

t=10.

答:10分钟后乙能追上甲.

3. 航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度. 例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度.

解:设小船在静水中的速度为v,则有

(v+20)×3=90,

v=10(千米/小时).

答:小船在静水中的速度是10千米/小时.

二、工程问题

工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1.

例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?

解:设甲再单独做x天才能完成,有

(+)×5+=1,

x=11.

答:乙再单独做11天才能完成.

三、环行问题

环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.

例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?

解:设经过t分钟二人相遇,则

(300-200)t=400,

t=4.

答:经过4分钟二人相遇.

四、数字问题

数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同.

例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.

解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得

[10(x-1)+x]+[10x+(x+1)]=33,

x=1,则x+1=2.

∴这个数是21.

答:这个两位数是21.

五、利润问题

利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几 例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?

解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] ,

x=162.

48+x=48+162=210.

答:该电器每台进价、定价各分别是162元、210元.

六、浓度问题

浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度

例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克?

解:设需要“84”消毒液x克,根据题意得

=,

x=20.

答:需要“84”消毒液20克.

七、等积变形问题

例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)

第9 / 11页

分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:

玻璃杯里倒掉的水的体积=长方体铁盒的容积.

解:设玻璃杯中水的高度下降了xmm,根据题意,得

经检验,它符合题意.

八、利息问题

例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.

(1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元.

(2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?

(3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?

分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税.

解:(1)利息=本金×利率×期数=8500×2.2%×1=187元.

实得利息 =利息×(1-20%)=187×0.8=149.6元.

(2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232.

解方程,得x=70000.

经检验,符合题意.

答:这笔资金为70000元.

(3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432.

解方程,得x=6000.

经检验,符合题意.

答:这笔资金为6000元.

初一数学上册知识点大全相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册知识点总结

★ 初一上册数学知识点归纳整理

★ 初一数学知识点小归纳

★ 初一数学上册基本概念汇总与学习方法

★ 初一上册数学知识点手抄报

★ 初一年级上册数学的21个热门知识点

★ 七年级数学知识点整理大全

★ 初一数学上册重点知识整理

★ 七年级数学上册知识归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❸ 初一数学知识点总结

第一册

第一章 有理数
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。

1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a• (b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

第二章 一元一次方程
2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘

2.4再探实际问题与一元一次方程

第三章 图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体
几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量
角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图

第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多——全面调查举例
用划记法记录数据,“正”字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况——抽样调查举例
抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习 调查“你怎样处理废电池?”
调查活动主要包括以下五项步骤:
一、 设计调查问卷
⑴设计调查问卷的步骤
①确定调查目的;
②选择调查对象;
③设计调查问题
⑵设计调查问卷时要注意:
①提问不能涉及提问者的个人观点;
②不要提问人们不愿意回答的问题;
③提供的选择答案要尽可能全面;
④问题应简明;
⑤问卷应简短。
二、实施调查
将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:
⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;
⑵告诉被调查者你收集数据的目的。
三、处理数据
根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流
根据调查结果,讨论你们小组有哪些发现和建议?
五、写一份简单的调查报告

第二册

第五章 相交线与平行线
5.1相交线
5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
5.1.2
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线
5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。
两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。
两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。
判定两条直线平行的方法:
方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。

第六章 平面直角坐标系
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章 三角形
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。
三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的稳定性
三角形具有稳定性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)
多边形的外角和等于360。
7.4课题学习 镶嵌

第八章 二元一次方程组
8.1二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元
由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
8.3再探实际问题与二元一次方程组

第九章 不等式与不等式组
9.1不等式
9.1.1不等式及其解集
用“<”或“>”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
9.1.2不等式的性质
不等式有以下性质:
不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
9.2实际问题与一元一次不等式
解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。
9.3一元一次不等式组
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
9.4课题学习 利用不等关系分析比赛

❹ 七年级数学知识点总结

高效的学习,要学会给自己定定目标,这样学习会有一个方向;然后要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的攻克、落实。本篇 文章 是我为您整理的《 七年级数学 知识点 总结 归纳》,供大家借鉴。

↓↓↓点击获取“七年级知识点”↓↓↓

★ 初一数学上册知识点归纳 ★

★ 七年级下数学知识点总结 ★

★ 初一地理上册知识点总结 ★

★ 初一下册历史知识点归纳 ★

七年级数学知识点总结1

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:

绝对值的问题经常分类讨论;

(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

七年级数学知识点总结2

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

七年级数学知识点总结3

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:

a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

图形的初步认识

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

五、余角和补角

1、如果两个角的和等于90(直角),就说这两个角互为余角。

2、如果两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线

1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:

⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

七、平行线

1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、判定两条直线平行的 方法 :

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5、平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。


七年级数学知识点总结相关文章:

★ 七年级数学知识点整理大全

★ 2017年中考初中数学知识点总结

★ 初中数学圆的知识点归纳

★ 初中部数学学习方法总结

★ 初一数学的知识点归纳

★ 初中数学分式知识点总结

★ 初一数学基础知识点梳理

★ 七年级数学单元知识点

★ 初一数学知识点归纳与学习方法

★ 初一数学知识点归纳华师版

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❺ 七年级数学重点知识

费了我好大的事啊这位仁兄 七年级数学知识点
第一章 走进数学世界
第二章 有理数
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.
5.科学记数法: ,其中 。 6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
第三章 整式的加减
一、整式的有关概念
1、单项式:数与字母乘积,这样的代数式叫单项式。单独的一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
4、多项式:几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。特别注意,多项式的次数不是组成多项式的所有字母指数和!!!
6、整式:单项式与多项式统称整式。(分母含有字母的代数式不是整式)
二、整式的运算
(一)整式的加减法 基本步骤:去括号,合并同类项。
(二)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。 数学符号表示:___ (其中m、n为正整数)
2、幂的乘方 法则:幂的乘方,底数不变,指数相乘。 数学符号表示:_______ (其中m、n为正整数)
3、积的乘方 法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。数学符号表示:_______ (其中n为正整数)
4、同底数的幂相除 法则:同底数的幂相除,底数不变,指数相减。 数学符号表示:___ (其中m、n为正整数)
5、单项式乘以单项式 法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。
6、单项式乘以多项式 法则:单项式乘以多项式,就是根据分配律用单项式的去乘多项式的每一项,再把所得的积相加。
7、多项式乘以多项式 法则:多项式乘以多项式,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。
8、平方差公式 法则: 两数的各乘以这两数的差,等于这两数的平方差。 数学符号表示:_____ (其中a、b既可以是数,也可以是代数式) 说明:平方差公式是根据多项式乘以多项式得到的,它是两个数的和与同样的两个数的差的积的形式。
9、完全平方公式 法则:两数和(或差)的平方,等于这两数的平方和再加上(或减去)这两数积的2倍。
数学符号表示: ______
(二)整式的除法
1、单项式除以单项式 法则:单项式除以单项式,把它们的系数、相同字母的幂分别相除后,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、多项式除以单项式 法则:多项式除以单项式,就是多项式的每一项去除以单项式,再把所得的商相加。
第四章 图形初步认识
1.点、线、面:通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。2.角 ①通过丰富的实例,进一步认识角。②会比较角的大小,能估计一个角的大小,会计算角度的和与差,识别度分、秒,会进行简单换算。 ③了解角平分线及其性质。
相交线和平行线
一、基本概念
1. 直线:(1)直线是向__________无限延伸的,直线没有端点。(2)经过两点有且只有一条__________。
2.射线:直线上一点和它一旁的部分叫做__________,这个点叫做射线的端点,射线只有一个端点。
2. 线段:(1)直线上两点之间的部分叫做__________,__________有两个端点.(2)两点之间,__________最短。
(3)把一条线段分成两条相等线段的点,叫做线段的__________。
4.垂线;当两条直线相交所构成的四个角中有一个角是__________时,叫做两条直线互相垂直;其中一条直线叫做另一条直线的垂线,它们的交点叫做__________。
5、垂线的性质:(1)经过一点,有且只有___条直线和已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,__最短。
6.两点间的距离:连结__________的线段的长度。
7.点到直线的距离:从直线外一点到__________的垂线段的长度。
8.两条平行线间的距离:两条平行线中一条直线上__________到另一条直线的距离。
9、角:有公共端,点的两条__________组成的图形叫做角。这个公共端点叫做角的顶点,这两条_____叫做角的边。
10、角平分线:从一个角的顶点出发,把这个角分成两个__________的角的射线,叫做角平分线。
11.平角、周角:射线绕端点旋转,当终止位置和起始位置成__________时,所成的角叫做平角;继续旋转回到__________位置时,所成的角叫做周角。
12、角的度量:1周角=__平角=___直角=360°, 1°=___’ , 1’=___”
13.小于平角的角的分类:__________角、__________角、__________角。
14.互为余角、补角:如果两个角的和是_,这两个角叫做互为余角;如果两个角的和是_,这两个角叫做互为补角。
15.相关角的性质:(1)对顶角______(2)同角或等角的余角_____;(3)同角或等角的补角_______。
二、相交线和平行线
1.平行线:在同一平面内,__________的两条直线叫做平行线。
2.在同一平面内,两条直线的位置关系只有两种:__________。相交时,对顶角相等。
3.平行线的判定:(1)同位角___,两直线平行。(2)内错角相等,两直线_____。
(3)同旁内角__________,两直线平行。(4)平行(或垂直)于同一直线的两直线__________。
4、平行线的性质:(1)经过直线外一点,有且只有____条直线与这条直线平行。
(2)两直线平行,同位角_______。(3)两直线平行,内错角__________。
(4)两直线平行,同旁内角_.(5)一条直线和两条平行线中的一条垂直(或平行),这条直线也和_垂直(或平行).
(6)平行线间的距离处处__________。(7)经过三角形一边的中点与另一边平行的直线必平分__________。
三、平行线分线段成比例
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也____。
2、平行线等分线段定理的推论:(1)经过梯形一腰的中点与底_____的直线,必平分另一腰。(2)经过三角形一边的中点与另一边平行的直线必平分__________。
3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成_________。
4.平行线分线段成比例定理的推论:__于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。5.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段比例,那么这条直线_于三角形的第三边。
第五章 数据的收集与表达
�8�5 学习如何去收集数据、整理数据、分析数据并最后得到相应的结论;另外,我们还必须掌握有关频数、频率等知识点。
明确调查问题————数据的用途;
确定调查对象————数据收集的范围;
选择调查方法————收集数据所采用的方法;
展开调查——————数据收集;
记录结果——————数据整理;
得出结论——————数据分析;
�8�5 概括:频数表示每个对象出现的次数;
频率表示每个对象出现的次数与总次数的比值(或者百分比)
频数和频率都能够反映每个对象出现的频繁程度。
�8�5 学会用统计来直观来表示数据,并从统计图中发现数据间的联系。学会用计算机画出统计图。
第六章 一元一次方程
1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解x= ;
(2)a=0,b=0时,方程有无数个解; (3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
5.几种常见的问题:和差倍分问题、等机变形问题、劳力调配问题、比例分配问题、数字问题、工程问题。
第七章 二元一次方程组
1.二元一次方程(组)及解的应用:注意:方程(组)的解适合于方程,任何一个二元一次方程都有无数个解,有时考查其整数解的情况,还经常应用方程组的概念巧求代数式的值。
2.解二元一次方程组:解方程组的基本思想是消元,常用方法是代入消元和加减消元,转化思想和整体思想也是本章考查重点。
会用代入消元法解含有未知数系数为1的二元一次方程组。会运用代入法解未知数系数都不是1的二元一次方程组。会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。学会使用方程变形,再用加减消元法解二元一次方程组。灵活运用代入消元法、加减消元法解题。
3.二元一次方程组的应用:列二元一次方程组的关键是能正确分析出题目中的等量关系,题目内容往往与生活实际相贴近,与社会关系的热点问题相联系,请平时注意搜集、观察与分析。
第八章 一元一次不等式
1.判断不等式是否成立:关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数。因此,在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。
2.解一元一次不等式(组):解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题
3.求不等式(组)的特殊解:不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案。注意应用数形结合思想。
4.列不等式(组)解应用题:注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题。
第九章 多边形
1. 多边形:一般来说,多边形是由一些线段依次首尾相连围成的封闭图形。我们通常根据多边形的边数将它们分为三角形、四边形、五边形……
2. n边形:由n条线段依次首尾相接围成的封闭图形叫做叫做n边形(n为大于或等于3的整数)。
3. 多边形的分割:从一个多边形的某一个顶点出发,分别连接这个顶点与其他各顶点,可以把这个多边形分割成若干个三角形。
4. 从n边形的一个顶点出发有(n-3)条对角线,把n边形分成(n-2)个三角形。一个n边形共有n个顶点,n条边,n(n-3)÷2 条对角线。
5. 圆:一条线段绕着它的一端旋转一周形成的图形叫做圆。
6. 圆上两点之间的线段叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
7. 圆可以分成若干个扇形。
8. 圆上两点(连接两点的线段不是直径)将圆分成两个部分,一部分大于半圆,一部分小于半圆,因此圆上的两点分圆成两条弧,每条弧都对应一个扇形。
⒐了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高.了解三角形的稳定性。三角形两边之和大于第三边。②探索并掌握三角形中位线的性质。
⒑重点: 1.四边形的基本概念:
(1)四边形:平面内,四条线段首尾顺次相接,如果任何两条线段都不在同一直线上,所形成的图形叫做四边形.
(2)各部分名称: 边:组成四边形各边的线段 顶点:相邻两边的公共点 内角:从四边形内部看相邻两边所成的角,简称为角. 对角线:连结四边形不相邻的两个顶点的线段. 外角:四边形的一条边与
第十章 轴对称
�8�5 轴对称与轴对称图形是不同的概念:“轴对称”是指两个图形之间的形状与位置关系 “轴对称图形”是指一个图形的形状。
�8�5 定义:有两边相等的三角形是等腰三角形
�8�5 等腰三角形的性质:
等腰三角形的两个底角相等。 (简写成“等边对等角”)
等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
等腰三角形的底边上到两条腰的距离相等
等腰三角形的一腰上的高与底边的夹角等于顶角的一半
�8�5 等腰三角形的判定: 有两个角相等的三角形是等腰三角形
�8�5 三角形的一些性质:
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。
考察内容:①轴对称和轴对称图形的性质判别。②注意镜面对称与实际问题的解决。 突破方法: ①熟练掌握图形的对称基本性质和基本作图法。②结合具体的问题大胆尝试,动手操作,探究发现其内在的规律。③注重对网格内和坐标内的图形的变换试题的研究,熟练掌握其常用的解题方法。④关注图形与变换创新题,弄清其本质,掌握基本解题方法,如动手操作法,折叠法,旋转法。
第十一章 体验不确定现象
1、 必然事件:在每次实验中一定发生的事件,发生的机会是100%。
2、 不可能事件:在每次实验中一定不发生的事件,发生的机会是0。
(必然事件与不可能事件统称为确定事件)
3、 不确定事件(随机事件):无法确定在一次试验中会不会发生的事件,发生
的机会是0~1之间的数。
4、 “不太可能”不等于“不可能”,可能性小并不意味着一定不会发生。
5.机会:不确定事件或随机事件经过多次试验使之趋于稳定时状态,就是这个事件的成功率我们以后把这种成功率表示一随机事件发生的可能性,即机会。
6.机会的均等与不等:不确定事件成功与失败的机会各占一半即0.50时,我们称这不确定事件的机会均等,否则就是机会不等。
7、 不确定现象发生的机会的估计。
(1) 实验法:通过大量重复实验来估计。
(2) 分析法:从实验结果的所有可能情况来确定。
8、 不确定事件在大量重复实验中事件发生频率的稳定性。
7、 实验必须在相同条件下进行,实验次数越多,得到的机会估计值就越好。
8、 实验是估计机会大小的一种方法。

❻ 人教版七年级数学上册知识点总结

习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。 下面我给大家带来人教版 七年级数学 上册知识点 总结 ,希望大家喜欢!

人教版七年级数学上册知识点总结

(一)正负数

1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数

1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴

1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法

1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)

1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba

4.乘法结合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理数除法

1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

第二章整式(一)整式

1.整式:单项式和多项式的统称叫整式。

2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

3.系数;一个单项式中,数字因数叫做这个单项式的系数。

4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

5.多项式:几个单项式的和叫做多项式。

6.项:组成多项式的每个单项式叫做多项式的项。

7.常数项:不含字母的项叫做常数项。

8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。

9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

人教版七年级数学上册知识学习技巧

一、要不断培养学习数学的兴趣和求知渴望

有许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。

二、要养成认真读书,独立思考的好习惯

过去有些同学认为:学习数学主要是靠上课听老师讲明白,而把我们手中的数学课本仅仅当成做作业的“习题集”。这就有两个认识问题必须要解决。

一是同学们要认识到,我们的教科书记载了由数学工作者整理的、大家必须掌握的基础知识,以及如何运用这些知识解决问题等。因此,要想真正获得知识,认真读书、培养自学能力是一条根本途径。我们希望同学们在中学老师的指导、帮助下,从过去不读书、不会读书转变为爱读书、学会读书,进而养成认真读书的好习惯。

二是同学们还要认识到,许多数学问题不是单靠老师讲明白的,主要是靠同学们自己想明白的。孔子日:”学而不思则罔,思而不学则殆。”这句话极力精辟地阐述了学习和思考的辩证关系,即要学而恩、又要思而学。大家学习数学的过程主要是自己不断深入思考的过程。我们希望大家今后在上数学课时。无论老师讲新课,还是复习、讲评作业练习,都要使自己的注意力高度集中,边听边积极思考问题,捕捉有用的信息,随时抓住萌发出的灵感。对于没弄明白的问题,一定要及时、主动去解决它,直到弄懂为止。

人教版七年级数学上册知识点 复习 方法

复习目标(包括重点难点)

针对全班的学习程度,初步把复习目标定为尽力提高全班学生学习成绩,提高优良率和平均分,提高学生运用基础知识解决实际问题的能力。

复习重点难点:

第五章重点:复习两条直线的相交和平行的位置关系,以及相交平行的综合应用。难点:垂直、平行的性质和判定的综合应用。第六章重点:在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用。难点:建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化。

第七章重点:平面直角坐标系,重点是理解平面直角坐标系的有关概念,会画平面直角坐标系,能在平面直角坐标系中根据坐标找出点,由点找出坐标;加深对数形结合思想的体会。难点是平面直角坐标系的实际应用。

第八章重点:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题。难点:以方程组为工具分析问题、解决含有多个未知数的问题。

第九章重点:一元一次不等式(组)的解法及应用。难点:一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题。

第十章重点:收集、整理和描述数据。

难点:样本的抽取,频数分布直方图的画法。

复习策略( 措施 )

预设1.“先分后总”的复习策略,先按章复习,后汇总复习;

2.“边学边练”的策略,在复习知识的同时,紧紧抓住练这个环节;

3.“环节检测”的策略,每复习一个环节,就检测一次,发现问题及时解决;

3.“仿真模拟”的复习策略,在总复习中,进行几次仿真测试,来发现问题,并及时解决问题,促进学生学习质量的提高。

4.及时“总结归纳”的策略,对于一个知识环节或相联系的知识点,要及时进行归纳与总结,让学生系统掌握知识,提高能力。


人教版七年级数学上册知识点总结相关 文章 :

★ 人教版七年级数学上册知识点总结

★ 初一人教版数学上册知识点总结归纳

★ 人教版七年级数学上册复习提纲

★ 人教版数学七年级上册复习提纲

★ 七年级数学上册知识点总结第一章

★ 人教版初一数学上册知识点

★ 初一数学上册知识点归纳

★ 人教版初一数学知识点整理

★ 七年级人教版上册数学复习提纲

★ 新人教版七年级上册数学知识点

❼ 七年级数学上重点,难点知识归纳。

第一篇 概念篇

1.整数和分数统称为有理数.
2.相反数:a的相反数是 -a
3.绝对值:|a|=
4.倒数:a的倒数 (a≠0)
5.乘方:相同因数积的运算叫乘方,负数的奇次方为负,偶次方为正;正数的任何次方为正;0的任何次方为0.
6.有理数运算:运算法则、运算顺序、运算律.
7.科学记数法:a×10n(1≤a<1).近似数,精确度,有效数字.
8.用基本的运算符号(指加、减、乘、除、乘方及今后要学的开方)把数或表示数的字母连接而成的式子叫做代数式.
9.数字与字母的积,这样的式子叫做单项式.
(1)单独的一个数或一个字母也是单项式.
(2)单项式中的数字因数叫做这个单项式的系数.
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数.
10.几个单项式的和叫做多项式.
(1)在多项式中,每个单项式叫做多项式的项,其中,不含字母的项叫做常数项.
(2)一般地,多项式里次数最高的项的次数,就是这个多项式的次数.
11.单项式和多项式统称整式.
12.所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.
13.把多项式中的同类项合并成一项,叫做合并同类项.
14.移项法则:把等式一边的某项变号后移到另一边叫移项.
15.互为余角:如果两个角的和为90°,那么这两个角互为余角.如直角三角形ABC中,
∠A=90°,∠B=46°,∠C=44°,那么∠B与∠C就互为余角.
16.互为补角:如果两个角的和为180°,那么这两个角互为补角.
17.∠α的余角是:90°-∠α,∠β的补角是:180°-β
18.互为余角的性质:同角或等角的余角相等.互为补角的性质:同角或等角的补角相等.
第二篇 习题篇
核心学习系列(一)
1.|2|的相反数是_____,-(-2)的相反数是 , 的倒数是 .
2.绝对值等于3的数有____个,它们是________;绝对值不大于3的整数有____个,它们是________.
3. 在代数式: , , , , 中,单项式的个数为_________.如果 是关于 、 的一个单项式,且系数是9,次数是4,那么多项式 是_____________次式.
4. 的相反数是( )
A.8 B. C. D.-
5.单项式 的系数和次数分别是 ( )
A. B. C. D.
6. ;
7. ;

8.解方程:3(x-2)+1=x-5(2x-1).

9. 一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?

10.出租车司机小李某天下午的营运全在东西走向的人民大街上进行,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下: +15,-2,+5,-l,+10,-3,-2,+12,+4,-9,+6.
(1)将小李下午出发地记为O,他将最后一名乘客送抵目的地时,小李距下午出车时的出发点有多远?
(2)若汽车耗油量为O.35升/千米,这天下午小李共耗油多少升?

附加题
11. 计算:

核心学习系列(二)
1. 在有理数中,最大的负整数是 ,最小的正整数是 ,最小的非负整数是 ,最大的非正整数是 .
2.若 .
用“>”或“<”号填空:-3 -4;-(-4) - ; .
3. 一个关于b的二次三项式的二次项系数是-2,一次项系数是-0.5,常数项是3,则这个多项式是_____________.单项式 , , 的和是___________
4.下列各数中,是负数的是 ( )
A. B. C. | -9 | D. .
5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )
A.0.1(精确到0.1) B.0.05(精确到百分位)
C.0.05(保留两个有效数字) D.0.0502(精确到0.0001)
6. .
7. .
8.先化简,再求值
9.小明家粉刷房间,雇佣5个工人,干了10天才完成;用了某种涂料150升,费用为4800元;粉刷面积是150平方米. 最后结算工钱时,有以下三种方案:
方案一:按工算,每个工30元(1个工人干一天是一个工);
方案二:按涂料费用算,涂料费用的30%作为工钱;
方案三:按粉刷面积算,每平方米付工钱12元.
请你帮小明出主意,应选择哪种方案付钱最合算(最省)?(通过计算说明)

10.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准质量的差值(单位:g)

0 1 3 6
袋 数 1 4 3 4 5 3
(1)这批样品的平均质量比标准质量多还是少?多或少几克?
(2)若每袋标准质量为150克,则抽样检测的总质量是多少?

附加题
11.(1)已知 ,求 的值. (2) 已知 ,求 的值.

核心学习系列(三)
1. 化简下列各式:
(1)-(+2)= ;(2)-(-15)= ; (3)+[-(-2)]= .
2.已知 ,则 _______________.如果有理数a、b满足|a|=5,|b|=4,且a<b,那么a= ,b= .
3.化简:(1) =________; (2) =________;(3) =_______ (4) =__________;(5) =__________.
4.已知 ,则下列等式不成立的是( )
A. B. C. D.
5.小新准备用如图8的纸片做一个正方体礼品盒,为了美观,他想在六个正方形纸片上画上图案,使做成后三组对面的图案相同,那么画上图案后正确的是( )

6. .
7. 已知 , ,求: .
8.解方程: .
9.某工厂第一车间有 人,第二车间比第一车间人数的 少30人,那么
(1)两个车间共有多少人?
(2)如果从第二车间调出10人到第一车间,调动后,第一车间的人数比第二车间多多少人?
10.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.
(1)设上海厂运往汉口 台,用 表示总运费 (百元).
(2)若从上海厂运往汉口2台,总运费是多少元?

附加题
11. 观察下列等式(等式中的“!”是一种数学运算符号),1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,……试计算 的值.

核心学习系列(四)
1.- 的相反数的相反数是________;相反数是它本身的数是________;如果一个数的绝对值等于它本身,这样的数是_________.
2.已知 和 互为相反数且 ,则 _______, ________.
3. 的指数为______底数为____; 的指数为_____底数为_____.
4.下列各组中的两项,属于同类项的是( )
A. 与 B. 与 C. 与 D. 与
5.下列说法正确的是( )
A. 两点之间的连线中,直线最短 B.若P是线段AB的中点,则AP=BP
C. 若AP=BP, 则P是线段AB的中点 D. 两点之间的线段叫做者两点之间的距离
6. .
7. .
8.解方程: .
9.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.
两地区与该农机租赁公司商定的每天的租赁价格见下表:
每台甲型收割机的租金 每台乙型收割机的租金
A地区 1800元 1600元
B地区 1600元 1200元
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),写出用x的式子表示y的关系式.
(2)分别求出当 等于28、29、30时租金y的值.

10.某商店积压了 件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案:先将价格提升到原来的 倍,再作三次降价处理,第一次降价 ,第二次降价 ,第三次再降价 ,三次降价处理销售情况如下:
降价次数 一 二 三
销售件数

一抢而光
(1)第三次降价后的价格占原来价格的百分比为多少?
(2)该商品按新销售方案销售,相比原价售完,哪一种方案更盈利?

附加题
11.已知a、b都为有理数,满足什么条件时,a+b与a-b互为相反数.

核心学习系列(五)
1.计算: = .(结果用科学记数法表示).圆周率=3.141592653…,如果取近似数3.142,它精确到 位,有效数字是 .
2.如果n为正整数,则(-1)2n =______, (-1) 2n+1=______.
3.要使多项式 不含三次项及一次项,则 _________ ________.
4.若a是有理数,则2a与3a的大小关系是( ).
A. 2a>3a B. 2a<3a C. 2a=3a D. 不能确定.
5. 2007年10月31日17时25分,我国的首颗绕月人造卫星嫦娥一号第三次近地点变轨,卫星远地点高度由12万余公里提高到37万余公里,进入114小时地月转移轨道. 其中数据“37万余公里”用科学记数法表示正确的是 ( )
A. 余公里 B. 余公里 C. 余公里 D. 余公里
6.(23 -14 -38 )×(-48).
7.已知多项式A减去 得 ,求多项式A.
8.如果方程 的解与方程 的解相同,求式子 的值.
9.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的速度.

10.公园门票价格规定如下表:
购票张数 1~50张 51~100张 100张以上
每张票的价格 13元 11元 9元
某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人。经估算,如果两个班都以班为单位购票,则一共应付1240元,问:
(1)两班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可省多少钱?
(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?

附加题
11.实数a、b、c在数轴上的位置如图所示,化简|a|-|a+b|+|c-a|+|b-c|.

核心学习系列(六)
1.化简: ____________, =_______.
2.已知 是同类项,则 等于 ________.
3.在方程3x- =5中,用含x的代数式表示y为:y= ,当x=3时,y= .
4. 在代数式 、 、 、 、 中,单项式的个数是( )
A.1 B.2 C.3 D.
5.足球比赛的计分规则:胜一场得3分,平一场得1分,负一场得0分。一个队打14场比赛,负5场共得19分,那么这个队胜了( )场.
(A)3 (B)4 (C)5 (D)6
6. .

7.若|x|=2,求下式的值:3x2-〔7x2-2(x2-3x)-2x〕.

8.解方程: .

9.某车间22名工人生产螺母和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?

10.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?

附加题
11. 比大小:①12____21;②23____32;③34____43;④45____54;⑤56____65……
(1)猜想nn+1和(n+1)n的大小关系;
(2)比较:20072008______20082007.

核心学习系列(七)
1. 与-15互为相反数,则 的值是________________.如果-(-3 )=6,则 的值是________________.
2. 和 互为相反数且 ,则 _______, _______.
3.一天中有8.64×104秒,一年如果按365天计算,一年中有 _________秒.(用科学记数法表示结果保留两个有效数字)
4.以下说法正确的是 ( )
A.是正数的数一定是负数 B.°C表示没有温度
C. 小华的体重增长了-2 kg表示小华的体重减少2 kg D. 多项式 的次数是3
5.计算正确的是 ( )
A. B.
C. D.
6. .

7.求代数式 的值,其中

8.已知代数式 的值是-2,求 的值.

9.按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻数的和是-640,这四个数中最大数与最小数的差是多少?

10.商场共出售甲、乙两种商品共50件,该50件商品总进价108000元,其中商品甲每件进价1800元,出售后获利200元;商品乙每件进价2400元,出售后获利300元。问该商场出售这50件商品共获利多少元?

附加题
11.方程: .

核心学习系列(八)
1.若 ,则ab的值是 . 若 ,则a一定是_________数.
2.多项式 加上 _________等于 .
3.代数式 的值为2,则代数式 的值为 .
4. 绝对值大于3而小于7的所有整数之和是( ).
(A)30 (B)15 (C)0 (D)20
5.若 是一元一次方程,则 等于( ).
(A)1 (B)2 (C)1或2 (D)任何数
6.-24× .

7.已知 , ,求 .

8.解方程: .

9.某牛奶厂工厂现有鲜奶8吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨;受人员限制,两种加工方式不可同时进行;受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.
为此,该厂设计了两种可行方案:
方案一:尽可能多地制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.
你认为选择哪种方案获利较多?为什么?

10.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.

附加题
11. 解方程:
│x-1│+│x-5│=4

核心学习系列(九)
1.在代数式 : , , , , , , , , 中,多项式有 ___________个,整式有 _______个.
2.单项式 是5次单项式,则x=________.一个单项式含x,y这两个字母,并且它的系数为 ,次数为4次,试写出这个单项式_________________.
3.在方程① ,② ,③ ,④ ,⑤ ,⑥ 中,是一元一次方程的有_____________________(填序号).
4.解方程 时,去分母正确的是( ).
(A) (B)
(C) (D)
5.要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是( )
A.两点之间,线段最短;B.两点确定一条直线;
C.线段只有一个中点; D.两条直线相交,只有一个交点.
6. .

7.已知 ,求: 的值.

8.解方程: .

9.期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?

10. 全球通手机卡收费每分钟0.20元,月租费每月20元;神州行手机卡没有月租费,每分钟0.40元,假如你买了一部手机:
(1)若你估计每月通话时间为75分,你应选择哪种手机收费卡?
(2)若你估计每月通话时间为120分钟,你应选择哪种手机收费卡?
(3)每月通话时间为多少分钟时,全球通和神州行的费用相同?

附加题
11. 甲、乙二人分别从A、B两地同时相向匀速前进,第一次相遇在距A点700米处,然后继续前进,甲到B地,乙到A地后都立即返回,第二次相遇在距B点400米处,求A、B两地间的距离是多少?

核心学习系列(十)
1.写出一个一元一次方程,使它的解为―23 ,未知数的系数为正整数,方程为___________.
2.若 是一元一次方程,则m=__________.关于 的方程3 +5=0与3 +3 =1的解相同,则 =_________.
3.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件___________元.
4. 若a、b互为相反数,则在①a+b=0 , ② ,③a2=b2 ,④ , ⑤ab=-b2中,必定成立的个数为( ) A.2 B.3 C.4 D.5
5.平面上有任意四点,经过其中两点画一条直线,共可画( )
A.1条直线 B.4条直线 C.6条直线 D.1条或4条或6条直线
6.10- ;

7.先化简,再求值: ,其中 , , ;

8. 解方程: .

9. 某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?

10. A、B两地相距169千米,甲以42千米/时的速度从A驶向B地,出发30分钟后因故障需停车修理,这时,乙车以39千米/时的速度B地向A地驶来。已知甲排除故障用了20分钟,问乙车出发后经过多少时间与甲车相遇?

附加题
11. 有两列正在相向行驶的列车,快车长 米,慢车长 米,轨道是平行的.聪聪比刻正坐在慢车的靠窗位置,一面望着对面的列车,一面看着手表 整列快车驶过窗口的时间正好是 秒钟.也许是无巧不成书吧,聪聪的同学小明此刻正坐在快车上的靠窗位置,一刹那间,他看到了聪聪的人影,小明高兴极了,正想招呼他时,列车早已飞驰而过,不见了聪聪的身影.请问,坐在快车上的小明,看见整列慢车驶过窗口所用的时间是几秒?

核心学习系列(十一)
1.解方程 时,去分母后的方程是 _____________________.
2.如图3所示的是长方体的展开图,若C面在前面,D面在下面,则 面会在上面;若从右面看是面C,而D面在后面,E面在左面,则 面会在上面.(字母朝外)
3.如图4,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是 .
4.下列各组数中,数值相等的是( )
A. B. C. D.
5.从3时15分到3时30分,时针转了( )

❽ 七年级上册数学知识点

第一章 丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形

柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

第二章 有理数

正有理数 整数

有理数 零 有理数

负有理数 分数

2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:

(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

(3)运算律

加法交换律 加法结合律

乘法交换律 乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

第三章 整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

2、整式:单项式和多项式统称为整式。

①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。

②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

第四章 基本平面图形

2、直线的性质

(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

第五章 一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

6、解一元一次方程的一般步骤:

(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

第六章 数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

❾ 初一数学知识点总结

初一数学知识点总结1

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

19.公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

20.多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

21.多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有n(n-3)/2条对角线。

初一数学知识点总结2

平面直角坐标系

1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

3.原点的坐标是(0,0);

纵坐标相同的点的连线平行于x轴;

横坐标相同的点的连线平行于y轴;

x轴上的点的纵坐标为0,表示为(x,0);

y轴上的点的横坐标为0,表示为(0,y)。

4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

5.几个象限内点的特点:

第一象限(+,+);第二象限(—,+);

第三象限(—,—);第四象限(+,—)。

6.(x,y)关于原点对称的点是(—x,—y);

(x,y)关于x轴对称的点是(x,—y);

(x,y)关于y轴对称的点是(—x,y)。

7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;

点P(x,y)到y轴的距离是︱x︳。

8.在第一、三象限角平分线上的点的坐标是(m,m);

在第二、四象限叫平分线上的点的坐标是(m,—m)。

不等式与不等式组

(1)不等式

用不等号(,≥,≤,≠)连接的式子叫做不等式。

(2)不等式的性质

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

(3)一元一次不等式

用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

(4)一元一次不等式组

一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

点、线、面、体知识点

1.几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

2.点动成线,线动成面,面动成体。

点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

注意:

(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

角的种类

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。

初一数学知识点总结3

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学知识点总结4

一、一元一次不等式的解法:

一元一次不等式的解法与一元一次方程的解法类似,其步骤为:

1、去分母;

2、去括号;

3、移项;

4、合并同类项;

5、系数化为1

二、不等式的基本性质:

1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

三、不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

四、不等式的解集:

一个含有未知数的不等式的所有解,组成这个不等式的解集。

五、解不等式的依据不等式的基本性质:

性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,

性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,

性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,

常见考法

(1)考查一元一次不等式的解法;

(2)考查不等式的性质。

误区提醒

忽略不等号变向问题。

初中数学重点知识点归纳

有理数乘法的运算律

1、乘法的交换律:ab=ba;

2、乘法的结合律:(ab)c=a(bc);

3、乘法的分配律:a(b+c)=ab+ac

单项式

只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的'指数构成的。

多项式

1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

提高数学思维的方法

转化思维

转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。

创新思维

创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解

要培养质疑的习惯

在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。

在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。

有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。

初一数学知识点总结5

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①整数②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数0和正整数;a>0a是正数;a<0a是负数;

a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数>0,小数-大数<0.

初一数学知识点总结6

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学知识点总结7

一、知识梳理

知识点1 :正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

知识点2 :有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

知识点3 :数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4 :绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5 :相反数的概念:

(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

知识点6 :有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7 :有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8 :有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9 :有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10 :有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

❿ 七年级数学知识点

七年级数学(上)知识点
人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.

第一章 有理数
一、知识框架

二.知识概念
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① ②
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.
体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

第二章 整式的加减
一.知识框架
二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第三章 一元一次方程
一.知识框架

二.知识概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度·时间 ;
(2)工程问题: 工作量=工效·工时 ;
(3)比率问题: 部分=全体·比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,
S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

第一章 图形的认识初步
一、知识框架

本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.
二、本章书涉及的数学思想:
1.分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
七年级数学(下)知识点
人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。

第二章 相交线与平行线
一、知识框架

二、知识概念
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质
对顶角的性质:对顶角相等。
10垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。

第三章 平面直角坐标系
一.知识框架

二.知识概念
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。

第四章 三角形
一.知识框架

二.知识概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有条对角线。
三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。
第八章 二元一次方程组
一.知识结构图

二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题

第九章 不等式与不等式组
一.知识框架

二、知识概念
1.用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
7.定理与性质
不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

第十章 数据的收集、整理与描述
一.知识框架

全面调查

抽样调查

收集数据

描述数据

整理数据

分析数据

得出结论

二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。