当前位置:首页 » 基础知识 » 数学极限所有知识点
扩展阅读
k歌词怎么制作 2024-11-19 19:11:36

数学极限所有知识点

发布时间: 2022-12-28 01:31:52

A. 数学里有哪些极限和公式

第一个重要极限和第二个重要极限公式是:

极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。

拓展资料:

极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。

所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。

用极限思想解决问题的一般步骤可概括为:

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想象,因此可以忽略不计。

极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。

人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的概念和以上的极限思想方法。要相信, 用极限的思想方法是有科学性的,因为可以通过极限的函数计算方法得到极为准确的结论。

B. 高中数学极限知识点有哪些

根据可微的充要条件,和dy的定义,

对于可微函数,当△x→0时

△y=A△x+o(△x)=Adx +o(△x)= dy+o(△x) ,o(△x)表示△x的高阶无穷小

所以△y -dy=(o(△x)

(△y -dy)/△x = o(△x) / △x = 0

所以是高阶无穷小

(2)数学极限所有知识点扩展阅读

某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。


求极限基本方法有



1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;



2、无穷大根式减去无穷大根式时,分子有理化;




3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。



4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。

C. 高分跪求高等数学中有关“极限”的详细知识!

以下是WORD文档的一些内容....
由于不能附图...故有些例题有丢失.......

极限计算方法总结
靳一东

《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。
一、极限定义、运算法则和一些结果
1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如: ; ; ;等等
(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则
定理1 已知 , 都存在,极限值分别为A,B,则下面极限都存在,且有 (1)
(2)
(3)
说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限
(1)
(2) ;
说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,

作者简介:靳一东,男,(1964—),副教授。
例如: , , ;等等。
4.等价无穷小
定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当 时,下列函数都是无穷小(即极限是0),且相互等价,即有:
~ ~ ~ ~ ~ ~ 。
说明:当上面每个函数中的自变量x换成 时( ),仍有上面的等价
关系成立,例如:当 时, ~ ; ~ 。
定理4 如果函数 都是 时的无穷小,且 ~ , ~ ,则当 存在时, 也存在且等于 ,即 = 。
5.洛比达法则
定理5 假设当自变量x趋近于某一定值(或无穷大)时,函数 和 满足:(1) 和 的极限都是0或都是无穷大;
(2) 和 都可导,且 的导数不为0;
(3) 存在(或是无穷大);
则极限 也一定存在,且等于 ,即 = 。
说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“ ”型或“ ”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。
6.连续性
定理6 一切连续函数在其定义去间内的点处都连续,即如果 是函数 的定义去间内的一点,则有 。
7.极限存在准则
定理7(准则1) 单调有界数列必有极限。
定理8(准则2) 已知 为三个数列,且满足:
(1)
(2) ,
则极限 一定存在,且极限值也是a ,即 。
二、求极限方法举例
1. 用初等方法变形后,再利用极限运算法则求极限
例1
解:原式= 。
注:本题也可以用洛比达法则。
例2
解:原式= 。
例3
解:原式 。
2. 利用函数的连续性(定理6)求极限
例4
解:因为 是函数 的一个连续点,
所以 原式= 。
3. 利用两个重要极限求极限
例5
解:原式= 。
注:本题也可以用洛比达法则。
例6
解:原式= 。

例7
解:原式= 。
4. 利用定理2求极限
例8
解:原式=0 (定理2的结果)。
5. 利用等价无穷小代换(定理4)求极限
例9
解: ~ , ~ ,
原式= 。
例10
解:原式= 。
注:下面的解法是错误的:
原式= 。
正如下面例题解法错误一样:

例11
解: ,
所以, 原式= 。(最后一步用到定理2)
6. 利用洛比达法则求极限
说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。同时,洛比达法则还可以连续使用。
例12 (例4)
解:原式= 。(最后一步用到了重要极限)

例13
解:原式= 。
例14
解:原式= = 。(连续用洛比达法则,最后用重要极限)
例15
解:

例18
解:错误解法:原式= 。
正确解法:

应该注意,洛比达法则并不是总可以用,如下例。
例19
解:易见:该极限是“ ”型,但用洛比达法则后得到: ,此极限
不存在,而原来极限却是存在的。正确做法如下:
原式= (分子、分母同时除以x)
= (利用定理1和定理2)
7. 利用极限存在准则求极限
例20 已知 ,求
解:易证:数列 单调递增,且有界(0< <2),由准则1极限 存在,设 。对已知的递推公式 两边求极限,得:
,解得: 或 (不合题意,舍去)
所以 。
例21
解: 易见:
因为 ,
所以由准则2得: 。
上面对求极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。另外,求极限还有其它一些方法,如用定积分求极限等,由于不常用,这里不作介绍。

D. 高等数学函数的知识点

主要的高等数学函数知识,涉及极限的主要有以下几个方面:

  • 可涉及极限计算的知识点有,连续性及间断点的分类(分段函数分段点的连续问题),可导(导数是由函数极限来定义的),渐近线,二重极限(多元微分学)。其中,二重极限难度较大。

  • 极限以间接考查或与其他知识点综合出题的比重很大,也可以直接出题,所以考查形式有多种。如已知极限求参数,无穷小的概念与比较,求间断点类型和个数,求渐近线方程或条数,求某一点处的连续性和可导性,求多元函数在某一点处极限是否存在,求含有极限的函数表达式,已知极限求极限等。

  • 函数极限计算的常规方法主要分四类:等价无穷小替换,洛必达法则,泰勒公式,导数定义。 数列极限涉及的常规方法主要有四类:夹逼定理,定积分的定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。

E. 大学极限知识点总结

在我们平凡的学生生涯里,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。相信很多人都在为知识点发愁,下面是我收集整理的大学极限知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

重要题型及点拨

1、求数列极限

求数列极限可以归纳为以下三种形式。

抽象数列求极限

这类题一般以选择题的形式出现, 因此可以通过举反例来排除。 此外,也可以按照定义、基本性质及运算法则直接验证。

求具体数列的极限,可以参考以下几种方法:

a、利用单调有界必收敛准则求数列极限。

首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。

b、利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

求项和或项积数列的极限,主要有以下几种方法:

a、利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

b、利用幂级数求和法

若可以找到这个级数所对应的`幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

c、利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。

d、利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

e、求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。