当前位置:首页 » 基础知识 » 数学真有用基本知识点与解题方法
扩展阅读
吃什么会加速基础代谢 2024-11-19 05:43:11
孩子无故哭泣如何教育 2024-11-19 05:34:47
宁波儿童社保卡怎么办 2024-11-19 05:27:47

数学真有用基本知识点与解题方法

发布时间: 2022-12-26 13:45:39

❶ 数学学习方法及答题技巧

数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.所以说,学好数学对于我们每个同学来说都是非常重要的。初中阶段,我们就逐渐开始接触比较难的数学知识了,但是这个过程是循序渐进的,所以只要一步一步的学好每一阶段的知识,学好数学是并不难的。
进入初中后,在数学课的平时学习中,要做到以下几点,能够保证将所学的知识掌握牢固。
1.课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完。
2.让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3.课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课。
4.单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。
期中期末阶段的学习中要将平时的单元检测卷整理整齐,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍。
如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析。在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查。
多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐。

解题思路的获得,一般要经历三个步骤:
1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;
2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;
3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。
数学的表达,有3种方式:
1.文字语言,即用汉字表达的内容;
2.图形语言,如几何的图形,函数的图象;
3.符号语言,即用数学符号表达的内容,比如AB∥CD。
在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。
先来看转化思想:
我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。
所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。

❷ 学好数学的方法小窍门二十条

数学作为一门必修课,是从小学一直要学到大学的课程,即使学历低,至少也需要学十年。下面是我整合的学好数学的 方法 小窍门二十条,一起来看看吧,肯定对你有所帮助的。

学好数学的方法小窍门二十条

1.数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。

2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3.数学公式一定要记熟,并且还要会推导,能举一反三。

4.数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。

5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

9.数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

10.数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。

11.数学可以搞题海战术,没毛病,但问题是光做题不 总结 ,这样即使做再多题目又有何用?

12.学好数学的有效方法就是善于纠错,哪里错了就及时改正,并做相关习题巩固训练。

13.学数学最重要的就是解题能力。要想会做数学题目,就要有大量的练习积累,知道各类型题目的解题步骤与方法,题目做多了就有手感了,再拿出类似的题目才会有解题思路。

14.举一反三,举三反一,培养数学思维的广度和深度。简单的说就是一题多解、多题一解训练知识的纵横联系,为建立自己的数学知识体系打下基础

15.每天要规划出学习数学的时间,只有时间保证了,才能提高学习成绩。不要自由散漫,有时间就学,没有时间就不去碰,这要是学不好的。

16.如果数学还是学不会,可以再看一些数学 学习 经验 、方法及笔记,有现成的前辈总结的经验干嘛不用?

17.做完题要学会总结。对于做过的题型及做错的题目要善于进行分类总结,再遇到类似的题目要会分析,知道哪里容易出现问题,然后尽量去避免。同时在做题和总结过程中,要学会举一反三,抓住考点去复习。

18.数学除了一些学习上的方法和窍门外,答题时也要讲究策略,不会的果断放弃。

19.考试时合理分配答题时间,选择题和大题按照规划的时间作答,超出时间还算不出来就做下一道题。

20.数学有些名人小 故事 可以看看,很有意思,对数学学习也有一些帮助。

高中学好数学的方法是什么

1.学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。

2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3.数学公式一定要记熟,并且还要会推导,能举一反三。

4.学好数学最基础的就是把课本知识点及课后习题都掌握好。

5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

9.数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

10.数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。

如何学好数学

基础理论学起

在学习数学前首先应该从最基础的东西开始学习,因为数学的每一个理论或者每一个环节都是以前一个基础理论为前提的,是环环相扣的理论链的关系。带着这种观点去学习也就不必去死记硬背一些定理、推理之类的知识了,学习起来自然就显得更加容易了。

避免眼高手低

数学是一门理论联系实际的学习,熟悉、理解基础理论概念只是学好数学的前提,最终的目的还是用于实际的操作中,或者说用于咱们的日常生活中去。所以要勤于做题练习,坚决避免眼高手低的 学习态度 ,“实践是检验真理的唯一标准”,数学也不例外。

勤奋成就人才

每一个成功都是三分靠的上天“注定”,而七分靠的还是“打拼”。即使再有头脑,再有数学天赋的人,如果一味的在学习中懒惰,在数学方面也不会有很大的作为;而一些即使平平的人,在勤奋的督促下也能做到一番作为,勤奋是成功的阶梯。



学好数学的方法小窍门二十条相关 文章 :

★ 高中数学课后如何有效的复习,学好数学的20条方法

★ 高中数学21种解题方法与技巧

★ 小学数学的正确学习方法有哪些

★ 小学数学公式汇总

★ 数学常识快速记忆口诀

★ 初中数学的常考知识点20条

★ 学霸分享的初中数学学习口诀

★ 高中数学常考题型答题技巧与方法及顺口溜

★ 快速提高学习效率的小技巧

★ 小学数学知识点顺口溜

❸ 高三数学知识点归纳 有哪些常考知识点

高考数学要规范答题,保证解题过程严密、规范、完整,消除不必要的隐性失分,快速提高高考数学准确率。同时,也要熟练地掌握各方面的数学知识,我整理了数学知识点及答题方法如下,希望对大家有所帮助。

高三数学知识点归纳

高中数学答题方法

1、配方法

通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

❹ 高中学好数学的方法技巧有哪些

奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。接下来是我为大家整理的高中学好数学的 方法 和技巧,希望大家喜欢!

高中学好数学的方法和技巧一

1、梳理基础知识

以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。

概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。

2、重视“三基”

高考数学学科的考试既考查中学数学的基础知识和方法,又考查考生进人高校继续学习的潜能。因此,既突出对基础知识、基本技能、基本数学思想方法的考察,又强调能力立意,以数学的基础知识为载体,考察学生的数学能力,同时注意考察学生的创新能力。

高三的学习过程中要注重“三基”。首先,是基础知识。学生要注重基础知识的积累,能将基础知识全面的掌握和理解。其次,是基本方法,也就是“通法”,最基本的解题方法,以及书本和考纲要求学生掌握的基本方法。最后,就是基本能力。

数学的基本能力包括思维能力、运算能力、空间想象能力及分析和解决问题的能力等。高三生在解题过程中一定要思维缜密、有理有据,步骤完整。在立体几何部分,解题时要多运用数理结合、数的运算,要有耐心。

3、注重学习策略

学会自学考纲,即注重课前复习,看考纲数学要求,做到心中有数。而且在学习数学时,一定要不断巩固,适当重复,举一反三。此外,做题后的 反思 也很重要,学生要有意识地反思题目考察的知识点,考察的数学方法、数学思想,以及易错的点是什么。切忌钻难、怪、偏题,花无谓的时间,切忌题海战,要提高学习效率。

4、调整好学习心态

在整个 高三数学 的学习上,良好的学习心态也尤其重要。学生要能主动学习,即让自己的学习进度、复习进度都能赶在老师授课之前;并且还能在老师安排 学习计划 的基础上,制订好一份自己的计划,整理好自己的学习时间和进度,按照自己的进度和目标实施。此外,还要注重和同学间的合作学习,不能单打独斗,要多和同学探讨。在心态上,学生一定要对自己的学习能力、状态、知识水平、学习进度的实施等持有正确的评价。

高中学好数学的方法和技巧二

数学是应用性很强的学科,做题是数学学习过程中必不可少的环节。甚至有同学说,学习数学就是学习解题,因此数学提分要诀就在每天做题上。做数学题应注意以下几点:

一、精做题

做题不是做得越多越好,而是做得越精越好。怎样才算“精”呢?学会“解剖麻雀”。充分理解题意,注意分析题型,深化对题中每个条件的认识,看看与哪些数学基础知识相联系,做完题,还要针对自己做错的题,分析自己当时想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,以便挖掘出一些好的数学思维方法;一题多解,一题多变,多元归一。

二、做难题

取得黑龙江省高考文史类第三名好成绩的李宏霞同学,认为坚持做难题,做大题才是制胜的法宝。她说,数学中的基础题因然很重要,但高分的关键则是综合性强、难度大的最后两三道大题,即所谓“拉分题”。因此,她在复习时坚持有规律地做这类题目。由于题目难度高,所以每次做的题量不要太大,一次做四五道即可,同时,要注意选择的题目要有代表性、要全面,同一题型的题选二三道即可,要注意方法的积累和运用。

三、天天做题

熟练解题一定要有量的积累。天天做题就是保证做题的数量的方法。同学们可以制定一个计划,每天要求自己做五道题目,或十道题目,根据自己的情况确定,如此坚持下去,做题越做越快,并且培养起相当的自信心。

【 总结 】“数学提分要诀:每天做几道数学题”就为大家整理到这里了,希望大家在高三期间好好复习,为高考做准备,大家加油。

高中学好数学的方法和技巧三

有的同学说:“课本有什么好看的?还不就是几个定义、定理、公式?”孰不知,就是那么几个定义、定理、公式,却以其深刻严谨的思想内涵,筑起了一幢幢数学大厦,而对数学学习感到困难者,通病之一就是对它缺乏透彻而全面的理解和掌握.所以,全面、深刻地理解和掌握定义、定理、公式是搞好复习,提高成绩的一项重要任务.要用好课本应侧重以下几个方面.

1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念.如以“角”的概念为例,课本中出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各自的定义出法,都有一个确定的取值范围.如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的性.对此理解、掌握了才不会出现概念性错误.

2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用平均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件.又如棣莫佛定理是对复数三角形式来说的.如数列中的前n项和与无穷数列各项和S(S=)含义是不同的,等等.

3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.

如已知(1-2x)=a+ax+ax+…+ax,那么①a+a+a+…+a=;②|a|+|a|+|a|+…+|a|=.如(x+1)(x+1)(x+1)…(x+1)的展开式所有项的系数之和为.

因此,端正思想,认真看书,全面掌握,并结合 其它 资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础.

高中学好数学的方法和技巧四

课后一分钟回忆及时复习

数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,以免欲速则不达。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,就抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。同时预习还有利于培养自己的自学能力。

上完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题;分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,赶紧补完,这样不仅能把当天上课内容巩固下来,而且也能检查当天课堂听课的效果如何,同时也可改进听课方法及提高听课效果。我们可以简记为“一分钟的回忆法”。

避免“会而不对”的错误习惯

解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。但在正规考试中即使答案对了,由于过程不完整而扣分较多。还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。

“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。必要时要作些记录,也就是“错题笔记”。每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。

重视“一题多解”“多题同解”

学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。进入复习阶段后,大量的试题铺天盖地而来,这时我们一定要保持清醒的头脑,要有所为,有所不为。学习数学不做题肯定不对,但不能陷入题海不能自拔,要充分发挥教材在知识形成过程中的作用,注意典型例题的示范价值,能够举一反三,重视“一题多解”和“多题同解”,做到以一题带一片。要有针对性地做题,典型的题型,应该规范完成,同时还应了解自己,有选择地做一些课外的题;要循序渐进,由易到难,对做过的典型题型有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做才能起到事半功倍的效果。

另外,独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不要一遇到不会的习题就马上去问别人,自己不动脑子,而应该要自己先认真地思考一下,尽量依靠自己的努力克服其中的困难。如经过努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。应学会提出问题,提出问题往往比解决问题更难,而且也更重要。

弄清自己错在哪里

每次试卷发下来,要认真分析得失,总结 经验 教训,尤其是将试卷中出现的错误进行分类,可如下分类:

第一类问题——遗憾之错。就是分明会做,反而做错了的题。比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。出现这类问题是最后悔的事情。要消除遗憾必须弄清遗憾的原因,然后找出解决问题的办法,如“审题之错”,是否出在急于求成?可采取“一慢一快”战术,即审题要慢、答题要快。

“计算错误”,是否由于草稿纸用得太乱等。建议将草稿纸对折分块,每一块上演算一道题,有序排列便于回头查找。“抄写之错”,可以用检查程序予以解决。

“表达之错”,注意表达的规范性,平时作业就严格按照规范书写表达,学习高考评分标准写出必要的步骤,并严格按着题目要求规范回答问题。

第二类问题——似非之错。记忆不准确,理解不透彻,应用不自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。

“似是而非”,就是自己记忆不牢、理解不深、思路不清、运用不活的内容。这表明你的数学基础不牢固,一定要突出重点,夯实基础。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法;当然数学的学习要有一定题量的积累,才能达到举一反三、运用自如的水平。

第三类问题——无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。在高三复习的第一轮中,不要做太难的题和综合性很强的题目,因为综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。在高三复习时间较紧的情况下,第一阶段要有所为,有所不为,但平时考试和老师留的经过筛选的题目要会做,要做好。


高中学好数学的方法和技巧有哪些相关 文章 :

1.

2. 高中学好数学的方法和技巧

3. 高中学好数学的方法有哪些

4. 学好高中数学的技巧方法有哪些

5. 高中学习数学的方法有哪些

6. 高中数学学习的方法技巧有哪些

7. 高中如何学好数学有哪些技巧

8. 学好高一数学的方法技巧有哪些

9. 高中数学学习方法和技巧是什么

10. 高中文科生学好数学的方法有哪些

❺ 高中数学有关圆的知识点、公式、解题方法什么的、拜托了

(一)圆的标准方程
1. 圆的定义:平面内到一定点的距离等于定长的点的轨迹叫做圆。定点叫圆的圆心,定长叫做圆的半径。
2. 圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2。
说明:
(1)上式称为圆的标准方程。
(2)如果圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2。
(3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2----圆心为(a,b),半径为r。
(4)确定圆的条件
由圆的标准方程知有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定.因此,确定圆的方程,需三个独立的条件,其中圆心是圆的定位条件,半径是圆的定型条件。
(5)点与圆的位置关系的判定
若点M(x1,y1)在圆外,则点到圆心的距离大于圆的半径,即(x-a)2+(y-b)2>r2

若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(x-a)2+(y-b)2<r2

(二)圆的一般方程
任何一个圆的方程都可以写成下面的形式:
x2+y2+Dx+Ey+F=0①
将①配方得:
②(x+D/2)2+(y+E/2)2=D2+E2-4F/4
当时,方程①表示以(-D/2,-E/2)为圆心,以为半径的圆;
当时,方程①只有实数解,所以表示一个点(-D/2,-E/2);
当时,方程①没有实数解,因此它不表示任何图形。
故当时,方程①表示一个圆,方程①叫做圆的一般方程。
圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:
(1)和的系数相同,且不等于0;
(2)没有xy这样的二次项。
以上两点是二元二次方程表示圆的必要条件,但不是充分条件。
要求出圆的一般方程,只要求出三个系数D、E、F就可以了。

(三)直线和圆的位置关系
1. 直线与圆的位置关系
研究直线与圆的位置关系有两种方法:
(l)几何法:令圆心到直线的距离为d,圆的半径为r。
d>r直线与圆相离;d=r直线与圆相切;0≤d<r直线与圆相交。
(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一元二次方程,其判别式为Δ。
△<0直线与圆相离;△=0直线与圆相切;△>0直线与圆相交。
说明:几何法研究直线与圆的关系是常用的方法,一般不用代数法。
2. 圆的切线方程
(1)过圆x2+y2=r2上一点P(x0,y0)的切线方程是x0x+y0y=r2
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2

(3)过圆 x2+y2+Dx+Ey+F=0(D2+E2-4F>0)上一点P(x0,y0)的切线方程是x0x+y0y+D·(x0+x)/2+E·(y0+y)/2+F=0

3. 直线与圆的位置关系中的三个基本问题
(1)判定位置关系。方法是比较d与r的大小。
(2)求切线方程。若已知切点M(x0,y0),则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

若已知切线上一点N(x0,y0),则可设切线方程为y-y0=k(x-x0),然后利用d=r求k,但需注意k不存在的情况。
(3)关于弦长:一般利用勾股定理与垂径定理,很少利用弦长公式,因其计算较繁,另外,当直线与圆相交时,过两交点的圆系方程为
x2+y2+Dx+Ey+F+λ(Ax+By+C)=0

(四)圆与圆的位置关系
1. 圆与圆的位置关系问题
判定两圆的位置关系的方法有二:第一种是代数法,研究两圆的方程所组成的方程组的解的个数;第二种是研究两圆的圆心距与两圆半径之间的关系。第一种方法因涉及两个二元二次方程组成的方程组,其解法一般较繁琐,故使用较少,通常使用第二种方法,具体如下:
圆(x-a1)2+(y-b1)2=r12与圆(x-a2)2+(y-b2)2=r22的位置关系,其中r1>0,r2>0
设两圆的圆心距为d,则d=根号下(a1-a2)2+(b1-b2)2

当d>r1+r2时,两圆外离;
当d=r1+r2时,两圆外切;
当|r1-r2|<d<|r1+r2|时,两圆相交;
当d=|r1+r2|时,两圆内切;
当0<d<|r1-r2|时,两圆内含

两圆位置关系的问题同直线与圆的位置关系的问题一样,一般要转化为距离间题来解决。另外,我们在解决有关圆的问题时,应特别注意,圆的平面几何性质的应用。

❻ 初三数学知识点总结归纳

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。

目录

初三新学期数学知识点

初三数学上册知识点归纳

初三数学复习五大方法

初三新学期数学知识点

一、圆的定义

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质

1、圆的对称性

(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。


初三数学上册知识点归纳

1.数的分类及概念数系表:

说明:分类的原则:1)相称(不重、不漏)2)有标准

2.非负数:正实数与零的统称。(表为:x0)

性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:

①定义及表示法

②性质:A.a1/a(a1);B.1/a中,aC.0

4.相反数:

①定义及表示法

②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:

①定义(三要素)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:

①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│0,符号││是非负数的标志;

③数a的绝对值只有一个;

④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。


初三数学复习五大方法

一、回归课本,夯实基础,做好预习。

数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。复习课的内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。

二、抓住关键,突出重点,不以题量论英雄

学好数学要做大量的题,但反过来做了大量的题,数学不一定好。“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。

复习中,所谓突出重点,主要是指突出教材中的重点知识,突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是联系数学中各类知识的纽带。要抓住教材中的重点内容,掌握分析方法,从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养正确地把日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。

三、提高复习兴趣,克服“高原现象”

高原现象在数学复习阶段表现得十分明显。平时授新课,新鲜有趣;搞复习,要重复已学的内容,有的同学会觉得单调、枯燥无味,致使成绩提高缓慢,甚至下降。针对这种情况,提醒同学们,一方面要从思想上提高对复习的认识,主动进行复习;另一方面,要以“新”提高复习的积极性。诸如制订新的复习计划;采用灵活的 复习方法 ;抓住新颖有趣的内容和习题,把知识串连起来,使书“由厚变薄”。

四、提高课堂听课效率,多动脑,勤动手

初三的课只有两种形式:复习课和评讲课,到初三所有课都进入复习阶段,通过复习,学生要知道自己哪些知识点掌握的比较好,哪些知识点有待提高,因此在复习课之前一定要有自已的思考,这样听课的目的就明确了。现在学生手中都会有一些复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的旧知识,可进行查漏补缺,以减少听课过程中的困难,自己理解了的东西与老师的讲解进行比较、分析即可提高自己的数学思维;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,事半功倍。此外对于老师讲课中的难点,重点要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

五、要养成良好的解题习惯

如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学),自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是初三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。


初三数学知识点 总结 归纳相关 文章 :

★ 初三数学知识点考点归纳总结

★ 初三数学知识点归纳总结

★ 初三数学知识点归纳人教版

★ 初三数学知识点上册总结归纳

★ 最新初三数学知识点总结大全

★ 初三数学中考复习重点章节知识点归纳

★ 初三数学复习知识点总结

★ 初三中考数学知识点归纳总结

★ 中考数学知识点总结最全提纲

★ 初三数学知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❼ 学数学的基本方法和技巧有哪些

学数学的基本方法和技巧如下。

一、学数学的基本方法。

1、数学的学习时间应该占全部总学科的50%左右。

数学是一个费时费力的学科,无论文理。对于文科和理科来说,数学的高考成绩都是重中之重。比如文科,鲜有听到一个班文综成绩能差60分以上的,但数学别说60,80都能差出来。

对于理科,物理,化学都需要大量的运算,数学的学习又是提供一种工具与思维。因此,对于之前的文理科,抑或是现在取消文理以后的偏文,偏理科来说,数学都是非常重要的。

2、要看课本。

在经过一段时间的学习以后,比如是一个章节的学习,就一定要拿出数学课本,找一个连贯的时间,静静地读完数学课本里对应章节的每一段话,每一个字,包括所有的补充材料。

当然,课后的习题,也都要通读。在读完这些内容以后,最后还要翻开课本的目录,对应这个章节的每一个小标题,静心回忆一下每一个小标题的最重要的知识点,你最感兴趣的内容等等。

二、学数学的技巧。

制作错题本,错题本的意义,不是把每一道你做错的题目都誊写一遍,而是要把那些反复做不对,反复做都有差错的题目保存下来。错题本的本质,是对我们思维方式,思考习惯的一个纠正。在这个错题本上的题目都应该是做了3遍还会出错的题目。

而错题本的记录内容,至少应该包括下面几个内容。是完整的题目信息;是用自己的方式演算出的正确答案(将参考答案照抄一遍没有任何意义);是自己对这个题目的评论,需要重点指出关键步骤,以及自己最初的想法与正确做法的差异在哪里。

❽ 如何学好数学的方法和技巧是什么

学好数学的方法和技巧是:

一、学好数学的方法

1、数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。

2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3、数学公式一定要记熟,并且还要会推导,能举一反三。

4、数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。

5、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6、数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

9、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

二、学好数学的技巧

1、数学要通过做题掌握理论

数学虽然有不少公式、定理需要同学们去背诵跟记忆,但不是死记硬背就能会的,需要学会数学思维,理清数学思路,用数学思维方式去做题,在做题的过程中自然就能把理论知识掌握了。

做题是一个不断巩固知识的过程,也是对数学理论重新认识的过程,不做题根本不能知道哪里不会。当然,数学光靠做题还不够,还要多总结错题,这样才能提高数学成绩。

2、学好数学的方法是多做题

这种做题虽然可以理解为题海战术,但是不不等同于搞题海战术,因为数学不做题就想学会、想提高分数几乎是不可能的事情,但一味的多做题而不反思总结的话,也是有弊端的。数学最忌讳的就是眼高手低,看似会做了,可一到自己动手做题目,就卡壳了。

❾ 初中数学常用的几种经典解题方法

初中数学里常用的几种经典解题方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法