‘壹’ 五年级下册数学人教版的知识概括
小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.
②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数. 循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
19、解方程原理:天平平衡.
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的检验过程:方程左边=…… 23、方程的解是一个数;
=…… 解方程式一个计算过程.
=方程右边
所以,X=…是方程的解.
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高. 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行.
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍.
29、长方形框架拉成平行四边形,周长不变,面积变小.
30、组合图形:转化成已学的简单图形,通过加、减进行计算.
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码.
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女.
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数.)
1、像0、1、2、3、4、5、6……这样的数是自然数.
2、像-3、-2、-1、0、1、2、3……这样的数是整数.3、整数与自然数的关系:整数包括自然数.
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的.
5、找倍数:从1倍开始有序的找.
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数.
7、找因数:找一个数的因数,一对一对有序的找较好.
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身.
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数.
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数.
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数.
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数.
13、既是2的倍数又是5的倍数的特征:个位是0的数.
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数.最小的质数是2,是唯一的质数中的偶数.
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数.
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类.
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.
2、 分母:表示平均分的份数.分子:表示取出的份数.
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数.表示其中的一份的数,叫做这个分数的分数单位.
4、 真分数:分子小于分母的分数叫做真分数.真分数小于1.
5、 假分数:分子大于或等于分母的分数,叫做假分数.假分数都大于或等于1.
6、 带分数:由整数和真分数组成的分数叫做带分数.
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变.
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子.
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变.
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数.
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数.其中最大的一个,叫做它们的最大公因数.
13 互质:两个数的公因数只有1,这两个数叫做互质.
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质.
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数.
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数.
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分.计算结果通常用最简分数表示.
18、 通分:把异分母分数分别化成同分母分数,叫通分.通常用最小公倍数
做分数的分母较简便.
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比.
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变.
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份.
②把3平均分成4份,表示这样的1份.
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票.若只有A、B两种方案是,只要选择
其中一种价格便宜的就行.
②租车问题: 用列表法解决问题.两个原则:多用单价低的,少空座.
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么.
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速.
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地.
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算.
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数.
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数.
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分.
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积.(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积.
2.不规则图形面积的估算:
(1)数格子的方法.
(2)把不规则图形看成近似的基本图形,估算出面积.
鸡兔同笼:
1, 列表法.
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小.
2,设计活动方案.
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值
‘贰’ 小学五年级下册数学知识重点汇总(详细)
1. 五年级数学知识小笑
五年级数学知识小笑 1.五年级数学小笑话
有很多哦,摘录几个给你,看看行不行1、算术老师道:“这里有梨10只,吃去了6只,还剩多少?”一个贪食的学生答道:“我看把剩下的也一起吃掉吧。”
2、仔仔兴高采烈地从学校里回来,问妈妈:“爸爸呢?”妈妈看到仔仔兴奋的样子,奇怪地问:“爸爸在家,你找爸爸做什么?”“我向爸爸要5角钱。” “为什么?”妈妈问道。
“在考数学以前,爸爸对我说‘如果考了100分,就给我1元钱,考80分给8角。’今天,我数学考了45分。
“仔仔回答说。妈妈吃惊地问:“什么!数学才考45分?”仔仔得意地说:“是呀,数学上要4舍5入,因此,爸爸必须付5角钱。”
3、一位衣着时尚的女郎走进邮局汇款处,把汇款单填好后交给了营业员。营业员一看,把单退回说:“数字要大写。”
女郎头一歪说:“大写?格子这么小,叫我怎么写得大?” 4、“爸爸,4路车来了!”“傻瓜,那不是4路,是31路!”“老师说,3+1=4!”小男孩理直气壮地说。 希望可以帮到你,祝学习进步,在数学的天地里,快乐的遨游成长。
2.5年级的数学小知识
一 数学笑话1.有一次,妈妈很耐心地启发丫丫做算术题:“丫丫,你已经学会做减法了,对吗?来,我们来看看,4减2等于几?” “等于2,妈妈。”
“太对了,乖孩子。那么,5减5呢?” “5减5,减5。
.”丫丫嘟哝着,“我不会,妈妈。”
“孩子,你不可能不会!想想,比如说你口袋里装着5枚硬币,可是,突然,5枚硬币都掉了。你说,口袋里还有什么?” 丫丫忽闪着两只大眼睛,说道:“掉了?那,那我的口袋里还有一个洞呀!” 2.“考算术,我总得100。”
“那是你学得好。” “可我上课从来不听讲。”
“那是你聪明,而且放学回家知道用功。” “聪明吗?倒有点,可放学后,我是一个与足球打交道的人。”
“那么你考试时,一定是靠作弊。” “不能这么说,我既没打小条抄书,又没偷看人家的,怎么算是作弊。”
“那你怎么搞的?” “我用脚踢前面的书呆子吉姆的椅子。” “不会就不会,怎么能这么淘气。”
“我踢第一脚,他用手朝后伸出五个指头。” “这是什么意思?” “第一题2+3的答案。”
“噢……要是问第十题5*8的答案呢?” “那是在我踢完第十脚以后,他先伸出四个指头,然后马上握紧拳头,于是我就知道40这个答案了。” 3.老师发表成绩:"小华三十分、小明二十分……” 小猪: 我考0 分耶! 小狗: 怎么办, 我也是耶…… 小猪: 我们两个考同分, 老师会不会以为我们作弊啊? 二 数学故事 相传有一天,诸葛亮把将士们召集在一起,说:“你们中间不论谁,从1~1024中任意选出一个整数,记在心里,我提十个问题,只要求回答‘是’或‘不是’。
十个问题全答完以后,我就会‘算’出你心里记的那个数。”诸葛亮刚说完,一个谋士站起来说,他已经选好了一个数。
诸葛亮问道:“你选的数大于512?”谋士答:“不是。”诸葛亮又接连向这谋士提了九个问题,谋士都一一作了回答。
诸葛亮最后说:“你记的那个数是1。”谋士听了极为惊奇,因为这个数果真是他选的数。
你知道诸葛亮是怎样妙算的吗? 其实方法很简单,就是把1024一半一半的取,取到第十次时,就是“1”。根据这个道理,连续提十个问题,就能找到所需的数。
三.数学名言1.、王菊珍的百分数 我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。” 2、托尔斯泰的分数 俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。
他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”
1、数学的本质在于它的自由. 康扥尔(Cantor) 2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor) 3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert) 4、数学是无穷的科学. 赫尔曼外尔 5、问题是数学的心脏. P.R.Halmos 6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert 7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯 3、雷巴柯夫的常数与变数 俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。”
二、用符号写格言 4、华罗庚的减号 我国着名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” 5、爱迪生的加号 大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。”
6、季米特洛夫的正负号 着名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” 三、用公式写的格言 7、爱因斯坦的公式 近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。
并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” “如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积是多一点,但两圆之外的空白都是我们的无知面。
圆越大其圆周接触的无知面就越多。”-芝诺 柯西(A. L. Cauchy, 1789 – 1857) Men pass away, but their deeds abide. 人总是要死,但是,他们的业绩永存。
拉普拉斯(Laplace, 1749 – 1827) What we know is not much. What we do not know is immense. 我们知道的是很少的,我们不知道的是无限的。 埃尔米特(C. Hermice 1822 – 1901) Abel has left mathematicians enough to keep them busy for 500 years. 他评价阿贝尔(Abel)时,曾经说:“阿贝尔留下的可以使数学家忙碌五百年。
” 普尔森(Poisson, Siméon 1781-1840) "Life is good for only two things, discovering mathematics and teaching 。
3.5年级数学笑话
1、无理算术
算术老师道:“这里有梨10只,吃去了6只,还剩多少?”一个贪食的学生答道:“我看把剩下的也一起吃掉吧。”
2、四舍五入
仔仔兴高采烈地从学校里回来,问妈妈:“爸爸呢?”妈妈看到仔仔兴奋的样子,奇怪地问:“爸爸在家,你找爸爸做什么?”“我向爸爸要5角钱。” “为什么?”妈妈问道。“在考数学以前,爸爸对我说‘如果考了100分,就给我1元钱,考80分给8角。’今天,我数学考了45分。“仔仔回答说。妈妈吃惊地问:“什么!数学才考45分?”仔仔得意地说:“是呀,数学上要4舍5入,因此,爸爸必须付5角钱。”
3、大写
一位衣着时尚的女郎走进邮局汇款处,把汇款单填好后交给了营业员。营业员一看,把单退回说:“数字要大写。”女郎头一歪说:“大写?格子这么小,叫我怎么写得大?”
4、不算错
敏敏:“7+3=10,你怎么写成7+3=1呢?”宝宝:“只是末尾的0没有写而已嘛!”敏敏:“那就错了!”宝宝说:“0不就是没有的意思吗。”
5、武则天
历史课上,老师问道:“谁知道武则天是什么人?”学生:“武则天是数学家,过五则添,就是发明四舍五入的那位大数学家。”
6、等车
“爸爸,4路车来了!”“傻瓜,那不是4路,是31路!”“老师说,3+1=4!”小男孩理直气壮地说。
7、差别在此
方老师在数学课上问阿细:“一半和十六分之八有何分别?”阿细没有回答。方老师说:“想一想,如果要你选择半个橙和八块十六分之一的橙子,你要哪一样?”阿细:“我一定要一半。”“为什么?”“橙子在分成十六分之一时已流去很多橙汁了,老师你说是不是?”
8、验算
考试中某学生拿出骰子,摇出十道选择题答案。
快结束时他突然又拿出来摇。
监考老师终于忍无可忍:“你在干什么?”
学生答:“我在验算。”
9、四舍五入
仔仔兴高采烈地从学校里回来,问妈妈:“爸爸呢?”妈妈看到仔仔兴奋的样子,奇怪地问:“爸爸在家,你找爸爸做什么?”“我向爸爸要5角钱。”“为什么?”妈妈问道。
“在考数学以前,爸爸对我说‘如果考了100分,就给我1元钱,考80分给8角。’今天,我数学考了45分。“仔仔回答说。
妈妈吃惊地问:“什么!数学才考45分?”仔仔得意地说:“是呀,数学上要四舍五入,因此,爸爸必须付5角钱。”
10、乘法分配律老师发现一个学生在作业本上的姓名是:木(1+2+3)。
老师问:"这是谁的作业本?"一个学生站起来:"是我的!"老师:"你叫什么名字?"学生:"木林森!"老师:"那你怎么把名字写成这样呢?"学生:"我用的是乘法分配律!"
4.对于五年级学生适合的数学笑话
1.妈妈回家问小明:”数学考得怎么样了?”小明说:”不错,就是有道计算题不会,它问3*7=?,我不管三七二十一就写了个15.”
2.1对4说:立正! 9对6说:你整天大头想下的累不累? 9对0说:别以为剪了尾巴就是个人物了! 1对7说:兄弟,你什么时候被人把腰给打断了?
一名统计学家遇到一位数学家,统计学家调侃数学家说道:“你们不是说若X=Y且Y=Z,则X=Z吗!那么想必你若是喜欢一个女孩,那么那个女孩喜欢的男生你也会喜欢罗?”
数学家想了一下反问道:“那么你把左手放到一锅一网络的开水中,右手放到一锅零度的冰水里想来也没事吧!因为它们平均不过是五十度而已!”
我要变形了
数学老师上课时常习惯于对走神的学生说:“注意!我要……了。”
一天正在讲解方程式,他发现又有同学精神不集中,于是拍案道:“注意,我要变形了!”
众生精神为之一振,数十双眼睛炯炯有神地盯着他……
数学教授
一位数学教授在马路上被一辆高速飞驶的汽车撞倒,肇事的司机没停车就溜走了。当交通警察赶来询问那辆汽车的车牌号码时,教授回想了片刻后说:“我被撞倒的那一刹间,只看到车子上一个方程式: XY减去517,最后的差是24……”
武则天是大数学家
历史教师:“你知道武则天是什么人吗?”
学生:“武则天是数学家。五过则添,就是发明四舍五入的那位大数学家。”
5.小学五年级数学知识点
小学五年级数学上册期末复习知识点归纳第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5*3表示1.5的3倍是多少或3个1.5的和的简便运算。计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。如:1.5*0.8就是求1.5的十分之八是多少。
1.5*1.8就是求1.5的1.8倍是多少。计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)乘法分配律:(a+b)*c=a*c+b*c【(a-b)*c=a*c-b*c】除法:除法性质:a÷b÷c=a÷(b*c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。第三单元观察物体15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
17、a*a可以写作a•a或a ,a 读作a的平方。 2a表示a+a18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数*因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商*除数 除数=被除数÷商21、所有的方程都是等式,但等式不一定都是等式。22、方程的检验过程:方程左边=…… 23、方程的解是一个数; =…… 解方程式一个计算过程。
=方程右边 所以,X=…是方程的解。第五单元多边形的面积23、公式:长方形:周长=(长+宽)*2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)*2 面积=长*宽 字母公式:S=ab 正方形:周长=边长*4 字母公式:C=4a 面积=边长*边长 字母公式:S=a平行四边形的面积=底*高 字母公式: S=ah三角形的面积=底*高÷2 ——【底=面积*2÷高;高=面积*2÷底】 字母公式: S=ah÷2梯形的面积=(上底+下底)*高÷2 字母公式: S=(a+b)h÷2——【上底=面积*2÷高-下底,下底=面积*2÷高-上底;高=面积*2÷(上底+下底)】24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形, 长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底; 长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高; 长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,因为长方形面积=长*宽,所以平行四边形面积=底*高。
因为平行四边形面积=底*高,所以三角形面积=底*高÷226、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导。
6.五年级数学所有知识点
五年级数学第十册期末考试试卷 成绩: 一 、填空:20% 1. 2. 5小时=( )小时( )分 5060平方分米=( )平方米 2. 24的约数有( ),把24分解质因数是( ) 3. 分数单位是 1/8的最大真分数是( ),最小假分数是( )。
4. 一个最简分数的分子是最小的质数,分母是合数,这个分数最大是( ),如果再加上( )个这样的分数单位,就得到1。 5. 把一个长、宽、高分别是5分米,3分米、2分米的长方体截成两个小长方体,这两个小长方体表面积之和最大是( )平方分米。
6. 用一根52厘米长的铁丝,恰好可以焊成一个长方体框架。框架长6厘米、宽4厘米、高( )厘米。
7. A=2*3*5,B=3*5*5,A和B的最大公约数是( ),最小公倍数是( )。 8. 正方体的棱长扩大3倍,它的表面积扩大( )倍,它的体积扩大( )倍。
9. 4/9与5/11比较,( )的分数单位大,( )的分数值大。 10. 两个数的最大公约数是8,最小公倍数是48,其中一个数16,另一个数是( )。
二 、选择题(将正确答案的序号填在括号内):20% 1. 下面式子中,是整除的式子是( ) ① 4÷8=0.5 ② 39÷3=13 ③ 5. 2÷2. 6=2 2. 在2/3、3/20和7/28中,能化成有限小数的分数有( ) ① 3个 ② 2个 ③ 1个 3. 两个质数相乘的积一定是( ) ① 奇数 ② 偶数 ③ 合数 4 . A=5B(A 、B都是非零的自然数)下列说法不正确的是( ) ① A 和B的最大公约数是A ② A 和B的最小公倍数是A ③ A能被B整除,A含有约数5 5. 在100克的水中加入10克盐,这时盐占盐水的( ) ① 1/9 ② 1/10 ③ 1/11 6. 已知a>b,那么2/a与2/b比较( ) ① 2/a> 2/b ②2/a 7. 两个数的最大公约数是12,这两个数的公约数的个数有( ) ① 2个 ② 4个 ③ 6个 8. 一个长方体被挖掉一小块(如图)下面说法完全正确的是( ) ① 体积减少 ,表面积也减少 ② 体积减少, 表面积增加 ③ 体积减少, 表面积不变 9. 用大小相等的长方形纸,每张长12厘米,宽8厘米。要拼成一个正方形,最小需要这种长方形纸( )。
① 4张 ② 6张 ③ 8张 10、一根6米长的绳子,先截下1/2,再截下1/2米,这时还剩( ) ① 5米 ② 5/2米 ③ 0米 三、计算题:28% 1. 求长方体的表面积和体积(单位:分米)4% a=8 b=5 c=4 2. 脱式计算(能简算要简算)12% 6/7+2/15+1/7+ 13/15 19/21+5/7-3/14 2/3+5/9-2/3+5/9 8/9-(1/4-1/9)- 3/4 3. 求最下列每组数的最大公约数与最小公倍数 4% 24 和36 18、24和40(只求最小公倍数) 4. 文字题 6% 5/9与7/18的和,再减去1/2,结果是多少? 一个数减去7/15与7/30的差,结果是2/3,这个数是多少?(用方程解) 四、作图题 4% 请你用画阴影的方法表示1/2(至少5种) 五、应用题:30% 1. 一块地,其中1/5种玉米,1/6种青菜,其余种西瓜。种西瓜的面积占这块地的几分之几? 2. 某班男生24人,女生20人,男生人数是女生的多少倍?女生人数是男生人数的几分之几? 3. 学生参加环保行动。
五年级清运垃圾3/5 吨,比六年级少清运1/8吨。五六年级共清运垃圾多少吨? 4. 一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升? 5. 一辆汽车,前3小时共行192千米,后2小时每小时行58千米,这辆汽车的平均速度是多少千米?。
7.五年级数学小故事
1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?
2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?
3.小军说:“我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?”同学们猜猜小军一共钓了几条鱼?
4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?
7.时钟刚敲了13下,你现在应该怎么做?
8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?
9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢?
10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?
11.把8按下面方法分成两半,每半各是多少?算术法平均分是____,从中间横着分是____,从中间竖着分是____.
12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫?
13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫?
14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(每盘棋是两个人下的)
15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?
答案:
1.20只,包括手指甲和脚指甲
2.因为他付给售货员40元,所以只找给他2元;
3.0条,因为他钓的鱼是不存在的;
4.6里,36里;
5.只要教小狗转过身子用后脚抓骨头,就行了。
6.他们相遇时,是在同一地方,所以两人离甲地同样远;
7.应该修理时钟;
8.它永远不会把草吃光,因为草会不断生长;
9.妈妈先吃一块,再分给每个孩子两块;
10.15米;
11.4,0,3.
12.4只;
13.5只;
14.2盘;
15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。
‘叁’ 五年级下册数学必背知识点有哪些
五年级下册数学必背知识点如下:
1、一个数的倍数的特征:一个数的倍数的个数是无限的,其中最少的倍数是它本身,没有最大的倍数;如果几个数都是一个数的倍数,那么这几个数的合也是这个数的倍数。
2、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
3、一般的如果a是整数,偶数可以用2a表示。奇数可以用2a+1表示。
4、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫奇数。最小的偶数是0,最小的奇数是1。
5、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);1不是质数,也不是合数。
‘肆’ 五年级下册数学必背知识点有哪些
五年级下册数学必背知识点有如下:
一、长方形的周长=(长+宽)×2 ,C=(a+b)×2。
二、正方形的周长=边长×4, C=4a。
三、长方形的面积=长×宽 ,S=ab。
四、正方形的面积=边长×边长 ,S=a.a=a^2。
五、三角形的面积=底×高÷2 ,S=ah÷2。
六、平行四边形的面积=底×高, S=ah。
七、梯形的面积=(上底+下底)×高÷2, S=(a+b)h÷2。
八、圆的周长=圆周率×直径=圆周率×半径×2, c=πd=2πr。
九、圆的面积=圆周率×半径×半径πr ^2。
‘伍’ 人教版数学五年级上下两册知识点有哪些
五年级上册:第一单元,小数乘法。第二单元,小数除法。第三单元,观察物体。第四单元,简易方程。第五单元,多边行的面积。第六单元,统计与可能性。第七单元,数学广角。第八单元,总复习。
五年级下册:第一单元,图形的变化。第二单元,因数与倍数。第三单元,长方体和正方体。第四单元,分数的意义和性质。第五单元,分数的加法和减法。第六单元,统计。第七单元,数学广角。第八单元,总复习。
‘陆’ 北师大版五年级下册数学如何复习整理
北师大版小学数学五年级(下册)知识点
一单元:《分数乘法》
分数乘法(一)
知识点:1、理解分数乘整数的意义。分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法。分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。
3、计算时,可以先约分在计算。
分数乘法(二)
知识点:1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算。
2、能够求一个数的几分之几是多少。
3、理解打折的含义。例如:九折,是指现价是原价的十分之九。
分数乘法(三)
知识点:1、分数乘分数的计算方法,并能正确进行计算。
分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。
2、比较分数相乘的积与每一个乘数的大小。
真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
二单元:《长方体(一)》
长方体的认识
知识点:1、认识长方体、正方体,了解各部分的名称。
2、长方体、正方体各自的特点。
顶 点
面
棱
个 数
个 数
形 状
大小关系
条数
长度关系
8
6
都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形。
相对的面是完全一样的长方形。
12
可以分为三组,相对的棱平行且相等。
8
6
都是正方形。
每个面都是正方形。
12
长度都相等。
3、知道正方体是特殊的长方体。
4、能计算长方体、正方体的棱长总和。
长方体的棱长总和=(长+宽+高)*4或者是长*4+宽*4+高*4
正方体的棱长总和=棱长*12
灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长。
展开与折叠
知识点:1、认识并了解长方体和正方体的平面展开图。
2、了解正方体平面展开图的几种形式,并以此来判断。
长方体的表面积
知识点:1、理解表面积的意义。是指六个面的面积之和。
2、长方体和正方体表面积的计算方法。
3、能结合生活中的实际情况,计算图形的表面积。
露在外面的面
知识点:1、在观察中,通过不同的观察策略进行观察。
如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。
2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。
三单元:《分数除法》
倒数
知识点:1、发现倒数的特征并理解倒数的意义。
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。
2、求倒数的方法。
把这个数的分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
分数除法(一)
知识点:1、分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
分数除法(二)
知识点:1、一个数除以分数的意义和基本算理。
一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
2、掌握一个数除以分数的计算方法。
除以一个数(0除外)等于乘这个数的倒数。
3、比较商与被除数的大小。
除数小于1,商大于被除数;
除数等于1。商等于被除数;
除数大于1,商小于被除数。
分数除法(三)
知识点:1、列方程“求一个数的几分之几是多少”。
2、利用等式的性质解方程。
3、理解打折的含义。
如:打8折就是指现价是原价的十分之八。
数学与生活
粉刷墙壁
知识点:1、明确我们在粉刷教室墙壁时必须知道的条件。
2、根据实际情况进行计算相应的面积。
折叠:
知识点:1、体会立体图形与展开图形之间的关系,发展空间观念。
2、能正确判断平面展开图所对应的简单立体图形。
四单元:《长方体(二)》
体积与容积
知识点:1、体积与容积的概念。
体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳入体的体积叫做物体的容积。
体积单位
知识点:1、认识体积、容积单位。
常用的体积单位有:立方厘米、立方分米、立方米。
2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义。
补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。
长方体的体积
知识点:1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法。
长方体的体积=长*宽*高
正方体的体积=棱长*棱长*棱长
长方体(正方体)的体积=底面积*高
2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长方体的高=体积/长/宽
补充知识点:长方体的体积=横截面面积*长
体积单位的换算
知识点:1、体积、容积单位之间的进率。
相邻两个体积单位、容积单位之间的进率是1000。
有趣的测量
知识点:1、不规则物体体积的测量方法。
2、不规则物体体积的计算方法。
五单元:《分数混合运算》
分数混合运算(一)
知识点:1、体会分数混合运算的运算顺序和整数是一样的。
分数混合运算(二)
知识点:整数的运算律在分数运算中同样适用。
分数混合运算(三)
知识点:1、利用方程解决与分数运算有关的实际问题。
2、分数中的估算。
3、利用线段图来分析题中的数量关系。
4、对最后结果的检验。
六单元:《百分数》
百分数的意义
知识点:1、百分数的意义。
百分数表示一个数另一个数的百分之几。百分数也叫百分比、百分率。
2、能正确读写百分数。
3、结合生活中具体的例子理解百分数的意义。
合格率(百分数的应用一)
知识点:1、解决一个数是另一个数的百分之几的实际问题。
这部分知识同分数除法中求一个数是另一个数的几分之几相同。
2、能正确地将小数、分数化成百分数。
小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把分数化成百分数,可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
蛋白质含量(百分数的应用二)
知识点:1、求一个数的百分之几是多少。方法同求一个数的几分之几是多少。
2、百分数化成小数、分数的方法。
百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。
这个月我当家(百分数应用三)
知识点:1、用方程解决“已知一个数的百分之几多少,求这个数”的实际问题。
2、体会百分数与统计的关系。
数学与购物
估计费用
知识点:根据实际的问题,选择合理的估算策略,进行估算。
购物策略
知识点:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案。
包装的学问
知识点:1、探索多个相同长方体叠放后使其表面积最小的最有策略。
2、掌握解决问题的基本方法和过程。
七单元:《统计》
扇形统计图
知识点:1、认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,并能从中获得相应的数学信息。
奥运会(统计图的选择)
知识点:1、了解条形统计图、扇形统计图、折线统计图的特点。
条形统计图便于看出数据的多少;扇形统计图能清楚地看出整体与部分之间的关系;折线统计图能看出数据的变化趋势。
2、能够根据需要选择最为直观、有效地统计图表示数据。
中位数和众数
知识点:1、中位数和众数的意义。
将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。
一组数据中出现次数最多的数称为这组数据的众数。
2、中位数和众数的求法。
将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。
众数,就是一组数据中出现次数最多的,有可能是多个众数。
3、能根据具体的问题,选择合适的统计两表示数据的不同特征。
了解同学
知识点:综合运用所学的统计知识,发展学生的统计观念。
‘柒’ 小学五年级下数学知识点
5下的
1. 理解分数的意义;*
2. 思考,并会用长方体,正方体的表面积,体积运算公式。*
3. 做好统计,并学会做统计表,会看统计表!
(以上都很重要,打星号的特别重要)
做些题吧
一.填空。
1.自然数中,既不是质数,又不是合数的数是 ( ),最小的质数是 ( ),最小的合数是 ( )。
2.把120分解质因数是( )。
3.两个互质数,又都是合数,它们的最小公倍数是60,这两个数分别是 ( ) 和 ( )。
4.a和b是一对互质数,a×b =36,则a和b分别是( )
5.一个三位数,它的个位上是最小的自然数,十位上是最小合数,百位上是最小的质数,这个三位数是( )。
6.一个长方体的长为1分米,宽为8厘米,高为3厘米,它的表面积是( ),体积是( )。
7.用一根长为48厘米的铁丝制成一个最大的正方体框架,它的表面积是( )平方厘米,体积是( )立方厘米。
8.已知一个三角形的面积是24平方厘米 , 底是8厘米,高是( )厘米。
9.把一根长2米的长方体木料,平均锯成4段,表面积比原来增加了48平方分米,原来这根木料的体积是( )立方分米。
10.已知一个梯形的面积是36平方厘米,高为4厘米,上底与下底的和是( )。
11.已知甲数=3×3×5×7, 乙数=3×5×7×11, 甲乙两数的最大公约数是( )。
12.把下面各数按要求填。
6 9 102 45 110 91 780 248 37
奇数( ) 能被2整除( )
偶数( ) 能被3整除( )
质数( ) 能被5整除( )
合数( ) 能被2、3、5整除( )
二.判断。
1.长方体的棱长之和是84厘米,从一个顶点出发的三条棱的长度之和是21厘米。 ( )
2.7.2除以一个小数,所得的商一定大于7.2。 ( )
3.没有公约数的两个数叫做互质数。 ( )
三.选择题。
1、如果m、 n 都是自然数,m = 8n,则m和n的最小公倍数是 ( )。
A、m B、n C、mn D、8
2、下面的各组数里,第一个数能被第二数整除的是 ( ) 。
A、36和0.9 B、7和56 C、54和27 D、84和8
3、如果两个自然数的最小公倍数是210,它们的最小公约数是14,那么这两个数是 ( )。
A、140和21 B、42和70 C、10和21 D、14和35
4、若m÷n = 13, m ,n 都是自然数,则m是n的( ),n是m的( )。
A. 最小公约数 B. 最大公约数 C. 最大公倍数 D. 最小公倍数
5、99.999保留两位小数是 ( )。
A.99.99 B.100 C.100.00 D.100.0
6、相邻两个自然数的和一定是( ),积一定是( )。
A. 奇数 B. 偶数 C. 合数 D. 质数
四.计算。
1.计算,能简算的要简算。
6.71×7.5 + 2.5×6.71 ( 3.12 + 0.3 )÷[ ( 1-0.4 )÷0.2 ]
3.14×625-3.14×374-3.14 [ 41-( 4.2 + 5.8÷5 ) ]÷0.9
3.4÷4.41 + 0.4×0.05 12.5×3.2×0.25×1.3
2.直接写出得数。
5.2-3 + 8= 2.9 + 4.1 = 1÷0.05 = 8×0.5 = 3.29÷3.29 =
8.9 + 8.9 = 2-3.6 = 8.8-0.8 = 4.8÷1.6 = 0×(4-0.4 ) =
3.解方程。
6x-0.4×6 = 9.6 118-2×( 4.1 + X ) = 55 4x +80 = 160
9.6÷X = 0.8 4.8-X = 3×( X + 6 ) 4.3X-1.5 + 3.2X = 4.5
4.求阴影部分面积。
5厘米
3厘米
五.列式计算。
1.一个数减去3.6,所得的差的5 倍,正好等于这个数的3倍,求这个数。
2.乙数比丙数的2倍少3,甲数是乙数的4倍,已知甲数是132,求丙数。
3.2.5与64的积去除 1.44,商是多少?
4.一个数的5倍比40除以5的商少48,求这个数。(用方程解)
六.应用题。
1.只列式不计算 。
(1)工程队修一条长480米的路,计划12天完成。实际10天就完成了,实际每天比计划多修多少米? 算式:____________________
(2) 小华前2次数学测验的平均成绩是91分,后3次测验平均成绩是90分。求他这5次测验的平均成绩。 算式:_____________________
2.李红和王刚买同一种练习本5本和3本,已知李红比王刚多付7.20元,这种练习本的单价是多少元?
3.甲乙两位运动员练习赛跑,甲每秒跑7米,乙每秒跑6.5米。如果让乙先跑出10米后,甲再出发,几秒钟后甲追上乙?(用方程解)
4.甲车每小时行50千米,乙车每小时行56千米,两车从相距20千米的两地相背而行,几小时后两车相距274.4千米?
5.一个游泳池长50米,宽30米,深3.5米。在游泳池的四壁和底部铺上边长1分米的方砖,共需方砖多少块?如果将这个游泳池放满水,能放水多少立方米?
6.果园里有桃树730棵,比梨树的1.25倍少20棵,果园有梨树和桃树共多少棵?
7.工程队要筑一条长7.4千米的公路,已经筑了12天,平均每天筑0.35千米,剩下的要在8天内完成,平均每天至少要筑多少千米?
五年级下册数学期末试卷
一.填空题 。
1、24的所有约数有( )个,24的最小倍数是( )。
2、在自然数1--20中,既是偶数又是质数的有( );既是奇数又是合数的有( )。
3、a和b的最大公约数是1,最小公倍数是( )。
4、一个正方体的棱长扩大3倍,体积就扩大( )倍,表面积扩大( )倍。
5、3升60毫升 =( )升 =( )毫升。
6、甲数 = 2×3×5×7 乙数 = 2×5×11
则两数的最大公约数是( ),最小公倍数是( )
7、把96分解质因数是( )。
8、把4米长的木棒平均分成7段,每段长 )米,每段占全长的( )。
9、 =( )÷15 = 15÷( )=
10、分数单位是 的最大真分数是(),最小假分数是( ),最小带分数是( )
11、1里面有( ),2里面有( )。
2 的分数单位是( ),20个这样的分数单位是( )。
12.李明今年a岁,张亮今年a + b岁;5年后,两人的年龄相差( )岁。
13.已知a = 2.3,b = 5;则8a-b + 2a的值是( )。
14.两个数的积是72,它们的最小公倍数是36,这两个数的和最小是( )。
15.有周长都是36厘米的正方形和长方形,长方形的长是宽的3倍。它们的面积相差( )平方厘米。
二 判断(对的打√,错的打×)
1、长方体相邻的面没有完全相同的。 ( )
2、两个数的公倍数必定比这两个数都大。( )
3、任何整数,必定都有两个约数。 ( )
4、两个合数一定不是互质数。 ( )
5、是最简分数。 ( )
6、因为比小,所以的分数单位比的分数单位小。 ( )
7. 2.12和18的最小公倍数是这两个数的最大公约数的6倍。 ( )
8.沿着等腰三角形底边上的高剪开,可以把等腰三角形分成两个相等的直角三角形。 ( )
三 选择(把正确答案的序号填在括号里) 。
1、把一个长方体割成许多小正方体,它的体积( ),表面积( )
① 不变 ② 增加 ③ 减少
2、一个长方体是8厘米,宽是6厘米,高是4厘米,它的棱长和是( )厘米。 ① 18 ② 36 ③ 72
3、1立方米的正方体以分成( )个1立方分米的小正方体。
①1000个 ②100个 ③10个
4、下面各数中,两个数都是合数又是互质数的数是( )。
①16和12 ②27和28 ③11和44
5、下面各数中,不能化成有限小数的是( )
① ② ③
四 文字题。
1.3与1的和,加上2,等于多少?
2. 5减去2所得的差加上3,和是多少?
六.应用题
1.某气象小组在一天中的2时、8时、16时和20时分别测得气温是18度、20度、28度和26度。求这一天的平均气温。
2.新河乡修了一条水渠,第一天修了58.5米,比第二天修的3倍多4 ,第二天修了多少米。
3.仓库存有一批货物,运走了45吨,比剩下的多20.3吨,这批货物共有多少吨?
4.一根长24米的电线,用去了16米,用去了全长的几分之几?还剩下全长的几分之几?
5.用铁皮做一个长方体油箱,油箱的长8分米,宽6分米,高5分米。至少要用铁皮多少平方分米?如果每立方米油重0.82千克。那么,这个油箱最多可装柴油多少千克?
6.一辆汽车从甲地开往乙地,每小时行50千米,6小时到达;返回时,每小时行60千米,几小时可以到达?
7.一个长方体的鱼缸,从里面量长6分米、高5分米、宽4分米,现在往鱼缸内注入96升水,水面离鱼缸的沿口有多少分米?
五年级下册数学期末试卷
一.填空.
1.8平方米8平方分米=( )平方米 =( )平方分米
2.6700米=( )千米( )米 =( )千米
3.用铁丝焊接成一个长10厘米,宽6厘米的长方体框架,至少需要( )厘米铁丝.
4.把3个1立方厘米的小正方体木块拼成一个长方体木块,这个长方体木块的体积是( ),表面积是( )
5. 从0, 1, 2, 4四个数字中分别选择三个数字, 组成同时能被2, 5, 3整除的最大三位数是( ), 最小三位数是( ).
6.( ) 除以13商5余2.
7.商是21, 如果被除数缩小10倍, 除数扩大10倍, 那么商是( ).
8.在8的后面添上一个零, 这个数比原数多( ), 这个数比原数多( )倍
9.把3米长的线段平均分成5份,每份长用分数表示是( )米,用小数表示是( )米.
10. 和 这两个分数中,分数值较大的数是( ),分数单位较大的数是( ).
11. 的分数单位是( ),再添上( )个这样的分数单位就是最小质数.
12. 两个两位数,它们的最大公约数是9,最小公倍数是360,这两个两位数分别是
( )和( ).
13.把2米长的铁丝截成相等的3段,每段占全长的( ),每段长( )米.
14.16和24的最小公倍数是( ),把这个数用质数相乘的形式表示是( ).
二.判断题.
1.2.4÷0.3 = 8, 因为商是整数而且没有余数, 所以2.4能被0.3整除. ( )
2.小数比整数小. ( )
3.质数中只有2是偶数,其余都是奇数 . ( )
4.相邻的两个自然数一定是互质数. ( )
5.一个数的计数单位越大,这个数就越大. ( )
6.甲绳比乙绳长米,乙绳就比甲绳短. ( )
三.选择题.
1.13÷2 = 6.5, 我们说13能被2. A. 整除 B. 除尽 [ ]
2.一个正方体的棱长是a ,它的表面积是 [ ]
A.12a B.6a2 C.a2 D.a3
3.自然数中最小的一个数是A. 0 B. 1 [ ]
4.的分母增加15,要使分数大小不变,分子应扩大 ( ).
A. 4倍 B. 3倍 C . 15倍 D. 6倍
5.小明家离学校大约1千米,他从家步行到学校,大约要( )分钟.
A. 80 B. 60 C. 5 D. 3
6.在前1000个自然数中有168个质数,那么合数的个数有( ).
A.833个 B,832个 C,831个 D,830个
7.一个长方体锯成二段要用5分钟,锯成5段要( )分钟.
A,25 B,20 C,12.5
8.三个连续自然数的和是12 ,这个三个数的最大公约数是( ).
A,1 B, 2 C, 3
四.应用题.
1.一个正方体的水箱,每边长4分米,装满了一箱水,如果把这一箱水倒入另一个长是0.8米,宽是25厘米的长方体水箱中,水深是多少
2.用一张长50厘米,宽40厘米的长方形纸板,从四个角剪去边长1厘米的正方形后,做成纸盒,这个纸盒容积是多少表面积是多少
3.甲乙两港相距180千米,一艘轮船去时每小时行驶45千米,返回时逆风,每小时行驶30千米,求这艘轮船往返甲,乙两港的平均速度.
4.甲汽车28分钟行20千米,乙汽车40分钟行25千米,每分钟的速度哪一个快快多少
5.某粮店运进大米1.5吨,面粉比大米多吨,杂粮比面粉少吨,问共运进粮食多少吨
6.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,完成任务时徒弟正好生产了450个,这批零件共多少个
‘捌’ 课程改革实验教材小学五年级下册数学 知识点归纳
重点搞好以下七大块的分类复习。
1、数的认识(整数和小数、数的整除、分数百分数)
知识要点包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”“小数、分数、百分数的互化”“约分和通分”等知识点。 重点确定在数的意义概念的理解,数的读写,数的整除。
本部分重点加强数学基本概念和基本性质的理解和掌握。具体通过一系列的练习,如填空题、选择题、判断题为主,适当穿插进行整数和小数的简单计算、约分和通分练习。复习本部分知识教师应该根据学生的实际学习水平灵活处理,对于班级基础较差的学生可适当放慢,万事开头难,本部分知识必须做到教一点使学生会一点,切忌贪多图快。复习题可参考以前的专项复习题或专项复习试卷。
2、四则运算(四则运算的意义与法则、运算定律与简便计算、四则混合运算、简易方程)。
这节重点四则运算和简便运算上。 全面概括四则运算和计算方法,提高计算水平和计算能力,包括“四则运算的意义和法则”、“四则混合运算”。 利用运算定律,掌握简便运算,提高计算效率,包括“运算定律和简便运算”。 结合教材按照先复习(整数、小数、分数)四则运算意义和运算法则,要求教师结合教材必须搞好学生相关的口算训练和基本的四则运算练习,然后再复习(整数、小数、分数)的四则混合运算,教师要加强四则混合运算中运算顺序的教学,在此基础上教师要精心设计练习,提高学生综合计算能力。第三,要搞好运算定律与简便计算复习,三种运算定律要求学生熟练掌握。最后,在简易方程复习中,教师要重点规范学生的答题行为,解方程必须写解。本部分练习题可参考以前下发的专项复习题。
3、量的计量
本节重点放在名数的改写和实际观念上。
(1)、整理量的计量知识结构,包括“长度、面积、体积单位”、“重量与时间单位”。
(2)、巩固计量单位,强化实际观念,包括“名数的改写”。
(3)、综合训练与应用,练习题可刻印或参考试卷。
4、几何初步知识(线和角、平面图形、立体图形)
本节重点放在对特征的辨析和对公式的应用上。
(1)、强化概念理解和系统化,包括“平面图形的特征”、“立体图形的特征”。
(2)、准确把握图形特征,加强对比分析,揭示知识间的联系与区别,包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
(3)、加强对公式的应用,提高掌握计算方法。能让学生对周长、面积、体积进行的正确计算。
(4)、整体感知、实际应用。
练习题可刻印或参考试卷。
5、比和比例(比的意义和性质、比例的意义和性质、正比例和反比例)
本部分要求学生掌握比和比例意义和性质的同时,必须做到使学生正确辨析概念,加深理解,包括“比和比例”、“正比例和反比例”,会判断简单的正、反比例。重点要求学生掌握求比值、化简比,按比例分配,应用比例尺计算,解比例。在练习中很抓解题训练,提高解方程和解比例的能力,包括“简易方程”、“解比例”。
练习题可刻印或参考试卷。
6、简单的统计
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
(1)、求平均数的方法。
(2)、加深统计图表的特点和作用的认识,包括“统计表”、“统计图”。
(3)、进一步对图表分析和回答问题,包括填图和根据图表回答问题。(本部分是复习的重点)
练习题可参考教材或试卷。
7、应用题解(整数和小数应用题、分数和百分数应用题、列方程解应用题、比和比例应用题)
这部分重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
(1)、简单应用题的分析与整理。 (一步计算)
(2)、复合应用题的分析与整理。 (两步以上)
(3)、列方程解应用题的分析与整理。
(4)、分数应用题的分析与整理。(重点)
(5)、用比例知识解答应用题的分析与整理。
(6)、应用题的综合训练
‘玖’ 五年级下册数学文化小知识(数学五年级下册所有知识大全)
1.数学五年级下册所有知识大全
小学五年级数学下册复习教学知识点归纳总结,期末测试试题习题大全 人教版五年级(下册)数学知识点 一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。
旋转只改变物体的位置,不改变物体的形状、大小。二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。3、长方体的棱长总和=(长+宽+高)*4 正方体的棱长总和=棱长*124、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长*宽+长*高+宽*高)*2 S=(ab+ah+bh)*2 正方体的表面积=棱长*棱长*6 用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。8、长方体的体积=长*宽*高 用字母表示:V=abh 长=体积÷(宽*高) 宽=体积÷(长*高) 高=体积÷(长*宽) 正方体的体积=棱长*棱长*棱长 用字母表示:V= a*a*a9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000 10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积*高 V=Sh11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米 14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
四、分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。③相邻的两个自然数是互质数。
④相邻的两个奇数互质。⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。13、特殊情况下的最大公因数和最小公倍数:①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。
②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:。
2.小学五年级下数学知识点
5下的1. 理解分数的意义;*2. 思考,并会用长方体,正方体的表面积,体积运算公式。
*3. 做好统计,并学会做统计表,会看统计表!(以上都很重要,打星号的特别重要) 做些题吧一.填空。1.自然数中,既不是质数,又不是合数的数是 ( ),最小的质数是 ( ),最小的合数是 ( )。
2.把120分解质因数是( )。3.两个互质数,又都是合数,它们的最小公倍数是60,这两个数分别是 ( ) 和 ( )。
4.a和b是一对互质数,a*b =36,则a和b分别是( )5.一个三位数,它的个位上是最小的自然数,十位上是最小合数,百位上是最小的质数,这个三位数是( )。6.一个长方体的长为1分米,宽为8厘米,高为3厘米,它的表面积是( ),体积是( )。
7.用一根长为48厘米的铁丝制成一个最大的正方体框架,它的表面积是( )平方厘米,体积是( )立方厘米。8.已知一个三角形的面积是24平方厘米 , 底是8厘米,高是( )厘米。
9.把一根长2米的长方体木料,平均锯成4段,表面积比原来增加了48平方分米,原来这根木料的体积是( )立方分米。10.已知一个梯形的面积是36平方厘米,高为4厘米,上底与下底的和是( )。
11.已知甲数=3*3*5*7, 乙数=3*5*7*11, 甲乙两数的最大公约数是( )。12.把下面各数按要求填。
6 9 102 45 110 91 780 248 37奇数( ) 能被2整除( )偶数( ) 能被3整除( )质数( ) 能被5整除( )合数( ) 能被2、3、5整除( )二.判断。1.长方体的棱长之和是84厘米,从一个顶点出发的三条棱的长度之和是21厘米。
( )2.7.2除以一个小数,所得的商一定大于7.2。 ( )3.没有公约数的两个数叫做互质数。
( )三.选择题。1、如果m、n 都是自然数,m = 8n,则m和n的最小公倍数是 ( )。
A、m B、n C、mn D、82、下面的各组数里,第一个数能被第二数整除的是 ( ) 。A、36和0.9 B、7和56 C、54和27 D、84和83、如果两个自然数的最小公倍数是210,它们的最小公约数是14,那么这两个数是 ( )。
A、140和21 B、42和70 C、10和21 D、14和354、若m÷n = 13, m ,n 都是自然数,则m是n的( ),n是m的( )。 A. 最小公约数 B. 最大公约数 C. 最大公倍数 D. 最小公倍数 5、99.999保留两位小数是 ( )。
A.99.99 B.100 C.100.00 D.100.0 6、相邻两个自然数的和一定是( ),积一定是( )。 A. 奇数 B. 偶数 C. 合数 D. 质数 四.计算。
1.计算,能简算的要简算。6.71*7.5 + 2.5*6.71 ( 3.12 + 0.3 )÷[ ( 1-0.4 )÷0.2 ] 3.14*625-3.14*374-3.14 [ 41-( 4.2 + 5.8÷5 ) ]÷0.93.4÷4.41 + 0.4*0.05 12.5*3.2*0.25*1.32.直接写出得数。
5.2-3 + 8= 2.9 + 4.1 = 1÷0.05 = 8*0.5 = 3.29÷3.29 =8.9 + 8.9 = 2-3.6 = 8.8-0.8 = 4.8÷1.6 = 0*(4-0.4 ) =3.解方程。6x-0.4*6 = 9.6 118-2*( 4.1 + X ) = 55 4x +80 = 1609.6÷X = 0.8 4.8-X = 3*( X + 6 ) 4.3X-1.5 + 3.2X = 4.54.求阴影部分面积。
5厘米3厘米五.列式计算。1.一个数减去3.6,所得的差的5 倍,正好等于这个数的3倍,求这个数。
2.乙数比丙数的2倍少3,甲数是乙数的4倍,已知甲数是132,求丙数。3.2.5与64的积去除 1.44,商是多少?4.一个数的5倍比40除以5的商少48,求这个数。
(用方程解)六.应用题。1.只列式不计算 。
(1)工程队修一条长480米的路,计划12天完成。实际10天就完成了,实际每天比计划多修多少米? 算式:____________________(2) 小华前2次数学测验的平均成绩是91分,后3次测验平均成绩是90分。
求他这5次测验的平均成绩。 算式:_____________________2.李红和王刚买同一种练习本5本和3本,已知李红比王刚多付7.20元,这种练习本的单价是多少元?3.甲乙两位运动员练习赛跑,甲每秒跑7米,乙每秒跑6.5米。
如果让乙先跑出10米后,甲再出发,几秒钟后甲追上乙?(用方程解)4.甲车每小时行50千米,乙车每小时行56千米,两车从相距20千米的两地相背而行,几小时后两车相距274.4千米?5.一个游泳池长50米,宽30米,深3.5米。在游泳池的四壁和底部铺上边长1分米的方砖,共需方砖多少块?如果将这个游泳池放满水,能放水多少立方米?6.果园里有桃树730棵,比梨树的1.25倍少20棵,果园有梨树和桃树共多少棵?7.工程队要筑一条长7.4千米的公路,已经筑了12天,平均每天筑0.35千米,剩下的要在8天内完成,平均每天至少要筑多少千米?五年级下册数学期末试卷一.填空题 。
1、24的所有约数有( )个,24的最小倍数是( )。2、在自然数1--20中,既是偶数又是质数的有( );既是奇数又是合数的有( )。
3、a和b的最大公约数是1,最小公倍数是( )。4、一个正方体的棱长扩大3倍,体积就扩大( )倍,表面积扩大( )倍。
5、3升60毫升 =( )升 =( )毫升。6、甲数 = 2*3*5*7 乙数 = 2*5*11 则两数的最大公约数是( ),最小公倍数是( )7、把96分解质因数是( )。
8、把4米长的木棒平均分成7段,每段长 )米,每段占全长的( )。9、=( )÷15 = 15÷( )=10、分数单位是 的最大真分数是(),最小假分数是( ),最小带分数是( )11、1里面有( ),2里面有( )。
2 的分数单位是( ),20个这样的分数单位是( )。12.李明今年a岁,张亮今年a + b岁;5年后,两人的年龄相。
3.小学五年级数学下册知识要点
一、填空题(每空1分,共18分。)
1、先填空,再想想运用了什么运算律。
(1)52+48=48+ ,运用了( ),字母公式是( )。
(2)18*25*4=18*(25*4),运用了( ),字母公式是( )。
(3)42*a= *42,运用了( ),字母公式是( )。
(4)(270+69)+31= +( + ), 运用了( ),字母公式是( )。
(5)12*32+12*68=( + )* ,运用了( ),字母公式是( )。
2、在○填上“>”、“
(8787)÷3 ○(105-105)÷3 50+4*5 ○(50+4)*5
750÷15-10 ○ 750÷(15-10) 69+65÷5 ○ 69-65÷5
二、判断题(每题1分,共5分。)
1、算式“65+35÷7*6”的第一步算65+35,这样很简便。……( )
2、(a*b*c)=(a*c)*(b*c)。…………………………………( )
3、101*46-46=100*46。…………………………………………( )
4、134*8=125+9*8。………………………………………………( )
5、25+25+25+……+25=1000。 ……………………………………( )
三、选择题(每题2分,共10分。)
1、计算840-24*5÷20时,最后一步算( )。
A.乘法 B.除法 C.减法
2、260*(6+3) ○260*6+3,圆圈里应填( )。
A.>B.
3、把64÷4=16,36+16=52,52*12=624合并成一道综合算式是( )。
A.(36+64÷4)*12 B. 64÷4+36*12
C.(64÷4+16)*12 D.(36+16÷4)*12
4、64*25+36*25=(64+36)*25,这里运用了( )。
A.乘法分配律 B.乘法交换律
C.乘法结合律 D.加法结合律
5、与45*199相等的式子是( )。
A.45*100+99 B.45*(200-1) C.45*200+45
四、计算(共38分。)
1、直接写得数。(每题1分,共8分。)
62*3= 0*65+5= 77*20= 6+18+84=
98+12= 42*1*5= 12*25= 9*5÷5*9=
2、脱式计算。(每题3分,共12分。)
874÷(24*23-506) 25*5÷(155-30)
15*〔120-(42+36)〕 936÷〔(160+80)÷20〕
3、简便计算。(每题3分,共18分。)
185*38+15*38 62*100-62*2 43*202
(40+4)*25 25*99 96*101-96
4.五年级下册数学的知识归纳的板书
1、分数乘整数:分母不变,分子和整数相乘能约分的先约分
2、分数乘分数:分子乘分子,分母乘分母能约分的先约分
3、打九折是指:现价是原价的十分之九
4、长方体的棱长和=(长+宽+高)*4
5、正方体的棱长和=棱长*12
6、长方体的表面积=(长*宽*高)*
7、正方体的表面积=棱长*棱长*6
8、露在外面的面积=棱长*棱长*露在外面的面数
9、分数除法计算方法:除以一个数等于乘这个数的倒数(0除外)
10、长发体的体积=长*宽*高,或者底面积*高用字母表示是:V=abh或V=sh
11、正方体的体积:棱长*棱长*棱长,或者低面积*高用字母表示是V=a的立方
12、体积是指:物体所占空间的大小,要从外部测量,容器是指容器所能容纳物体的体积,要从内部测量,当容器很薄的时候容器近似于体积
13、常用的体积单位:立方米、立方分米、立方厘米,常用的容积单位升和毫升
14、长方体或正方体容器容积的计算方法:跟体积的计算方法相同但要从容器里面量长、宽、高,计算容积一般用体积单位
15、体积与容积单位换算:一立方米=1000立方分米。一立方分米=1000立方厘米。一立方分米=一升。一立方厘米=1毫升。一升=1000毫升
16、体积与容积单位换算计算方法:相邻的两个体积,容积单位之间的进路是1000,由高级单位化成低级单位,乘以进路,由低级单位换成高级单位,除以进路
5.人教版五年级下册数学重要复习资料
九、解决问题的策略 1.学会用“倒过来推想”的策略解题。
十、圆 1.圆的特征,圆心、半径、直径; 2.能用圆规画指定大小的圆; 3.会用圆的知识解释生活中的一些现象与解决一些简单问题; 4.圆周率的含义;圆周长、面积计算。 ? 五年级下册数学总复习 一、数与运算 《分数乘法》: 1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子,能约分的要约成最简分数,计算结果能化成整数的要化成整数。 注:0乘以任何数还得0。
3、分数乘分数的意义:求这个数的几分之几是多少。 4、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。
计算结果要求是最简分数。 注:理解打折的含义。
例如:九折,是指现价是原价的十分之九。 六五折,是指现价是原价的百分之六十五。
5、知道一个数是多少,求这个数的几分之几是多少?这样的应用题,可以用乘法解答。 《分数除法》 1、倒数:如果两个数的乘积是1,那么其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存在的。乘积是1的两个数互为倒数。
2、求倒数的方法。 3、1的倒数仍是1;0没有倒数。
(理由:0没有倒数,是因为在分数中,0不能做分母)。 4、一个数(A)除以另一个数(B)(零除外)等于乘这个数(B)的倒数。
5、分数除以整数表示的意义:就是求这个数的几分之几是多少。 6、比较商与被除数的大小。
除数小于1,商大于被除数; 除数等于1。商等于被除数; 除数大于1,商小于被除数。
《分数的混合运算》 1、分数的混合运算顺序与整数混合运算顺序相同。(有括号先算括号里,再算括号外;没括号,先算乘除,再算加减;有乘有除,从左往右依次计算。
除法先转换成乘法再约分,最后结果是最简分数) 2、整数运算定律在分数运算中同样适用。 3、用方程解决有关分数混合运算的实际问题。
4、会利用线段图来分析应用题题中的数量关系、《百分数》 1、百分数的意义:表示一个数是另一个数的百分之几的数叫作百分数,百分数又叫百分比、百分率。 2、百分数的读法、写法。
3、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。 4、分数化成百分数的方法:把分数化成百分数,可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
5、百分数化成小数、分数的方法。 百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。 6、用方程解决“已知一个数的百分之几多少,求这个数”的实际问题。
7、百分数和分数的区别: 意义不同:百分数只表示两个数量之间的关系,后面不加单位;而分数既可以表示两个数量之间的关系,也可以表示某个具体数量,可加单位。 读法不同:百分数只读作百分之几,不读作一百分之几。
写法不同 二、空间与图形 1、长方体、正方体各自的特点: 3、知道正方体是特殊的长方体。 4、计算长方体、正方体的棱长总和: 长方体的棱长总和=(长 宽 高)?4或者是长?4 宽?4 高?4 正方体的棱长总和=棱长?12 5、长方体的表面积 长方体的表面积=长?宽?2 长?高?2 宽?高?2=(长?宽 长?高 宽?高)?2 正方体的表面积=棱长?棱长?6 6、计算露在外面的面的面积时: 首先数出露在外面的面的个数,再求露在外面的面的面积=露在外面的面的个数?一个面的面积。
《长方体(二)》 1、体积与容积的概念。 体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳入体的体积叫做物体的容积。 2、体积单位 常用的体积单位有:立方厘米、立方分米、立方米。
常用的容积单位有:升、毫升。 补充特殊的知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。
3、长方体的体积 长方体的体积=长?宽?高 正方体的体积=棱长?棱长?棱长 长方体(正方体)的体积=底面积?高 4、不规则物体体积的测量方法和不规则物体体积的计算方法。 物体的体积=升高的水的体积=容器的底面积?水面上升的高度。
(参看课本55页第二题) 5、体积、容积单位之间的进率。 1立方分米=1升,1立方厘米=1毫升,1升=1000毫升 1立方米=1000立方分米 ( 相邻两个体积单位、容积单位之间的进率是1000) 6、其他单位之间的进率 1米=100厘米 1立方米=1000000立方厘米 长度单位: 1米=10分米 1分米=10厘米(相邻两个长度单位间的进率是10) 面积单位: 1平方米=100平方分米 1平方分米=100平方厘米 (相邻两个面积单位间的进率是100) 体积单位: 1立方分米=1000立方厘米 1立方米=1000立方分米 容积单位: 1升=1000毫升 质量单位: 1吨=1000千克 1千克=1000克 三、统计 1、扇形统计图:以一个圆作为整体,把各部分所占的百分比表现在这个圆中。
2、条形统计图、扇形统计图、折线统计图的不同特点: 条形统计图便于看出数据的多少; 扇形统计。
6.人教版五年级下册数学复习资料
小学五年级下册数学期末知识点复习资料一、简便计算加法结合律:(a+b)+c=a+(b+c) 减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+c例:二、计算部分1、注意计算结果约分,尤其是分子和分母是3的倍数的分数。
2、快速找到几个分数的公分母。例:三、解方程等式的性质:a±c=b±c a÷c=b÷c a*c=b*c c≠0四、长方体和正方体的计算 h b a a长方体的棱长和=4a+4b+4h=4(a+b+h) 正方体的棱长和=12a (带长度单位)长方体的表面积= 2(ab+bh+ah) 正方体的表面积= (带面积单位)长方体的体积= abh 正方体的体积= (带体积单位)五、知识点1、几个最小:最小的自然数是0,最小的偶数是0,最小的奇数是1,最小的质数是2,最小的合数是4。
2、一个数的最大因数是它本身,最小因数是1;一个数的最小倍数是它身,没有最大倍数。一个数的最大因数等于它的最小倍数。
3、图形的变换有:平移、对称、旋转、放大与缩小。4、旋转的三要素:方向、角度、中心点(定点)。
5、长方形的对称轴有2条,正方形的对称轴有4条,圆形有无数条对称轴,半圆只有1条对称轴,扇形只有1条对称轴,等腰三角形只有1条对称轴,等边三角形有3条对称轴,等腰梯形只有1条对称轴,菱形有2条对称轴。一般的平行四边形不是轴对称图形。
6、长方体和正方体都有6个面,8个顶点,12条棱。长方体每个面一般都是长方形,特殊情况有相对的两个面是正方形,其余四个面都是面积相等的长方形。
长方体相对的棱长度相等,相对的面的面积相等,长方体有4条长,4条宽,4条高。正方体也叫立方体,是长、宽、高都相等的特殊的长方体,正方体每个面都是正方形且面积都相等。
7、体积:物体所占空间的大小。常用的体积单位有:容积:容器、桶、仓库等所能容纳物体的体积。
常用的容积单位有:l ml 体积与容积间的单位换算:8、分数与除法的关系:分数的分子相当于除法里的被除数,分母相当于除法里的除数,分数线相当于除法里的除号,分数的大小(分数的值)相当于除法里的商。区别:分数是一种数,除法是一种运算。
它的关系用字母表示为:9、分子比分母小的分数叫真分数,真分数小于1;分子比分母大(或相等)的分数叫假分数,假分数大于或等于1。10、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
11、最简分数:分子和分母只有公因数1的分数叫最简分数。12、同分数加减法的计算法则:分母不变,把分子相加减。
13、异分母加减法的计算法则:先通分,再按照同分母加减法的计算法则进行计算。14、奇数:不是2的倍数的数。
偶数:是2的倍数的数。15、质数:一个数除了1和它本身两个约数,没有别的约数的数。
合数:一个数除了1和它本身以外,还有别的约数的数。1不是质数,也不是合数。
16、2的倍数的特点:个位上是0、2、4、6、8的数。5的倍数的特点:个位上是0或5的数。
3的倍数的特点:一个数各位上的数字之和是3的倍数的数。17、互质数:只有公因数1的两个数。
如:2和5,9和8,7和15,4和9。六、解决问题1、求一个量是另一个量的几分之几的?方法:用一个量除以另一个量。
注意:结果约成最简分数。例:把5克糖放入20克水中,糖的重量占水的几分之几?糖的重量占糖水的几分之几?解答思路:第一问题是求糖的重量是水的几分之几应该用糖的重量去除以水的重量。
而第二问题是求重量是糖水的重量的几分之几应该用糖的重量去除以糖水的重量。根据分析列式为:2、分数加减法应用题例1:水果店里原有水果 吨,卖出 吨后又运进 吨。
水果店现在有水果多少吨?解答思路:由于每个分数都带上了单位,所以每个分数表示具体的数量。应该用我们以前学的整数应用题的解答方法进行解答。
例2:五四班有45人,有 的同学参加了语文兴趣小组,有 的同学参加了数学兴趣小组,其余的参加了音、体、美兴趣小组。参加音、体、美兴趣小组的同学占全班同学的几分之几?解答思路:本题的每个分数没有带单位,它表示量与量之间的关系。
因此本题应把全班45人看作单位“1”进行思考。3、长方体正方体表面积、体积的应用方法:根据题意学会画图进行分析思考,抓住重点词句,利用好其计算公式。
例1:给一个无盖长方体水缸抹水泥,从里面量得长8分米,宽4分米,深6分米;抹水泥的面积是多少?解答思路:这是关于长方体的表面积的应用,从无盖和抹水泥的面积中可以看出。在计算时,由于无盖只算五个面。
8*4+8*6*2+4*6*2=176(平方分米)4、最大公因数和最小公倍数的应用例1:五一班有48人,五二班有56人。如果把这两个班分成人数相等的小组,每组最多几人?一共可分几个小组?解答思路:根据题意,要想两个班分成的人数相等,说明这个人数既是48的因数,也是56的因数,由于是求每组人数最多几人,所以是求它们的最大公因数。
48的因数有:1,2,3,4,6,8,12,16,24,48.56的因数有:1,2,4,7,8,14,28,56。48和56的最大公因数是8。
所以每组人数最多是8人。48÷8+56÷8=13(组)例2:一个班有40多人,如果4个人一组或6个人一组都能刚好分完,这个班有多少人?解答思路:根据题意,4人一组或。