当前位置:首页 » 基础知识 » 什么是数学学科内容知识
扩展阅读
老师如何治同学抑郁症 2024-11-19 17:04:09
想去动漫公司注意什么 2024-11-19 17:01:42

什么是数学学科内容知识

发布时间: 2022-12-28 00:34:03

Ⅰ 什么是数学学科

数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
http://ke..com/view/1284.htm

Ⅱ 数学是什么学科

数学是研究现实世界空间形式和数量关系的一门科学。分为初等数学和高等数学。在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

Ⅲ “数学”是一门什么样的学科

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。

古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。

(3)什么是数学学科内容知识扩展阅读

数学的分支:

一、运筹学

包括:线性规划、非线性规划、动态规划、组合最优化、参数规划、整数规划、随机规划、排队论、对策论 亦称博弈论、库存论、决策论、搜索论、图论、统筹论、最优化、运筹学其他学科。

二、泛函分析

包括:线性算子理论、变分法 、拓扑线性空间、希尔伯特空间、函数空间、巴拿赫空间、算子代数 、测度与积分、广义函数论、非线性泛函分析、泛函分析其他学科。

三、计算数学

包括:插值法与逼近论、常微分方程数值解、偏微分方程数值解、积分方程数值解、数值代数、连续问题离散化方法、随机数值实验、误差分析、计算数学其他学科

四、泛函分析

包括:线性算子理论、变分法、拓扑线性空间、希尔伯特空间、函数空间、巴拿赫空间、算子代数 、测度与积分、广义函数论、非线性泛函分析、泛函分析其他学科。

五、偏微分方程

包括:椭圆型偏微分方程、双曲型偏微分方程 、抛物型偏微分方程、非线性偏微分方程、偏微分方程其他学科

参考资料来源:网络-数学

Ⅳ 大学数学主要学的是些什么内容

大学的数学学习内容属于高等数学,主要的内容有:

1、极限

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限是解决高等数学问题的基础。

2、微积分

微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,在许多领域都有重要的应用。

3、空间解析几何

借助矢量的概念可使几何更便于应用到某些自然科学与技术领域中去,因此,空间解析几何介绍空间坐标系后,紧接着介绍矢量的概念及其代数运算。

(4)什么是数学学科内容知识扩展阅读

历史发展

一般认为,16世纪以前发展起来的各个数学学科总的是属于初等数学的范畴,因而,17世纪以后建立的数学学科基本上都是高等数学的内容。由此可见,高等数学的范畴无法用简单的几句话或列举其所含分支学科来说明。

19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。

分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。

Ⅳ 数学学科专业知识是指什么具体内容

你好,数学是个总称,数学里包含的知识可以说是太多太多了,我大学数学系,13们数学课程,相比高中那些数学,那些只能算是算数了。数学分外很多种,比如说:微积分,复变,实变,泛函分析,解析几何,离散数学,初等数论,常微分方程,数理方程等等,太多了。

数学知识是什么

数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显着的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,着名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。

Ⅶ 关于数学的知识有哪些

如下:

1、数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

2、数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

3、数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

4、数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

Ⅷ 什么是数学知识

数学是一门学科,
研究数与形及其衍生问题。
凡是在这个范围内的知识,
都是数学知识。
数学知识以公理体系为基础,
通过逻辑逐步导出各个定理,
把数学知识编织成网络结构。
数学是所有科学技术的基础。

Ⅸ 到底什么是数学它的范围有哪些

数学是研究数量、结构、变化以及空间模型等概念的一门学科.透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理.研究现实世界中数量关系和空间形式的科学.简单地说,是研究数和形的科学.由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数.基础数学的知识与运用总是个人与团体生活中不可或缺的一块.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日.今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等.数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展.数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现.创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……).数学还分几何,计算,还有面积.

Ⅹ 数学一共包括哪些内容数学分为哪几个部分呢






数学包括哪几个部分
数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门科学。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
数学部分大体包括哪些部分
包括数与形两部分
数学一共包括哪些内容?
主要包括代数 平面几何 立体几何 三角函数 其中代数又包括直线 抛物线 圆 椭圆 平面几何有两直线的平面关系 立体几何是指线与线 线与面 面与面的空间关系 三角函数包括正弦 余弦 正切 余切 正割 余割 到了高三这些内容都会学到
高等数学包括哪几大部分?
有。还包括高等代数
不知提问者到底是什么程度的?如果大学的电专业,必须学习复变的。如果工科,还要学习场论基础和数学变换(拉氏变换)。
如果是高中生,只要关心简单的极限求法和一阶导数的求法及主要应用。
高等代数可以包括行列式、线代、向量空间、二次型、概率和群环理论。
解析几何、立体几何已下放至中学数初等数学范围。当然学了微积分以后,眼界会高点。
数学分为哪几类
数学可以分为:数论、代数学、代数几何学、几何学、拓扑学、数学分析、非标准分析、函数论、常微分方程、偏微分方程、动力系统、积分方程、泛函分析、计算数学、概率论数理统计学、应用统计数学、应用统计数学其他学科、运筹学、组合数学 、模糊数学、量子数学、应用数学等等。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”,可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
(10)什么是数学学科内容知识扩展阅读
相关定理
1、李善兰恒等式:数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式)。
2、华氏定理:数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
3、苏氏锥面:数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。
4、熊氏无穷级:数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。
5、陈示性类:数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。
6、周氏坐标:数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。
参考资料来源:搜狗网络——数学