当前位置:首页 » 基础知识 » 初中模拟考数学知识点
扩展阅读
k歌词怎么制作 2024-11-19 19:11:36

初中模拟考数学知识点

发布时间: 2022-12-28 01:51:29

❶ 七年级数学考试知识点整理

课堂临时报佛脚,不如 课前预习 好。其实任何学科的知识都是一样的,学习任何一门学科,勤奋都是最好的 学习 方法 ,没有之一,书山有路勤为径。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。

一下册数学知识点 总结

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、全等图形:两个能够重合的图形称为全等图形。

18、变量:变化的数量,就叫变量。

19、自变量:在变化的量中主动发生变化的,变叫自变量。

20、因变量:随着自变量变化而被动发生变化的量,叫因变量。

21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

22、对称轴:轴对称图形中对折的直线叫做对称轴。

2021七年级下册数学知识点

概率

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一数学 复习方法

考试与作业逻辑不同:

我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。

那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:

复习方法总结

1回归书本,梳理章节概念公式、性质定理等

就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。

比如知识点填空:

知识点填空

我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。

比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。

再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。

还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。

2题型突破,对各章节常见的 热点 问题归纳练习。

我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。

大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。

3、熟悉套路、模型

平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。

三角形倒角常见模型:8字型、飞镖型、折角型。

三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。

学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。

如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。

4、坚持改错题

把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。


七年级数学考试知识点整理相关 文章 :

★ 七年级数学知识点整理大全

★ 初一数学考试知识点总结

★ 初中七年级数学知识点归纳整理

★ 初一数学知识点归纳梳理

★ 七年级上册数学月考知识点整理

★ 初一数学必考的21个知识点,附考试重难点

★ 七年级数学知识点整理部编版

★ 七年级数学知识点梳理总结

★ 初中数学知识点整理:

★ 七年级数学的知识点归纳总结

❷ 中考数学知识点总结最全提纲

初中是非常重要的学习阶段,因为初中正是往高中时期过渡的阶段,很多人都抱怨从中数学难,初中生数学知识点有哪些呢?接下来我为大家收集了中考数学知识点 总结 最全提纲_中考数学知识点归纳总结大全,供大家参考学习,感谢你的阅读!

▼ 目 录 ▼

★ 中考数学知识点总结最全提纲 ★

★ 初中数学的 学习 方法 ★

★ 初中提高数学成绩的四大技巧 ★

中考数学知识点总结最全提纲

初中几何公式:线

1.同角或等角的余角相等

2.过一点有且只有一条直线和已知直线垂直

3.过两点有且只有一条直线

4.两点之间线段最短

5.同角或等角的补角相等

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

初中几何公式:角

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

初中几何公式:三角形

15.定理三角形两边的和大于第三边

16.推论三角形两边的差小于第三边

17.三角形内角和定理三角形三个内角的和等于180°

18.推论1直角三角形的两个锐角互余

19.推论2三角形的一个外角等于和它不相邻的两个内角的和

20.推论3三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理有两角和它们的夹边对应相等的两个三角形全等

24.推论有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理有三边对应相等的两个三角形全等

26.斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1在角的平分线上的点到这个角的两边的距离相等

28.定理2到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

初中几何公式:等腰三角形

30.等腰三角形的性质定理等腰三角形的两个底角相等

31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和高互相重合

33.推论3等边三角形的各角都相等,并且每一个角都等于60°

34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1三个角都相等的三角形是等边三角形

36.推论2有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1关于某条直线对称的两个图形是全等形

43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

初中几何公式:四边形

48.定理四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理n边形的内角的和等于(n-2)×180°

51.推论任意多边的外角和等于360°

52.平行四边形性质定理1平行四边形的对角相等

53.平行四边形性质定理2平行四边形的对边相等

54.推论夹在两条平行线间的平行线段相等

55.平行四边形性质定理3平行四边形的对角线互相平分

56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58.平行四边形判定定理3对角线互相平分的四边形是平行四边形

59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形

初中几何公式:矩形

60.矩形性质定理1矩形的四个角都是直角

61.矩形性质定理2矩形的对角线相等

62.矩形判定定理1有三个角是直角的四边形是矩形

63.矩形判定定理2对角线相等的平行四边形是矩形

初中几何公式:菱形

64.菱形性质定理1菱形的四条边都相等

65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66.菱形面积=对角线乘积的一半,即S=(a×b)÷2

67.菱形判定定理1四边都相等的四边形是菱形

68.菱形判定定理2对角线互相垂直的平行四边形是菱形

初中几何公式:正方形

69.正方形性质定理1正方形的四个角都是直角,四条边都相等

70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71.定理1关于中心对称的两个图形是全等的

72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

初中几何公式:等腰梯形

74.等腰梯形性质定理等腰梯形在同一底上的两个角相等

75.等腰梯形的两条对角线相等

76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77.对角线相等的梯形是等腰梯形

初中几何公式:等分

78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79.推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

80.推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)

92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

94.判定定理3三边对应成比例,两三角形相似(SSS)

95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97.性质定理2相似三角形周长的比等于相似比

98.性质定理3相似三角形面积的比等于相似比的平方

99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

初中几何公式:圆

101.圆是定点的距离等于定长的点的集合

102.圆的内部可以看作是圆心的距离小于半径的点的集合

103.圆的外部可以看作是圆心的距离大于半径的点的集合

104.同圆或等圆的半径相等

105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107.到已知角的两边距离相等的点的轨迹,是这个角的平分线

108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109.定理不在同一直线上的三个点确定一条直线

110.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111.推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112.推论2圆的两条平行弦所夹的弧相等

113.圆是以圆心为对称中心的中心对称图形

114.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116.定理一条弧所对的圆周角等于它所对的圆心角的一半

117.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119.推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121.①直线L和⊙O相交d﹤r

②直线L和⊙O相切d=r

③直线L和⊙O相离d﹥r

122.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

123.切线的性质定理圆的切线垂直于经过切点的半径

124.推论1经过圆心且垂直于切线的直线必经过切点

125.推论2经过切点且垂直于切线的直线必经过圆心

126.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127.圆的外切四边形的两组对边的和相等

128.弦切角定理弦切角等于它所夹的弧对的圆周角

129.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133.推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134.如果两个圆相切,那么切点一定在连心线上

135.①两圆外离d﹥R+r②两圆外切d=R+r

③两圆相交R-r﹤d﹤R+r(R﹥r)

④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)

136.定理相交两圆的连心线垂直平分两圆的公共弦

137.定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139.正n边形的每个内角都等于(n-2)×180°/n

140.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141.正n边形的面积Sn=pnrn/2p表示正n边形的周长

142.正三角形面积√3a/4a表示边长

143.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144.弧长计算公式:L=nπR/180

145.扇形面积公式:S扇形=nπR/360=LR/2

146.内公切线长=d-(R-r)外公切线长=d-(R+r)

く く く

初中数学的学习方法

1、适当多做题,养成良好的解题习惯。要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的初中数学分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

2、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在初中数学考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

3、预习的习惯。预习就是为了对所学知识的初步感知,通过预习,查出障碍;它不仅能培养自学能力,而且能提高学习初中数学新课的兴趣,掌握学习的主动权。

4、认真听"讲"的习惯。新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的初中 数学学习方法 。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。数学课的听讲要坚持做到“五到”即耳到、眼到、口到、心到、手到。

く く く

初中提高数学成绩的四大技巧

一、该记的记,该背的背,不要以为理解了就行

有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9 _ 9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定(a≠0)等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。

对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。

二、几个重要的数学思想

1、“方程”的思想

数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度 _ 时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好 其它 形式的方程。

所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

2、“数形结合”的思想

大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的 思维训练 ,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。

3、“对应”的思想

“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用

三、自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感触良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

四、自信才能自强

在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,条条大路通北京。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

く く く


初中数学知识点总结相关 文章 :

★ 初中数学知识点总结最全提纲

★ 初中数学知识点复习提纲

★ 中考数学知识点复习提纲

★ 初一数学上册知识点汇总归纳

★ 初中数学学习方法和知识点总结

★ 初中数学几何知识点提纲

★ 初中数学三年的知识点归纳

★ 北师大版初中数学知识点提纲

★ 初中七年级数学知识点总结归纳

★ 初中三角函数知识点提纲

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❸ 初三数学重点知识点总结归纳

初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习数学,以下是我分享给大家的初三数学重点知识点,希望可以帮到你!
初三数学重点知识点
1.不在同一直线上的三点确定一个圆。

2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1

①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的 ***

5.圆的内部可以看作是圆心的距离小于半径的点的 ***

6.圆的外部可以看作是圆心的距离大于半径的点的 ***

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12.①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理 圆的切线垂直于经过切点的半径

15.推论1 经过圆心且垂直于切线的直线必经过切点

16.推论2 经过切点且垂直于切线的直线必经过圆心

17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等 外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离 d>R+r

②两圆外切 d=R+r

③.两圆相交 R-rr

④.两圆内切 d=R-rR>r ⑤两圆内含dr

21.定理 相交两圆的连心线垂直平分两圆的公共弦

22.定理 把圆分成nn≥3:

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于n-2×180°/n

25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27.正三角形面积√3a/4 a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×n-2180°/n=360°化为n-2k-2=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长= d-R-r 外公切线长= d-R+r

32.定理 一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2 半圆或直径所对的圆周角是直角;90°的圆周角所 对的弦是直径

35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初三数学复习技巧
注重课本知识

全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查询一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。

这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。

另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。

注重课堂学习

在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联络,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联络和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。

夯实基础知识

在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。

注意知识的迁移

课本中的某些例题、习题,并不是孤立的,而是前后联络、密切相关的,其他学科的知识也和数学有着千丝万缕的联络,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联络,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网路和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联络,让我们在深刻理解课本知识的同时,更有效地形成知识网路与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函式图象与横轴的交点座标。
初三数学复习计划
第一阶段:知识梳理形成知识网路

1、第一轮复习的形式,以中考说明为主线,注重基础知识的梳理。

第一轮复习要“过三关”:

1过记忆关。必须做到记牢记准所有的公式、定理等。

2过基本方法关。如,待定系数法求二次函式解析式。

3过基本技能关。如,数形结合的题目,要求能画图能做出。

2、第一轮复习应该注意的几个问题

1必须夯实基础。一般中考试题按易:较易:中:难=4:3:2:1的比例,要求在应用基础知识时能做到熟练、正确和迅速。

2中考有些基础题是课本上、说明上的原题或改造,必须深钻教材与说明,绝不能好高骛远。

3不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,要有针对性的、典型性、层次性、切中要害的强化练习。

4多归纳、多总结。

第二阶段:专题复习

1、第二轮复习的形式,不再以节、章、单元为单位,而是以专题为单位。

在一轮复习的基础上,进行拔高、集中、归类,重点难点热点突出复习,注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

2、第二轮复习应该注意的几个问题

1第二轮复习可对平时遇到的难点、误点设立专题。

2专题的划分要合理,要有代表性,切忌面面俱到;围绕热点、难点、重点,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。

3以题代知识,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。可适当穿插过去的小知识点,以引起记忆。

4专题复习可适当拔高。没有一定的难度,你的能力是很难提高的,提高学习的能力,这是第二轮复习的任务。但不要过于多和难。

第三阶段:综合训练

1、第三轮复习的形式是模拟中考的综合演练,查漏补缺,俗称考前练兵。训练答题技巧、考场心态、临场发挥的能力等。

2、第三轮复习应该注意的几个问题

1模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,要贴近中考模式。

2归集错题,查漏补缺。

3适当的“解放”自己,特别是在时间安排上。但要注意,解放不是放松,后期题量不宜太大,要轻松解题、居高临下解题,能跳出复习的圈子看试题。

4调节生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。

5心态和信心调整。保持一颗平常心。

第四阶段:查漏补缺

对自己仍然模糊的或已忘记的知识回归课本,进一步巩固和加深,迎接中考。

总之,在初三数学总复习中,发掘教材,夯实基础是根本;共同参与,注重过程是前提;精选习题,提质减负是核心;强化训练,发展能力是目的。只有这样,才能以不变应万变,以一题带一片,达到事半功倍的效果。

1.初三上册数学知识点总结

2.中考数学知识点总结大全

3.初中数学重点知识点

4.初三数学知识点整理

5.初三数学总复习知识点

❹ 中考数学最全考点分析主要知识点

备考中考数学的时候不免会遇到各种问题,甚至迷失方向,但是请不要害怕,只要努力坚持下去,终有一天我们会到达成功的彼岸。为了减轻各位同学的负担,我给大家整理了中考数学最全考点分析主要知识点,方便大家学习。

↓↓↓点击获取更多"中考知识点 " ↓↓↓

★ 中考物理重点复习资料 ★

★ 中考语文必背文言文汇总 ★

★ 中考化学的实验题知识 ★

★ 中考英语重难点语法详解 ★

中考数学最全考点分析主要知识点

一、相似三角形(7个考点)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

二、锐角三角比(2个考点)

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.

考点9:解直角三角形及其应用

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.

三、二次函数(4个考点)

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示 方法 ,知道符号的意义.

考点11:用待定系数法求二次函数的解析式

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.

注意求函数解析式的步骤:一设、二代、三列、四还原.

考点12:画二次函数的图像

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.

考点13:二次函数的图像及其基本性质

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.

四、圆的相关概念(6个考点)

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一.

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从 与 之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.

考点19:画正三、四、六边形.

考核要求:能用基本作图工具,正确作出正三、四、六边形.

五、数据整理和概率统计(9个考点)

考点20:确定事件和随机事件

考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.

考点21:事件发生的可能性大小,事件的概率

考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.

考点22:等可能试验中事件的概率问题及概率计算

本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.

在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.

考点23:数据整理与统计图表

本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.

考点24:统计的含义

本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.

考点25:平均数、加权平均数的概念和计算

本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.

考点26:中位数、众数、方差、标准差的概念和计算

考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.

注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

考点28:中位数、众数、方差、标准差、频数、频率的应用

本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.


中考数学最全考点分析主要知识点相关 文章 :

★ 中考数学复习重要知识点大全

★ 中考数学知识点总结最全提纲

★ 中考数学重要考点内容

★ 中考数学知识点复习提纲

★ 初中数学考点大全

★ 中考数学复习39个知识点

★ 实数中考数学实数必备知识点

★ 中考数学提纲知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❺ 初中数学知识点总结 高频考点概括!

总结数学知识点对学习数学非常有帮助,下面我为大家总结了初中数学 知识点 ,仅供大家参考。

数学有理数知识点
1、有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数。“分类”的原则:(1)相称(不重、不漏);(2)有标准。

2、非负数:正数与零的统称。

3、相反数:

(1)定义:如果两个数的和为0,那么这两个数互为相反数。

(2)求相反数的公式:a的相反数为-a。

(3)性质:①a≠0时,a≠-a;

②a与-a在数轴上的位置关于原点对称;

③两个相反数的和为0,商为-1。
初中相似三角形考点
考点:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
数学对称图形知识点
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆

对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;

中心对称图形:线段 、平行四边形、菱形、矩形、正方形、圆

对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。

说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。

以上就是我为大家总结的初中 数学 知识点,仅供参考,希望对大家有所帮助。

❻ 初中数学常考知识点有哪些

1、一元二次方程的基本概念
一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。直角坐标系与点的位置,特殊三角函数值,圆的基本性质,直线与圆的位置关系等等。
2、一元二次方程
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程
。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
3、特殊三角函数
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。cos30°=1,tan45°=1。
4、圆的基本性质
半圆或直径所对的圆周角是直角。
任意一个三角形一定有一个外接圆。
在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
在同圆或等圆中,相等的圆心角所对的弧相等。
同弧所对的圆周角等于圆心角的一半。
同圆或等圆的半径相等。
过三个点一定可以作一个圆。
长度相等的两条弧是等弧。
在同圆或等圆中,相等的圆心角所对的弧相等。
经过圆心平分弦的直径垂直于弦。

❼ 初二数学中考知识点归纳

学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。制定好的 学习计划 ,是提高工作效率的重要手段。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四 总结 ”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

二、轴对称图形:

一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

1、轴对称:

两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

2、轴对称图形与轴对称的区别与联系:

(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

3、轴对称的性质:

(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

三、用坐标表示轴对称

1、点(x,y)关于x轴对称的点的坐标为(x,-y);

2、点(x,y)关于y轴对称的点的坐标为(-x,y);

3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

四、关于坐标轴夹角平分线对称

点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)

点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)

八年级 上册数学知识点

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x;0,y;0

点P(x,y)在第二象限:x;0,y;0

点P(x,y)在第三象限:x;0,y;0

点P(x,y)在第四象限:x;0,y;0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0,x为任意实数

点P(x,y)在y轴上,x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

初二数学 复习方法

按部就班

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

强调理解

概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

基本训练

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。

重视错误

订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

平时的数学学习:

○1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

○2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.

○3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.

○4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.


初二数学中考知识点归纳相关 文章 :

★ 初中数学知识点整理:

★ 初中数学基础知识整理归纳

★ 中考数学知识点总结最全提纲

★ 初中数学知识点总结大全

★ 初中数学知识点总结梳理

★ 初三数学知识点考点归纳总结

★ 初中数学基础知识点归纳总结

★ 初中数学知识点总结大全

★ 初中数学知识点总结归纳

❽ 2022初中数学必考知识点总结

下面是我整理了2022期末考试初中数学必考知识点,祝愿同学期末取得好成绩!

相反数

1.相反数的概念:只有符号不同的两个数叫做互为相反数。

2.相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

3.多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

4.规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。

③有理数的绝对值都是非负数。

2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零。

即|a|={a(a>0)0(a=0)﹣a(a<0)

有理数大小比较

1.有理数的大小比较:

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

有理数大小比较的三种方法:

1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小。

2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数。

3.作差比较:

若a﹣b>0,则a>b;

若a﹣b<0,则a<b;

若a﹣b=0,则a=b。

代数式求值

1.代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

2.代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。

必考题型简单总结以下三种:

①已知条件不化简,所给代数式化简;

②已知条件化简,所给代数式不化简;

③已知条件和所给代数式都要化简。

❾ 初二数学常考知识点

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

八年级 上册数学知识点

1、全等三角形的对应边、对应角相等

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5、边边边公理(SSS)有三边对应相等的两个三角形全等

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7、定理1在角的平分线上的点到这个角的两边的距离相等

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

9、角的平分线是到角的两边距离相等的所有点的集合

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13、推论3等边三角形的各角都相等,并且每一个角都等于60°

14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15、推论1三个角都相等的三角形是等边三角形

16、推论2有一个角等于60°的等腰三角形是等边三角形

17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18、直角三角形斜边上的中线等于斜边上的一半

19、定理线段垂直平分线上的点和这条线段两个端点的距离相等

20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

初二数学第一学期知识点

【实数】

※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作.0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.

※正数的立方根是正数;0的立方根是0;负数的立方根是负数.

数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

【一次函数】

1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).

2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.

3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.

4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.

5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.

6.已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

初二 数学 学习 方法 技巧

学好初中数学课前要预习

初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。

初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。

学习初中数学课上是关键

初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,在这里提醒大家,初中数学课上的时候尽量不要记笔记。

你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。

课后可以适当做一些初中数学基础题

在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。

但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并 总结 ,

数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.


初二数学常考知识点相关 文章 :

★ 初二数学知识点复习整理

★ 初中数学的常考知识点20条

★ 初二常考的数学知识点平行四边形

★ 初二数学期末整式重点知识归纳总结

★ 初二数学重点知识归纳整理

★ 初二下册数学必考知识点总结归纳

★ 初二数学知识点归纳上册人教版

★ 初二下学期数学知识点

★ 初二下学期数学知识点总结

★ 初中数学考点大全

❿ 初中数学知识点最全总结 冲刺中考必背核心考点!

初中生学习数学要注意知识点的总结,下面我为大家总结了初中数学知识点,仅供大家参考。

圆的基本性质
1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。

直线与圆的位置关系

1.直线与圆有唯一公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。
平行线的两条判定定理
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

补充平行线的判定方法:

(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。
投影
投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

24、视图

当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

以上就是我为大家总结的初中 数学 知识点,仅供参考,希望对大家有所帮助。