❶ 高中数学知识点总结
《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载
链接:
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
❷ 高中数学知识点大全
有的学生认为高中数学难做难做。其实高中数学整体上很简单,很简单,很多知识只要读两遍就可以了。下面是我整理的高中数学知识点大全,希望对你们有所帮助!
高中数学知识点
1、基本初等函数
指数、对数、幂函数三大函数的运算性质及图像
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
2、函数的应用
这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的 方法 ,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。
3、空间几何
三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
4、点、直线、平面之间的位置关系
这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
关于这一章的内容,牢记直线与直线、面与面、直线与 面相 交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
5、圆与方程
能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。
6、三角函数
考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。
7、平面向量
向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。
8、三角恒等变换
这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。
9、解三角形
掌握正弦、余弦公式及其变式、推论、三角面积公式即可。
10、数列
等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。
11、不等式
这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。
高中数学公式大全
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s_h 圆柱体 V=pi_r2h
高考前数学知识点 总结
选择填空题
1、易错点归纳:
九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2、答题方法:
选择题十大速解方法:
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题
专题一、三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④ 反思 :反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的'法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
专题六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果, 经验 证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
专题七、离散型随机变量的均值与方差
1、解题路线图
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2、构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2、构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
以上模板仅供参考,希望大家能针对自己的情况整理出来最适合的“套路”。
高中数学 学习心得
数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后 学习方法 或 学习态度 的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。
一、 认清学习的能力状态。
1、 心理素质。我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。
2、 学习方式、习惯的反思与认识。(1) 学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订 学习计划 ,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2) 学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3) 忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4) 不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,学习效率不高。
二、 努力提高自己的学习能力。
1、 抓要点提高学习效率。(1) 抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2) 抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有效的解决。(3) 抓 思维训练 。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5) 抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课外去补,则会使学习效率大打折扣。
高中数学知识点大全相关 文章 :
★ 高二数学知识点总结
★ 高一数学必修一知识点汇总
★ 高中数学学习方法:知识点总结最全版
★ 高中数学知识点总结
★ 高一数学知识点总结归纳
★ 高三数学知识点考点总结大全
★ 高中数学基础知识大全
★ 高三数学知识点梳理汇总
★ 高中数学必考知识点归纳整理
★ 高一数学知识点总结期末必备
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❸ 高中数学知识点最全总结
高考数学考试要取得好成绩,一方面要有扎实的基本功、熟练的计算能力,同时还要有一定的答题技巧。下面是我给大家带来的高中数学知识点最全 总结 ,以供大家参考!
数学重点知识点及答题技巧总结
一、高考数学必考题型 之 函数与导数
考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
函数与导数单调性
若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
二、高考数学必考题型 之 几何
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内
公理2:过不在同一条直线上的三点,有且只有一个平面
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
公理4:平行于同一条直线的两条直线互相平行
定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补
判定定理:
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行 “线面平行”
如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行”
如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直”
如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直“面面垂直”
三、高考数学必考题型 之 不等式
对称性
传递性
加法单调性,即同向不等式可加性
乘法单调性
同向正值不等式可乘性
正值不等式可乘方
正值不等式可开方
倒数法则
四、高考数学必考题型 之 数列
(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种 方法 ,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题。
必背公式
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理
判别式b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有两个不相等的个实根
b2-4ac<0注:方程有共轭复数根
2、立体图形及平面图形的公式
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py
直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh
正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2
圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl
弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr
锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=sxh圆柱体V=pixr2h
3、图形周长、面积、体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)
和:(a+b+c)x(a+b-c)x1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
常用的三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高考应试技巧
技巧一提前进入“角色”
考前晚上要睡足八个小时,早晨最好吃些清淡的早餐,带齐一切高考用具,如笔、橡皮、作图工具、身分证、准考证等。
提前半小时到达高考考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动。回忆一下高考数学常用公式,有助于高考数学超常发挥。
技巧二情绪要自控
最易导致高考心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种
转移注意法:把注意力转移到对你感兴趣的事情上或滑稽事情的回忆中。
自我安慰法:如“我经过的考试多了,没什么了不起”等。
抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到高考发卷时。
技巧三摸透“题情”
刚拿到高考数学试卷,不要匆匆作答,可先从头到尾通览全卷,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效 措施 ,也从根本上防止了“漏做题”。
从高考数学卷面上获取最多的信息,为实施正确的解题策略作准备,顺利解答那些一眼看得出结论的简单选择或填空题,这样可以使紧张的情绪立即稳定,使高考数学能够超常发挥。
技巧四信心要充足,暗示靠自己
高考数学答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。
考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态
技巧五数学答题有先有后
1、答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。
2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分”,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。
高中数学知识点最全总结相关 文章 :
★ 高中数学知识点归纳最新
★ 高中数学基本知识点最新
★ 高一数学知识点全面总结
★ 高中数学知识点总结
★ 高中数学知识点:椭圆方程式知识点总结
★ 高一数学考试基础知识点
★ 高中数学必修一三角函数知识点总结
★ 高中数学知识点:平面向量的公式的知识点总结
★ 高中数学全部知识点提纲整理
★ 人教版高中数学知识点总结最新
❹ 高中数学知识点总结(最全版)(强烈推荐)
链接:
高中数学基础知识梳理(数学小飞侠)
❺ 高中数学的总结!要求简单易懂,针对与几乎零基础的同学!!!整理下拜托了!!!!!
一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。 五、《复数》 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。 辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。 六、《排列、组合、二项式定理》 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 七、《立体几何》 点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。 高中《立体几何》
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。 八、《平面解析几何》 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。 笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
编辑本段数学 必修1
1. 集合
(约4课时) (1)集合的含义与表示 ①通过实例,了解集合的含义,体会元素与集合的“属于”关系。 ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。 (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集。 ②在具体情境中,了解全集与空集的含义。 (3)集合的基本运算 ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 ③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2. 函数概念与基本初等函数I
(约32课时) (1)函数 ①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。 ③了解简单的分段函数,并能简单应用。 ④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。 ⑤学会运用函数图象理解和研究函数的性质(参见例1)。 (2)指数函数 ①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。 ②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 ③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。 ④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。 (3)对数函数 ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。 ②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。 ③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。 (4)幂函数 通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。 (5)函数与方程 ①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 ②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 (6)函数模型及其应用 ①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。 ②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 (7)实习作业 根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
编辑本段数学 必修2
1. 立体几何初步
(约18课时) (1)空间几何体 ①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。 ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。 ③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。 ④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。 ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 (2)点、线、面之间的位置关系 ①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。 ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 ◆公理2:过不在一条直线上的三点,有且只有一个平面。 ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 ◆公理4:平行于同一条直线的两条直线平行。 ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。 ②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。 操作确认,归纳出以下判定定理。 ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 ◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 ◆一个平面过另一个平面的垂线,则两个平面垂直。 操作确认,归纳出以下性质定理,并加以证明。 ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。 ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。 ◆垂直于同一个平面的两条直线平行。 ◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 ③能运用已获得的结论证明一些空间位置关系的简单命题。
2. 平面解析几何初步
(约18课时) (1)直线与方程 ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。 ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。 ③能根据斜率判定两条直线平行或垂直。 ④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。 ⑤能用解方程组的方法求两直线的交点坐标。 ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。 (2)圆与方程 ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。 ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。 ③能用直线和圆的方程解决一些简单的问题。 (3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 (4)空间直角坐标系 ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。 ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
编辑本段数学 必修3
1. 算法初步
(约12课时) (1)算法的含义、程序框图 ①通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。 ②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。 (2)基本算法语句:经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。 (3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
2. 统计
(约16课时) (1)随机抽样 ①能从现实生活或其他学科中提出具有一定价值的统计问题。 ②结合具体的实际问题情境,理解随机抽样的必要性和重要性。 ③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。 ④能通过试验、查阅资料、设计调查问卷等方法收集数据。 (2)用样本估计总体 ①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会它们各自的特点。 ②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。 ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。 ④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。 ⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。 ⑥形成对数据处理过程进行初步评价的意识。 (3)变量的相关性 ①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。 ②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(参见例2)。
3. 概率
(约8课时) (1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。 (2)通过实例,了解两个互斥事件的概率加法公式。 (3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 (4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。 (5)通过阅读材料,了解人类认识随机现象的过程。
编辑本段数学 必修4
1. 三角函数
(约16课时) (1)任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化。 (2)三角函数 ①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。 ②借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。 ③借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、最大和最小值、图象与x轴交点等)。 ④理解同角三角函数的基本关系式: ⑤结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。 ⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。
2. 平面向量
(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。 (2)向量的线性运算 ①掌握向量加、减法的运算,并理解其几何意义。 ②掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积 ①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。
3. 三角恒等变换
(约8课时) (1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用。 (2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。 (3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。
编辑本段数学 必修5
1. 解三角形
(约8课时) (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 (2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
2. 数列
(约12课时) (1)数列的概念和简单表示法 了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数。 (2)等差数列、等比数列 ①理解等差数列、等比数列的概念。 ②探索并掌握等差数列、等比数列的通项公式与前n项和的公式。 ③能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题(参见例1)。 ④体会等差数列、等比数列与一次函数、指数函数的关系。
3. 不等式
(约16课时) (1)不等关系 感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。 (2)一元二次不等式 ①经历从实际情境中抽象出一元二次不等式模型的过程。 ②通过函数图象了解一元二次不等式与相应函数、方程的联系。 ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。 (3)二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组。 ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。 ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。 (4)基本不等式: 。 ①探索并了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题(参见例4)。 函数的性质 指数和对数 (1)定义域、值域、对应法则 (2)单调性 对于任意x1,x2∈D 若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数 若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数 (3)奇偶性 对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数 若f(-x)=-f(x),称f(x)是奇函数 (4)周期性 对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂 数学 选修
编辑本段选修2-1
1. 常用逻辑用语
(约8课时) (1)命题及其关系 ①了解命题的逆命题、否命题与逆否命题。 ②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。 (2)简单的逻辑联结词 了解逻辑联结词“或”“且”“非”的含义。 (3)全称量词与存在量词 ①理解全称量词与存在量词的意义。 ②能正确地对含有一个量词的命题进行否定。
2. 圆锥曲线与方程
(约16课时) (1)圆锥曲线 ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 (2)曲线与方程 了解曲线与方程的对应关系,进一步感受数形结合的基本思想。 (3)椭圆、双曲线与抛物线 椭圆 标准方程x^2/a^2+y^2/b^2=1(a>b>0,c^2=a^2-b^2)(焦点在x轴上) 焦点F1(-c,0),F2(c,0) 离心率e=c/a 双曲线 标准方程x^2/a^2-y^2/b^2=1(a>0,b>0,c^2=a^2+b^2)(焦点在x轴上) 焦点F1(-c,0),F2(c,0) 离心率e=c/a 抛物线 标准方程 y^2=2px(p>0)(焦点在x轴正半轴上) 焦点F(p/2,0)
3. 空间向量与立体几何
(约12课时) (1)空间向量及其运算 (2)空间向量的应用
编辑本段选修2-2
1. 导数及其应用
(约24课时) (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。 ②通过函数图象直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数的导数。 ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 )的导数。 ③会使用导数公式表。 (3)导数在研究函数中的应用 ①借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。 ②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例。 例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见选修1-1案例中的例5)。 (5)定积分与微积分基本定理 ①通过求曲边梯形的面积、变力做功等,从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。
❻ 高一数学基础知识点
学习适合自己的 学习 方法 ,重视每一门学科,关注社会和时代的发展,并且坚持不懈,才能给自己的终身发展奠定坚持的基础,创造成功的机会。学习真的可以成就我们的人生,也确实可以致富。下面是我给大家带来的 高一数学 基础知识点,希望大家能够喜欢!
高一数学基础知识点1
立体几何初步
柱、锥、台、球的结构特征
棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。
棱台
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
圆锥
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
圆台
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
球体
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
NO.2空间几何体的三视图
定义三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
NO.3空间几何体的直观图——斜二测画法
斜二测画法
斜二测画法特点
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
直线与方程
直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
直线的斜率
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
过两点的直线的斜率公式:
(注意下面四点)
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
幂函数
定义
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
指数函数
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
高一数学基础知识点2
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的 篮球 队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N_或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A?B,B?C,那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作,即
CSA=
AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=Φ.
高一数学基础知识点3
易错点1:遗忘空集致误
由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.
易错点2:忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.
易错点3:混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.
易错点4:充分条件、必要条件颠倒致误
对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;
如果B?A成立,则A是B的必要条件,B是A的充分条件;
如果A?B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.
易错点5:“或”“且”“非”理解不准致误
命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);
命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);
绨p真?p假,绨p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解.
易错点6:函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.
易错点7:判断函数的奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数.
易错点8:函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.
易错点9:导数的几何意义不明致误
函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”.
易错点10:导数与极值关系不清致误
f(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验.
高一数学基础知识点相关 文章 :
★ 高一数学基础知识学习方法归纳
★ 高一数学基础知识总结归纳
★ 高一数学必修一知识点汇总
★ 高一数学集合知识点汇总
★ 高一数学知识点总结归纳
★ 高一数学知识点小归纳
★ 高一数学必修1知识点归纳
★ 高中数学基础知识大全
★ 高一数学知识点记忆法
★ 高中数学高一数学必修一知识点
❼ 高一数学基础知识点总结
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。
高一上册数学必修一知识点梳理
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平 面相 交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
高一数学必修五知识点 总结
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.
⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.
⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.
⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.
高一 数学学习方法
1、培养良好的学习习惯。
(1)制定计划明确学习目的。合理的 学习计划 是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2) 课前预习 是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在 笔记本 上,使对所学的新知识由懂到会。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由会到熟。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由熟到活。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由活到悟。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流 学习心得 等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的 文化 科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的 兴趣 爱好 ,培养独立学习和工作的能力,激发求知欲与学习热情。
高一数学基础知识点总结相关 文章 :
★ 高一数学知识点新总结
★ 高一数学知识点小归纳
★ 高中数学基础知识点总结
★ 高一数学基础知识学习方法归纳
★ 高一数学集合知识点汇总
★ 高一数学知识点总结归纳
★ 高一数学知识点总结
★ 高一数学常考知识点总结
★ 高一数学知识点总结下册
★ 高一数学必修一知识点汇总
❽ 高中数学所有知识点归纳
高中数学基础知识梳理(数学小飞侠)
链接:
若资源有问题,欢迎追问~