1. 小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
2. 小学数学知识整理
小学数学知识整理
一、小学生数学法则知识归类
(一)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(五)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(十三)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(二十)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(二十七)把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和-另一个加数
4、减法各部分的关系:
减数=被减数-差 被减数=减数+差
5、乘法各部分之间的关系:
一个因数=积÷另一个因数
6、除法各部分之间的关系:
除数=被除数÷商 被除数=商×除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角是锐角。
(7)什么是钝角?
大于90°而小于180°的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.
8、(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形内角和是180°.
10、四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平等四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
13、加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、什么是被减数?什么是减数?什么叫差?
在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、加法各部分间的关系:
和=加数+加数 加数=和-另一加数
17、减法各部分间的关系:
差=被减数-减数 减数=被减数-差 被减数=减数+差
18、乘法
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、除法
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中,已知的一个因数叫除数。
(4)什么是商?
在除法中,求出的未知因数叫商。
20、乘法各部分的关系:
积=因数×因数 一个因数=积÷另一个因数
21、(1)除法各部分间的关系:
商=被除数÷除数 除数=被除数÷商
(2)有余数的除法各部分间的关系:
被除数=商×除数+余数
22、什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、什么是单名数?
只带有一个单位名称的数叫单名数。
24、什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、什么是有限小数?
小数部分的位数是有限的小数叫有限小数。
28、什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、什么是方程?
含有未知数的等式叫方程。
34、什么是解方程?
求方程解的过程叫解方程。
35、什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。
36、什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、什么是偶数?
能被2整除的数叫偶数。
38、什么是奇数?
不能被2整除的数叫奇数。
39、什么样的数能被5整除?
个位上是0或5的数能被5整除。
40、什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、什么是公约数?什么叫最大公约数?
几个数公有的约数叫公约数。其中最大的一个叫最大公约数。
46、什么是互质数?
公约数只有1的两个数叫互质数。
47、什么是公倍数?什么是最小公倍数?
几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、怎么比较分数大小?
(1)分母相同的两个分数,分子大的分数比较大。
(2)分子相同的两个分数,分母小的分子比较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整分数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、比
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、长方体和正方体
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(或立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体体积?
物体所占空间的大小叫做物体的体积。
52、圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心、并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(8)什么是弧?
在圆上两点之间的部分叫弧。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、比例
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、圆柱
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
三、小学数学量的计算单位及进率归类
1、长度计量单位及进率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷 1平方千米=1000000平方米
1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、质量单位及进率:吨、千克、公斤、克
1吨=1000千克 1千克=1公斤 1千克=1000克
5、时间单位及进率:世纪、年、月、日、小时、分、秒
1世纪=100年 1年=12月 1天=24小时 1小时=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,闰年2月29天)
四、常用计算公式表
1、长方形面积=长×宽,计算公式S=ab
2、正方形面积=边长×边长,计算公式S=a×a=a2
3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2
4、正方形周长=边长×4,计算公式C=4a
5、平行四边形面积=底×高,计算公式S=ah
6、三角形面积=底×高÷2,计算公式S=a×h÷2
7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2
8、长方体体积=长×宽×高,计算公式V=abh
9、圆的面积=圆周率×半径平方,计算公式V=πr2
10、正方体体积=棱长×棱长×棱长,计算公式V=a3
11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh
12、圆柱的体积=底面积×高,计算公式V=sh
3. 小学数学知识点整理,1~6年级汇总,收藏起来随时用!(上)
小学是打好数学基础的阶段,小学时期的数学也比较简单,学生相对容易学习。知识却是基础中的基础,只有深刻理解才能运用到试题中并且举一反三,但也很容易忘,这次为大家整理了1~6年级小学数学知识点,可以给孩子收藏起来随时查阅。
正整数:
用来表示物体个数的 1、2、3、4、5……叫做正整数。相邻的两个正数整数之间相差 1。
0: 0 是一个数,是一个自然数,也是一个整数,但不是正整数或负整数。
0 既可以表示“没有”,也可以作为某些数量的界限,如 0℃等。
0 是一个偶数。0 不能作除数,不能作分母,也不能作比的后项。
负整数: 像-l、-2、-3、-4、-5……这样的数就叫做负整数。相邻的两个负整数之间也是相差 1。
整数: 像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。
整数包括负整数、0 和正整数。
整数的个数是无限的。自然数是整数的一部分。
自然数: 用来表示物体个数的 0、l、2、3、4、5、6、7……叫做自然数。自然数包括 0 和正整数。
正数: 正数包括正整数、正分数、正小数、正百分数等。
负数: 负数包括负整数、负分数、负小数、负百分数等。负数可以表示相反意义的量。
数对: 用数对表示位置时,第一个数表示列,第二个数表示行。
数的读法和写法:
读、写者都要从高位到低位,每一级末尾的 0 都不读出来,其他数位连续有几个 0 都只读一个0。不管读和写都要进行分级。如 534007000602 读作:五千三百四十亿零七百万零六百零二。
分数: 表示把“单位 1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中一份的数叫做分数单位。例如: 7/12 的分数单位是 1/12 ,它有7个这样的分数单位。
真分数: 分子比分母小的分数叫真分数。真分数小于 1。
假分数: 分子大于或等于分母的分数叫做假分数。假分数大于或等于 1。
带分数: 一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。
分数的基本性质:
一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。
小数: 小数是分数的一种特殊形式。但是不能说小数就是分数。
循环小数: 一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
纯循环小数: 循环节从小数部分第一位开始的循环小数,叫做纯循环小数。
混循环小数: 循环节不是从小数部分的第一位开始循环的循环小数,叫混循环小数。
有限小数: 小数的小数部分的位数是有限的,这样的小数叫做有限小数。
无限小数: 小数的小数部分的位数是无限的,这样的小数叫做无限小数。循环小数都是无限小数。
减法: 被减数-减数=差。减法是加法的逆运算。
乘法: 求几个相同加数的和的简便运算,叫做乘法。因数×因数=积
除法: 被除数÷除数=商。除法是乘法的逆运算。
加、减法的运算定律:
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
减法的运算定律:a-b -c=a-(b+c)
乘、除法运算定律:
乘法的交换律:ab=ba
乘法的结合律:abc=a(bc)
乘法分配律:(a+b)c=ac+bc 或(a—b)c=ac—bc
除法的运算定律:a÷b÷c=a÷(b×c)
商不变的性质: 两个数相除,被除数和除数同时乘上或除以相同的数(0 除外),商的大小不变(余数的大小有变化)。
积不变性质: 一个因数扩大若干倍,另一个因数缩小相同的倍数,其积不变。
乘法的意义:
1、求几个相同加数的和是多少?例如:27×13,表示求 13 个 27 的和是多少?也可以表示求 27 的 13 倍是多少?
2、求一个数的几分之几是多少?例如:27×0.3 的意义:求 27 的十分之三是多少?
除法的意义:
1、把一个数平均分成若干份,每份是多少?例如:24÷3,表示把 24 平均分成 3 份,每份是多少?
2、一个数是另一个数的多少倍。例如:24÷3,表示 24 是 3 的多少倍?
3、一个数里有几个除数。例如 24÷3 表示 24 里面包含有几个 3。
4、已知一个数的几分之几是多少,求这个数。例如:24÷3 已知一个数的 3 倍是 24,
整除与除尽:
整除:被除数、除数、商都是整数(除数不为 0)。
除尽:整除都可以说是除尽,但除尽不一定是整除。例如:l÷5=0.2,叫除尽,不叫整除,因为商是小数。又如:10÷3=3.33…,既不叫整除,也不叫除尽,叫除不尽。
因数和倍数:
当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的因数。如 12÷3=4,就说 12 是 3 的倍数,3 是 12 的因数。这两个概念都是相对而存在,一个自然数是不存在是否是倍数或因数的。例如:“3 是因数”,就是一个错误说法。只能说 3 是 12 的因数,或 12的因数有3。又例如:“12 是倍数”,也是一个错误说法。只能说 12 是 3 的倍数,或 3 的倍数有 12。
奇数与偶数: 凡是能被 2 整除的数叫偶数,不能被 2 整除的数叫奇数。
质数(素数)与合数: 一个数的因数只有 1 和它本身两个因数的数叫做质数,也叫素数,如2。一个数的因数除了 1 和它的本身以外,还有其他的因数,这个数就叫合数,如 4。
100 以内的质数 :2 3 5 7 l1 13 17 19 23 29 3l 37 4l 43 47 53 5961 67 71 73 79 83 89 97
1 既不是质数,也不是合数。最小的质数是 2,最小的合数是 4。
公因数:
几个数公有的因数,叫做公因数。它的个数是有限的。既有最大的。也有最小的,最小的公因数是 1。
互质数:
两个数的公因数只有 1,而没有其他公因数的,这两个数就叫互质数。例如 8 和 9,11 和13,6 和 7。
任意两个质数都是互质数。但互质的两个数不一定都是质数。如 8 和 9 互质,但它们都是合数。
私信获取小学数学知识点完整版。 关注 并分享 ,更多的学习干货与教育知识,尽在玩学世界!
4. 有关数学的小知识数学
1.数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetailx?id=31900
2.数学小知识
这是一个有趣的数学常识,做数学报用上它也很不错。
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是“清一色数学小常识(转载) [ 2007-11-28 12:58:00 | By: gnwz ] 数学小常识1.悖论: (1)罗素悖论 一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。
于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。 1874年,德国数学家康托尔创立了 *** 论,很快渗透到大部分数学分支,成为它们的基础。
到十九世纪末,全部数学几乎都建立在 *** 论的基础上了。就在这时, *** 论接连出现了一系列自相矛盾的结果。
特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。
此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。 (2)说谎者悖论: “我正在说的这句话是慌话。”
公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是着名的说慌者悖论。
类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”
意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话: 下一句话是慌话。
上一句话是真话。 更有趣的是下面的对话。
甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!” 还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。
一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?” 2. *** 数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。
现在, *** 数字已成了全世界通用的数字符号。
3.小学数学知识集锦
小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。
(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。
(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。
(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所。
4.小学数学的所有知识点 要详细
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 ) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整。
5.小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。(4)小数学基础知识整理扩展阅读:整数1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
5. 六年级数学基础知识点总结
学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
小学六年级数学总复习知识点:数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
六年级数学知识点:图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长)
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
数学 学习 方法 技巧
一、明确教学目标,制订复习计划
小学 毕业 班数学总复习知识容量多、时间跨度大,所学知识的遗忘率高,复习之前教师必须再次钻研教材,进一步了解教材的知识内容和编排特点,还要重新学习《数学课程标准》,把握好教学要点和数学知识重点,并对学生掌握知识的情况全面摸底,然后确定复习目标,制定复习计划,主要包括:复习的内容要点,分几节课完成,设计好每节课的内容和目标。例如,制订“数的运算”这一单元复习计划:第一节复习四则运算计算方法及其关系,第二节复习运算定律,第三节复习整数小数分数四则混合运算。这样才能使复习工作有计划、有步骤地进行,这种逻辑递进的 复习方法 可以从根本上克服复习的盲目性、随意性还有简单地以教材上的复习题为内容,让学生照书做完了事的思想。
二、了解学情,制定复习方法
俗话说:“知己知彼,百战不殆”。这句话虽是用于指挥行军打仗,但细斟此言,笔者认为它同样适用于指导教学。作为一名有 经验 的教师,首先要掌握学生一举一动,一言一行,及时对教学工作作出调整,以减少无效劳动,确保教学活动不偏离预定的教学目标。了解学情的途径很多,诸如“教学观察”、“师生谈心法”、“开展第二课堂法”等等,老师可在教学实践中,多留心观察,多 总结 经验,多开动脑筋,把多种的方法灵活运用,以期达到对学生的行为,思想情感,学习情况等做到心中有数,从而进行有的放矢的教学工作,提高课堂教学质量。
三、梳理知识,形成知识网络
小学毕业生通过六年的数学学习,大多都掌握了比较可观的知识点,如果没有一个清晰的思路来帮助学生,就好比是一堆货物,品种繁多,堆放零乱,要想记住特别困难。只有加以整理,有序分类,才能清清楚楚,一目了然。因此,在复习时应根据知识的重点、学习的难点和学生的薄弱环节,引导学生把已经学的知识进行梳理、分类、整合,弄清它们的来龙去脉,沟通其纵横联系,从整体上把握知识结构。引导学生自主整理,促进知识系统化的目的不仅要构建完整的知识网络,还要在构建知识网络的的同时,使学生对以前所学的知识有新的认识、提高。同时,要重视在复习整理过程中培养学生自主整理的意识,发展学生自主学习的能力。复习时,引导学生将知识分块,系统整理,按块复习,一块一块复习记忆。如果再将每一小类找出共性,规律,记忆效果就会大大加强。将知识分成大类,以表格形式呈现,细化到每一个知识点,逐一复习,巩固强化达到熟练,运用时,从块状知识记忆中调用,速度也可加快。例如空间与图形部分,笔者给学生搭建了这样的框架:点、线、面、体。点有:端点、顶点、起点、垂足等;线有直线、射线、线段等;面有长方形、正方形、三角形、平行四边形、梯形、圆等;体有长方体、正方体、圆柱、圆锥等。每一点知识都有其自身意义和特点,通过这样的逻辑顺利建构了一种复合学生思维规律的知识脉络,点是构成线的基础,点可以连成线,线可构成面,面可围成体,垂线实际就是面和体的高等等。这些知识即单独存在,也相互联系,形成一个体系,易于学生系统掌握。
六年级数学基础知识点总结相关 文章 :
★ 六年级数学期末复习知识点汇总
★ 小学六年级数学知识点总结
★ 小学六年级数学学习方法和技巧大全
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点总结
★ 六年级数学几何的初步知识知识点总结
★ 六年级上册数学知识点总结
★ 六年级数学上册知识点复习
★ 小学数学基础知识点整理
★ 六年级数学的重难点知识总结
6. 小学数学知识点有哪些
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.
(同学们开讲)
学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
7. 小学数学基础知识点整理
小学数学知识点有哪些?哪些基础知识是我们一定要整理的?下面是我为大家整理的关于小学数学基础知识点整理,希望对您有所帮助。欢迎大家阅读参考学习!
小学数学基础知识整理(一到六年级)
小学一年级 初步认识加减法。学会基础加减。
小学二年级 完善加减法,表内乘法,学会应用题,基础几何图形。
小学三年级 学会万以内加减法,长度单位和质量单位,倍数的认知,多位数乘一位数,时间量及单位。长方形和正方形几何图形、分数的初步认识。
小学四年级 亿万数的认识、面积单位(公顷和平方千米)、角的度量,两位数的乘数法、平行四边形和梯形几何图形及条形统计图的了解。
小学五年级 小数乘除法,简易方程运算,图形面积计算,可能性和植树问题了解。
小学六年级 掌握分数乘除法,比和百分数,圆和扇形。
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
定义定理性质公式
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 0除以任何不是0的数都得0。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
一般运算规则
1、 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和和-一个加数=另一个加数
7、 被减数-减数=差被减数-差=减数 差+减数=被减数
8、 因数×因数=积积÷一个因数=另一个因数
9、 被除数÷除数=商被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形 C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 V:体积 s:面积 a:长 b: 宽 h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5、三角形 s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底三角形底=面积 ×2÷高
6、平行四边形 s面积 a底 h高
面积=底×高 s=ah
7、梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 S面积 C周长 πd=直径 r=半径
周长=直径×π=2×π×半径 C=πd=2πr
面积=半径×半径×π
9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高体积=侧面积÷2×半径
10、圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3
相关 文章 :
1. 小升初数学基础知识点顺口溜
2. 小学三年级数学学习内容重点知识汇总
3. 小升初数学知识点汇总与常见易错点
4. 小学数学六年级圆的知识要点解析
5. 六年级上册数学知识点整理归纳
8. 小学各年级数学知识点总结
贪玩是孩子的天性,大多数孩子缺少自我控制能力,所以需要家长们平时多督促孩子认真完成家庭作业,培养他们良好的作业习惯,写字姿势。家长督促他们写作业,及时检查他们的作业,发现没学会的知识要及时给他们讲解,每天的作业认真完成是学习的基本保障。下面是我为大家整理的关于小学各年级数学知识点 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!
一年级的知识点及重难点
(一)数与计算
(1)20以内数的认识。加法和减法。
数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合运算。
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
(二)量与计量钟面的认识(整时)。人民币的认识和简单计算。
(三)几何初步知识
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题
比较容易的加法、减法一步计算的应用题。 多和少的应用题(抓有效信息的能力)
(五)实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
一年级 数学 学习 方法
1、要培养学生的学习习惯。学习习惯的一方面就是作业的按时完成,作业格式训练也是学习习惯培养的一个方面。要利用数学练习本让学生练习写数和写算式
2、重视孩子计算能力的培养
口算20以内的加减法是十分重要的基础知识,孩子必须学好,并能够达到熟练计算的程度。由于孩子的基础不同,不同孩子的计算熟练程度和速度也就存在一定差异,要缩小这一差异,仅靠每天一节数学课练习是不客观的,所以要经常性的练习。一年级要多让孩子借助小棒等学具摆一摆、说一说计算思路。
3、依据生活理解数学,让孩子在游戏中成长
有些数学知识较抽象,容易混淆,我们要注意给孩子创造生活情境,让孩子在实际体验中理解知识。如“左右”的认识,分辨左右是孩子本学期学习的一个难点,在生活中强化孩子对左右手的认识,引导孩子借此来分辨物体间的左右关系。同时还要注意一个参照物的问题,如两人面对面时,如何判别对面之人的左右边。
4、重视数学语言发展,让学生养成积极思维的习惯。 在生活中要多为孩子创设说数学的机会,数学是“思维的 体操 ”,如果不积极动脑思考就不可能学好数学。如在学习“10的分与合”时,在复习铺垫的基础上,提问:“10可以分成几和几呢?”引导学生一边涂珠算一边思考,从而自己得出结论。多问几个“为什么”比直接告诉学生“是这样的”要好得多。,学生在相互之间的思维撞击中学会了知识,获得了积极的成功体验。
总之,一年级学生由于特殊的年龄特征,所以要重视培养学生良好书写、思维的学习习惯。
二年级的知识点和重难点
(一)数与计算
(1)两位数加、减两位数。 ? 两位数加、减两位数。加、减法竖式。两步计算的加减式题。
(2)表内乘法和表内除法。 ? 乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。
(3)万以内数的读法和写法。 ? 数数。百位、千位、万位。数的读法、写法和大小比较。
(4)加法和减法。 ?加法,减法。连加法。加法验算,用加法验算减法。
(5)混合运算。 ? 先乘除后加减。两步计算式题。小括号。
(二)量与计量
时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识
(三)几何初步知识
直线和线段的初步认识。 ? 角的初步认识。直角。
(四)应用题
加法和减法一步计算的应用题。 ? 乘法和除法一步计算的应用题。 ?比较容易的两步计算的应用题。
(五)实践活动
与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。
二年级数学 学习方法
小学生是以具体形象思维为主,根据二年级学生的特点,应该:
第一:要适度应用学具,例如:在教学乘法的初步认识时,用摆小棒的方法,应按照从一般到特殊的规律,先摆出两堆不同数目的小棒,再摆出两份数目相同的,让学生觉得加法的累赘,再介绍乘法,学生就很容易理解乘法的意义,并且乐意学乘法了。
第二:利用 生活知识 教学。
例如:小红做了18朵纸花,送给同学们12朵,还剩下多少朵。这是两位数减两位数,如果在生活中做一做,学生就明白意思了,所以说,有一些应用题,能从实际生活出发,先用学生的生活 经验 来解答,再用数学知识来解答,就可以使学生理解题意。
第三:利用社会环境提高数学实际应用能力。例如:在学习统计时,可以带学生到商城或社会中,利用新学的统计知识,通过观察、计量、比较,从而收集到有用的信息和知识。
第四:为学生创造机会,使学生去思、去想、去问。比如,二年级教材学习了“角的认识”,对于什么叫角,角各部分名称,“角的大小与边的长短无关”这些内容,学生已经知道了
“还有什么问题吗?”学生答道“没问题”。真的没问题了吗?“那我来问个问题”我提出了一个问题:“角的大小为什么与边的长短无关呢?”经过讨论,大家明白了,角的边是射线,射线是没有长短的,所以,角的大小与边的长短无关。角的大小决定于两条边张开的程度。教师从学生的角度示范提问题,久而久之,也就让学生有了提问题的意识,在引导学生提问题的同时,也培养了学生积极思考问题和解决问题的能力。
三年级知识点和重难点
(一)数与计算
(1)一位数的乘、除法。一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。
(2)两位数的乘、除法。一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。
(3)四则混合运算。两步计算的式题。小括号的使用。
(4)分数的初步认识。分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。
(二)量与计量千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。
(三)几何初步知识长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。
(四)应用题常见的数量关系。解答两步计算的应用题。
(五)实践活动联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。
三年级数学 学习方法
小学三年级学生学习数学的三种数学能力中,影响程度最大的是运用数概念的能力,其次是空间关系的知觉能力,再次是基本能力(概括和推理)。
第一,加强小学三年级学生运用“数概念”的能力培养。
有不少小学数学的教学中,常只重算法,忽视数概念的掌握和算理的理解。因而只能机械地应用学过的东西,或简单地模仿做过的例题,不能在变化了情况下迁移;或者只知道一些定义,而不能全面掌握属于这一概念的东西。
例如,学生能说出什么是圆的半径,但在作图或解题时又常常只能举出垂直方向上的半径,不能反转过来去解决逆向问题,没有纳入到一般的范畴或嵌入数概念体系的认知结构中去。所以在小学数学教学中,不仅要重视算法和演算过程,尤其要重视数概念的掌握和算理的理解,加强小学生运用数概念的能力培养。三年级数学中,会出现长度单位的认识,什么千米、毫米、厘米,很多孩子总是无法记清楚,怎么办呢?请大家伸出自己的右手,手心面向自己,从小拇指到大拇指,依次为:毫米、厘米、分米、米、千米。两指之间的距离大小表示进率的大小。你们看,小指、无名指、中指、食指每相临的两指间的距离相等,也就表示毫米、厘米、分米、米每相临两个单位间的进率相等,都是10。而毫米与分米、厘米与米间的进率为100,毫米与米之间的进率为1000,食指与大拇指之间的距离较大,也是1000。记住单位对应的拇指,这个换算就变得十分简单而且准确了。
第二,重视和加强发展小学三年级学生“空间关系”的知觉能力。
数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。例如三年级下册如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。
第三,观察活动:
所谓观察是指学生对客观事物或某种现象的仔细察看,因而是一种有意注意。培养的途径是:教师提供的“客观事物或某种现象”特征有序、背景鲜明,而且要给出一些观察的思考题。这样有助于学生明确观察目标,进而使他们边观察,边思考,边议论,边作观察记录,以发现数学规律、本质。
“乘法分配律”的教学,根据例证得到三个等式:
(5+3)×2=5×2+3×2
(6+4)×30=6×30+4×30
(25+9)×4=25×4+9×4
教师要求学生结合下面的两个思考题观察上面的三个等式都具有什么相同点(即规律)。①竖里观察,等式的左边都有什么特点?等式右边又有什么特征?②横里观察,等式的左边与右边有怎样的关系?
教师再要求学生把记录的文字:两个加数的和与一个数相乘,两个积的和,两个加数分别与一个数相乘……整理一下就得到了“乘法分配律”。
四年级知识点和重难点
(一)数与计算
(1)亿以内数的读法和写法。
计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。
(2)加法和减法。
加法,减法。
接近整十、整百数的加、减法的简便算法。
加、减法算式中各部分之间的关系。求未知数x。
(3)乘、除数是三位数的乘、除法。
乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。
_乘、除计算的简单估算。
乘数接近整十、整百的简便算法。
乘、除法算式中各部分之间的关系。求未知数x。
(4)四则混合运算。
中括号。三步计算的式题。
(5)整数及其四则运算的关系和运算定律。
自然数与整数。十进制计数法。读法和写法。
四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。
运算定律。简便运算。
(6)小数的意义、性质,加法和减法。
小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值
加法和减法。加法运算定律推广到小数。
(注:小数如果分段教学,可以把小数的初步认识安排在前面的适当年级)。
(二)量与计量
年、月、日。平年、闰年。世纪。24时计时法。
角的度量。
面积单位。
(三)几何初步知识。
直线的测定。测量距离(工具测、步测、目测)。
射线。直角、锐角、钝角、平角、_周角。垂线。画垂线。平行线。画平行线。
三角形的特征。_三角形的内角和。
(四)统计初步知识
简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。
(五)应用题列综合算式解答比较容易的三步计算的应用题。
四年级数学 学习方法
四年级的学生思维正处在从直观思维向抽象 逻辑思维 过渡的阶段,因此,通过练习巩固所学知识只是其中的一个方面,而通过比较、概括、推理、综合等思维方法的学习运用发展其逻辑思维是这个年龄段学生的一个重要任务,除了注意学生思维方法的掌握,最明显的表现是培养学生画概念图和线段图,促进其知识系统化和思维能力的发展。)
在数学知识中,数学概念又是数学知识的基础,数学原理、数学方法也是由数学概念构成。概念的清晰性、稳定性、可辨性以及概念之间的关联性极大地影响数学知识的质量。概念图包括节点、连线、层级和命题四个基本要素。根据小学四年级学生思维发展水平,引导学生思考如何更好建构自己的概念图,掌握这种方法。数学知识就像~张纵横交错的网,每个知识点都是一个网点,网点上的一条条知识,连接起了一个个的网点,从而形成一张密密的“知识网”。培养学生自己去“织网”能力应该是新课改对教师的要求之一,而且对于小学四年级的教师来说,在学生思维折的关键时期,有意识地通过让学生画概念图的方法来培养思维能力也是行之有效的法之一。
“线段图”是指由有一定意义的线段、箭头、数字符号等构成的图式,它的特点是形象直观,能够引起学生的注意和兴趣。利用线段图将题中蕴涵的抽象的数量关系以形象、直观的方式表达出来,化 抽象思维 为形象思维,符合小学生特别是中高年级学生的认知特点。小学数学各种类型的应用题:如分数应用题、行程问题、工程问题等用线段图扳书分析数量关系,易化繁为简,化抽象思维为形象思维。四年级教材中的路程问题(第七册59—61页),很容易通过例题中的线段图理解问题。对于第七册第64页的习题5,学生们也能轻松地把情景图用线段图表示出来;第八册“解方程一”(第95页)的练习2,即使学困生也很容易列出方程,我所教的两个班的学生能把一些方程用线段图画出来,比如97页的练习l、2,通过这种 思维训练 ,学生的表征能力得到提高,实现《标准》提出的“能从具体情境中抽象出数量关系和变化规律,并用符号来表示:理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”
五年级知识点和重难点
小数乘法,小数除法,简易方程,多边形的面积,统计与可能性等是本册教材的重点教学内容。
在数与代数方面,这一册教材安排了小数乘法、小数除法和简易方程。小数的乘法和除法在实际生活中和数学学习中都有着广泛的应用,是小学生应该掌握和形成的基础知识和基本技能。这部分内容是在前面学习整数四则运算和小数加、减法的基础上进行教学,继续培养学生小数的四则运算能力。简易方程是小学阶段集中教学代数初步知识的单元,在这一单元里安排了用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置;探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
在统计与概率方面,本册教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性;在平均数的基础上教学中位数,使学生理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。
在用数学解决问题方面,教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。培养学生的符号感,及观察、分析、推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
五年级数学 学习方法
(一)数与代数
1、第一单元“倍数与因数”:结合具体情境,经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数,知道质数、合数;经历 2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力;
2.第三单元“分数”:进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。
3.第四单元“分数加减法”:理解异分母分数加减法的算理,并能正确计算;能理解分数加减混合运算的顺序,并能正确计算;能把分数化成有限小数,也能把有限小数化成分数;能结合实际情境,解决简单分数加减法的实际问题。
(二)在学习《空间与图形》可采用数、形结合的方式,以及类比法等教学
1.第二单元“图形的面积(一)”:知道比较面积大小方法的多样性;经历探索平行四边形、三角形、梯形面积计算方法的过程,并能运用计算的方法解决生活中一些简单的问题;在探索图形面积的计算方法中,获得探索问题成功的体验。
2.第五单元“图形的面积(二)”:在探索活动中,认识组合图形,并会运用不同的方法计算组合图形的面积;能正确运用计算组合图形面积的方法,解决相应的实际问题;能估计不规则图形的面积大小,并能用不同方法计算面积。
六年级数学
(一)数与计算
(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。
(2)分数四则混合运算。分数四则混合运算。
(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。
(二)比和比例
比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(三)几何初步知识
圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。
(四)统计初步知识
统计表。条形统计图,折线统计图,_扇形统计图。
(五)应用题
分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六)实践活动
联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。
(七)整理和复习
六年级数学学习方法:
进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
总结比较,理清思绪
知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。
在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。
学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。2、分数乘分数是求一个数的几分之几是多少。
例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?
这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率_工作时间=工作总量
在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是 折纸 实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)
在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。
在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种 思维方式 就是划归法。
9. 一年级数学重要基础知识点
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些 一年级数学 的知识点,希望对大家有所帮助。
一年级数学基本知识点
前后(前后的位置关系)
【知识点】:
1、注意用前、后等词语描述物体的顺序与描述物体的准确位置两者之间的区别。
2、鹿在最前面,谁在它的后面?这个答案不,不仅仅有一个松鼠,还有兔子、乌龟和蜗牛都在鹿的后面。
3、注意让学生会用前、后等词语描述物体的相对位置。
上下(上下的位置关系)
【知识点】:
1、在具体的情境中理解“上下”的相对性。
2、能用语言表达实际情境中物体的“上下”位置关系。
左右(左右的位置关系)
【知识点】:
1、能用语言描述物体的左右位置关系。
2、能在情境中体会左右位置的相对性。进一步再体会:两人如果面向同一方向,他们所看到的左右位置与顺序是一致的;如果面对着面,他们看到的左右位置与顺序是相反的。
教室(前后、上下、左右综合应用)
【知识点】:
综合运用前面三课所学的知识,进行物品的位置与顺序的描述活动
小学一年级数学知识点
1. 数的认识
(1)数数,读数,写数
(2)比大小(“<”或“>”〉,排序
(3)数的组成
(4)基数,序数
2.0的认识---表示没有,表示起点。
3.计算:
加法计算---意义的理解,认识加号。
减法计算---意义的理解,认识减号。
会相关的计算(5以内):加法、减法、0的计算。
1到5的加减法练习题:
1 + 3 =( )1 + 1 =( )3 - 3 =( )2 + 3 =( )
4 - 4 =( )3 - 3 =( )3 - 1 =( )2 - 2 =( )
1 + 1 =( )3 + 1 =( )2 + 3 =( )1 + 4 =( )
1 + 2 =( )3 - 2 =( )4 - 3 =( )2 - 2 =( )
1 + 1 =( )2 - 1 =( )3 - 1 =( )4 + 1 =( )
2 - 2 =( )4 - 2 =( )3 - 3 =( )2 + 3 =( )
4 - 3 =( )2 + 2 =( )3 - 2 =( )2 + 2 =( )
4 - 4 =( )3 - 1 =( )2 + 2 =( )3 - 2 =( )
4 - 4 =( )2 + 3 =( )3 + 1 =( )3 + 1 =( )
1 - 1 =( )4 - 3 =( )4 - 1 =( )4 + 1 =( )
3 + 1 =( )1 + 2 =( )4 - 2 =( )2 - 2 =( )
3 - 1 =( )3 + 1 =( )4 + 1 =( )1 + 1 =( )
2 + 2 =( )1 - 1 =( )3 + 1 =( )2 + 1 =( )
数学学习方法 技巧
.复习是一个巩固和改进你所学到的东西的过程
三十二知道事情应该是什么意味着你是聪明的;知道事情是什么,你是有 经验 的;知道如何使事情变得更好意味着你是有才华的
人们常说,时间就是生命,所以要控制时间控制的生活,学会管理自己的时间,我们可以做时间的主人、生活的主人,自己的主人
碎片似乎是麻烦,但实际上它是非常有效的,因为它符合人脑记忆的规则,但可以节省时间
.隐喻可以将枯燥的知识转化为生动有趣的知识教师总是善于运用隐喻来加深学生的理解学生也应该善于使用隐喻来帮助他们记忆
.深入理解的基础是深层记忆,以理解和应用记忆的方式教学知识是最合适的,如果有类似的公式、定理等,可以用列表记忆的方式进行比较
.不要把学习看成是一个枯燥的 逻辑思维 过程,在自己的学习生活中,大胆运用 想象力 ,对提高学业成绩很有帮助
如果我们把每节课都看成是一场小小的战斗,那么在课前进行充分的预习是非常必要的,就像战前的警察一样
岁面对挫折,有意识地调整自己的心理状态,不要专注于痛苦的经验
四十保持健康,保持机体活力,是一项持久的工作,应注重培养自己的良好习惯,坚持锻炼,保证生活节欲有序
.学会清理和表达自己的情绪和情绪,了解情绪与身心健康之间的巨大关系,学会调节和控制自己的情绪,拥有健康快乐的青春
学习是一项长期而艰巨的脑力劳动如果学习过于紧张,持续时间过长,就会导致学习疲劳
.学习疲劳不仅会影响你的学习效率,更重要的是过度的学习疲劳也会伤害你的身体,影响你的健康
.俗话说,一分钟辛苦,一分钟收获要长大,我们必须付出努力,学习不是一件容易的事情,为了取得好的结果,我们必须付出相应的劳动
.数字与形式的内在关系,特别是其本质属性和科学规律,仅靠感觉、感知或表象是难以理解的只有通过思考,它们才能被深刻地理解和牢牢地抓住
.一个人不仅要靠与生俱来的东西,还要靠他从学习中学到的东西来塑造自己
、急功近利容易导致失败,学习应循序渐进
针对不同类型的问题,我们可以使用各种各样的方法,在实践中根据实际情况选择正确的方法,它可以节省时间和精力完成的问题
.听课教师应始终遵循思路,善于掌握教师讲解中的关键词,建立自己的知识结构
五十通过对上节课解题过程中的分析推理过程进行 反思 和提炼,有助于理解新课程的内容
使用图表进行比较和复习可以帮助我们准确地、准确地复习知识
.对于具有明显递进关系的知识,可以绘制知识电路图
.做练习是巩固知识最有效的方法,是学习过程中的一个重要环节
.不要以为教科书上的老师说过,即使过去,要知道这些例子往往是的考试,你的基础知识是否掌握牢固
.问题后思维是提高知识水平、深化思维深度、提高思维紧张度的有效途径
.将已完成的结果替换为问题,看原问题所给出的已知量是否可以反向求解,或者从得到的结论到已知条件是否与原问题的已知条件一致
“做一个好工作,必须首先加强他的“——好学生非常善于使用学习材料来巩固记忆,从而提高成绩
.教科书一直是学生学习的重点因此,我们不仅要把握教科书中的概念和公式,而且不能忽视教科书中的一些细节
.参考书上不需要做三类问题:完全掌握的问题不必做,超出考试大纲的问题不必做,太奇怪的问题不必做
教师提问往往是相关知识、难点或学生容易犯错的地方当其他学生说话时,他们应该注意听,听和分析
一年级数学重要基础知识点相关 文章 :
★ 一年级数学的学习重点
★ 一年级数学重点知识点总结
★ 小学一年级数学重点知识点总结
★ 小学一年级数学知识点
★ 一年级数学知识点难点及学习方法总结
★ 一年级数学上册知识点学习
★ 一年级数学上册知识点
★ 小学一年级,数学学习方法与知识点总结
★ 各年级数学学习方法大全