① 有没有什么好玩的数学逻辑题目比如这种问题
悖论一览
1. 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?
如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。
2. 芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下着名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
3. 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”
如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。
所以怎样也难以自圆其说,这就是着名的说谎者悖论。
公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以自圆其说!
说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。”
又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。
4. 跟无限相关的悖论:
{1,2,3,4,5,…}是自然数集:
{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?
5. 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?
6. 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
你能说出为什么这场考试无法进行吗?
7. 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?
8. 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗?
9. 谷堆悖论:显然,1粒谷子不是堆;
如果1粒谷子不是堆,那么2粒谷子也不是堆;
如果2粒谷子不是堆,那么3粒谷子也不是堆;
……
如果99999粒谷子不是堆,那么100000粒谷子也不是堆;
……
10. 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢? 悖论 悖论
[汉语拼音] bèilùn
[英文]paradox
[简要解释] 逻辑学和数学中的“矛盾命题”
[其他详尽解释]
也可叫“逆论”,或“反论”,是指一种导致矛盾的命题。悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。 悖论是自相矛盾的命题。即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 古今中外有不少着名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
例如比较有名的理发师悖论:某乡村有一位理发师,一天他宣布:只给不自己刮胡子的人刮胡子。这里就产生了问题:理发师给不给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的原则,他就应该给自己刮胡子。这就产生了矛盾。
1900年前后,在数学的集合论中出现了三个着名悖论,理发师悖论就是罗素悖论的一种通俗表达方式。此外还有康托尔悖论、布拉利—福尔蒂悖论。这些悖论特别是罗素悖论,在当时的数学界与逻辑界内引起了极大震动。触发了数学的第三次危机。
悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
悖论有以下几类:
逻辑悖论、概率悖论、几何悖论、统计悖论和时间悖论等。
历史上着名的悖论
NO.1
说谎者悖论(1iar paradox or Epimenides’ paradox)
最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德
所创的四个悖论之一。是关于“我正在撒谎”的悖论。具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。
NO.2
伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列斯特是她的哥哥.但她并不认识站在她面前的这个男人。
写成一个推理.即:
伊勒克持拉不知道站在她面前的这个人是她的哥哥。
伊勒克持拉知道奥列期特是她的哥哥。
站在她面前的人是奥列期特。
所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。
NO.3
M:着名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:
告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢?
M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
NO.4
唐·吉诃德悖论
M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。
问,你来这里做什么?
M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——
旅游者:我来这里是要被绞死。
M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
② 求数学逻辑推理题(加答案)
【16】有一种体育竞赛共含M个项目,有运动员A,B,C参加,在每一项目中,第一,第二,第三名分别的X,Y,Z分,其中X,Y,Z为正整数且X>Y>Z。最后A得22分,B与C均得9分,B在百米赛中取得第一。求M的值,并问在跳高中谁得第二名。
因为ABC三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5*8=4*10=2*20=1*20,不难得出项目数只能是5.即M=5.
A得分为22分,共5项,所以每项第一名得分只能是5,故A应得4个一名一个二名.22=5*4+2,第二名得1分,又B百米得第一,所以A只能得这个第二.
B的5项共9分,其中百米第一5分,其它4项全是1分,9=5+1=1+1+1.即B除百米第一外全是第三,跳高第二必定是C所得.
【17】前提:
1 有五栋五种颜色的房子
2 每一位房子的主人国籍都不同
3 这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物
4 没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料
提示:1 英国人住在红房子里
2 瑞典人养了一条狗
3 丹麦人喝茶
4 绿房子在白房子左边
5 绿房子主人喝咖啡
6 抽PALLMALL烟的人养了一只鸟
7 黄房子主人抽DUNHILL烟
8 住在中间那间房子的人喝牛奶
9 挪威人住第一间房子
10抽混合烟的人住在养猫人的旁边
11养马人住在抽DUNHILL烟的人旁边
12抽BLUEMASTER烟的人喝啤酒
13德国人抽PRINCE烟
14挪威人住在蓝房子旁边
15抽混合烟的人的邻居喝矿泉水
问题是:谁养鱼???
第一间是黄房子,挪威人住,喝矿泉水,抽DUNHILL香烟,养猫;第二间是蓝房子,丹麦人住,喝茶,抽混合烟,养马;第三间是红房子,英国人住,喝牛奶,抽PALL MALL烟,养鸟;第四间是绿房子,德国人住,喝咖啡,抽PRINCE烟,养猫、马、鸟、狗以外的宠物;第五间是白房子,瑞典人住,喝啤酒,抽BLUE MASTER烟,养狗。
【18】5个人来自不同地方,住不同房子,养不同动物,吸不同牌子香烟,喝不同饮料,喜欢不同食物。根据以下线索确定谁是养猫的人。
1. 红房子在蓝房子的右边,白房子的左边(不一定紧邻)
2. 黄房子的主人来自香港,而且他的房子不在最左边。
3. 爱吃比萨的人住在爱喝矿泉水的人的隔壁。
4. 来自北京的人爱喝茅台,住在来自上海的人的隔壁。
5. 吸希尔顿香烟的人住在养马人的右边隔壁。
6. 爱喝啤酒的人也爱吃鸡。
7. 绿房子的人养狗。
8. 爱吃面条的人住在养蛇人的隔壁。
9. 来自天津的人的邻居(紧邻)一个爱吃牛肉,另一个来自成都。
10.养鱼的人住在最右边的房子里。
11.吸万宝路香烟的人住在吸希尔顿香烟的人和吸“555”香烟的人的中间(紧邻)
12.红房子的人爱喝茶。
13.爱喝葡萄酒的人住在爱吃豆腐的人的右边隔壁。
14.吸红塔山香烟的人既不住在吸健牌香烟的人的隔壁,也不与来自上海的人相邻。
15.来自上海的人住在左数第二间房子里。
16.爱喝矿泉水的人住在最中间的房子里。
17.爱吃面条的人也爱喝葡萄酒。
18.吸“555”香烟的人比吸希尔顿香烟的人住的靠右
第一间是兰房子,住北京人,养马,抽健牌香烟,喝茅台,吃豆腐;第二间是绿房子,住上海人,养狗,抽希尔顿,喝葡萄酒,吃面条第三间是黄房子,住香港人,养蛇,抽万宝路,喝矿泉水,吃牛肉第四间是红房子,住天津人,抽555,喝茶,吃比萨;第五间是白房子,住成都人,养鱼,抽红塔山,喝啤酒,吃鸡。
【19】斗地主附残局
地主手中牌2、K、Q、J、10、9、8、8、6、6、5、5、3、3、3、3、7、7、7、7
长工甲手中牌大王、小王、2、A、K、Q、J、10、Q、J、10、9、8、5、5、4、4
长工乙手中牌2、2、A、A、A、K、K、Q、J、10、9、9、8、6、6、4、4
三家都是明手,互知底牌。要求是:在三家都不打错牌的情况下,地主必须要么输要么赢。问:哪方会赢?
待定,希望能有朋友给出一个合理的答案
【20】一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?
先拿下第一楼的钻石,然后在每一楼把手中的钻石与那一楼的钻石相比较,如果那一楼的钻石比手中的钻石大的话那就把手中的钻石换成那一层的钻石。
【21】U2合唱团在17分钟 内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多可以有两人一起 过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不同,若两人同行则 以较慢者的速度为准。Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥。他们要如何在17分钟内过 桥呢?
2+1先过 2
然后1回来送手电筒 1
5+10再过 10
2回来送手电筒 2
2+1过去 2
总共2+1+10+2+2=17分钟
【22】一个家庭有两个小孩,其中有一个是女孩,问另一个也是女孩的概率(假定生男生女的概率一样)
1/3
样本空间为(男男)(女女)(男女)(女男)
A=(已知其中一个是女孩)=)(女女)(男女)(女男)
B=(另一个也是女孩)=(女女)
于是P(B/A)=P(AB)/P(A)=(1/4)/(3/4)=1/3
【23】为什么下水道的盖子是圆的?
不论什么角度,井盖都不会掉下去
【24】有7克、2克砝码各一个,天平一只,如何只用这些物品三次将140克的盐分成50、90克各一份?
140->70+70 70->35+35
35+70=105
105->50+7 + 55+2
55+35=90
【25】芯片测试:有2k块芯片,已知好芯片比坏芯片多.请设计算法从其中找出一片 好芯片,说明你所用的比较次数上限. 其中:好芯片和其它芯片比较时,能正确给出另一块芯片是好还是坏. 坏芯片和其它芯片比较时,会随机的给出好或是坏。
把第一块芯片与其它逐一对比,看看其它芯片对第一块芯片给出的是好是坏,如果给出是好的过半,那么说明这是好芯片,完毕。如果给出的是坏的过半,说明第一块芯片是坏的,那么就要在那些在给出第一块芯片是坏的芯片中,重复上述步骤,直到找到好的芯片为止。
【26】12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重)
12个时可以找出那个是重还是轻,13个时只能找出是哪个球,轻重不知。
把球编为①②③④⑤⑥⑦⑧⑨⑩⑾⑿。(13个时编号为⒀)
第一次称:先把①②③④与⑤⑥⑦⑧放天平两边,
一如相等,说明特别球在剩下4个球中。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿特别,把①与⑿作第三次称量即可判断是⑿是重还是轻
⒉如①⑨<⑩⑾说明要么是⑩⑾中有一个重的,要么⑨是轻的。
把⑩与⑾作第三次称量,如相等说明⑨轻,不等可找出谁是重球。
⒊如①⑨>⑩⑾说明要么是⑩⑾中有一个轻的,要么⑨是重的。
把⑩与⑾作第三次称量,如相等说明⑨重,不等可找出谁是轻球。
二如左边<右边,说明左边有轻的或右边有重的
把①②⑤与③④⑥做第二次称量
⒈如相等,说明⑦⑧中有一个重,把①与⑦作第三次称量即可判断是⑦与⑧中谁是重球
⒉如①②⑤<③④⑥说明要么是①②中有一个轻的,要么⑥是重的。
把①与②作第三次称量,如相等说明⑥重,不等可找出谁是轻球。
⒊如①②⑤>③④⑥说明要么是⑤是重的,要么③④中有一个是轻的。
把③与④作第三次称量,如相等说明⑤重,不等可找出谁是轻球。
三如左边>右边,参照二相反进行。
当13个球时,第一步以后如下进行。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿⒀特别,把①与⑿作第三次称量即可判断是⑿还是⒀特别,但判断不了轻重了。
⒉不等的情况参见第一步的⒉⒊
【27】100个人回答五道试题,有81人答对第一题,91人答对第二题,85人答对第三题,79人答对第四题,74人答对第五题,答对三道题或三道题以上的人算及格, 那么,在这100人中,至少有( )人及格。
首先求解原题。每道题的答错人数为(次序不重要):26,21,19,15,9
第3分布层:答错3道题的最多人数为:(26+21+19+15+9)/3=30
第2分布层:答错2道题的最多人数为:(21+19+15+9)/2=32
第1分布层:答错1道题的最多人数为:(19+15+9)/1=43
Max_3=Min(30, 32, 43)=30。因此答案为:100-30=70。
其实,因为26小于30,所以在求出第一分布层后,就可以判断答案为70了。
要让及格的人数最少,就要做到两点:
1. 不及格的人答对的题目尽量多,这样就减少了及格的人需要答对的题目的数量,也就只需要更少的及格的人
2. 每个及格的人答对的题目数尽量多,这样也能减少及格的人数
由1得每个人都至少做对两道题目
由2得要把剩余的210道题目分给其中的70人: 210/3 = 70,让这70人全部题目都做对,而其它30人只做对了两道题
也很容易给出一个具体的实现方案:
让70人答对全部五道题,11人仅答对第一、二道题,10人仅答对第二、三道题,5人答对第三、四道题,4人仅答对第四、五道题
显然稍有变动都会使及格的人数上升。所以最少及格人数就是70人!
【28】陈奕迅有首歌叫十年吕珊有首歌叫3650夜那现在问,十年可能有多少天?
闰年的确定:如果年份末两位不是全0,比如1990,就是除以4,能除尽的是闰年。
如果末两位全是0,则要除以400,比如2000年,就是除400。所以2100年就不是闰年了,
这样十年可能包含1,2个闰年,3651或3652天。
【29】1,11,21,1211,111221,下一个数是什么?
下行是对上一行的解释所以新的应该是3个1 2个2 1个1 :312211
【30】烧一根不均匀的绳要用一个小时,如何用它来判断半个小时?烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢? (微软的笔试题)
一,一根绳子从两头烧,烧完就是半个小时。
二,一根要一头烧,一根从两头烧,两头烧完的时候(30分),将剩下的一根另一端点着,烧尽就是45分钟。再从两头点燃第三根,烧尽就是1时15分。
③ 数学逻辑题目
Y=(COSax)∧2-(Sinax)∧2=[1-(Sinax)∧2]-(Sinax)∧2= 1-2(Sinax)2=COS2ax
<∧2是平方的意思,不支持公式编辑器可累死我了>而最小正周期公式::
T=2π/|ω|,所以→ 当a=1时候,Y的最小正周期T=2π/|ω|=2π/|2a|=π
所以a=1是函数Y=COSax的平方-Sinax的平方的最小正周期为π的充分条件;
←当Y的最小正周期为π时,也代入公式T=2π/|ω|即,π= 2π/|2a|, a=1
所以a=1是函数Y=COSax的平方-Sinax的平方的最小正周期为π的必要条件。
综上,a=1是函数Y=COSax的平方-Sinax的平方的最小正周期为π的充要条件
第二题,【【你有抄错字母吗?如果没有抄错题,那就不会了,我没有学过你那个符号啊,呵呵】】
(((如果抄错,按我的理解:因为点P(2,3)∈A∩(U∪B)可以看出,点P(2,3)一定属于A,则2×2-3+M>0,M>-1 ; 而由题知,(U∪B)=U,分二情况:①当B是U的子集时候,P(2,3)∈B,则2+3-M≤0,M≥5②B∩U=∮,P(2,3)∈U,M为任意实数。综上,充要条件是M≥5,证明略。))
④ 逻辑思维训练题
逻辑思维 的训练有助于人的大脑开发,灵活的脑子才有创新的可能。今天给大家带来一些逻辑 思维训练 题,希望可以帮助到有需要的同学!
一年级数学 逻辑思维训练题道
1、小红家的挂钟,几时就敲几下,每半时也要敲一下,请问,从下午2时到5时,一共敲了几下?
2、把3、4、5、6、7、8、9、10这八个数分别填入下面的()里(每个数只能用一次),使两个算式都成立。
( )+( )-( )=( )
( )+( )-( )=( )
3、把2、5、6、8、9五个数分别组成两位数,最大的两位数是( ),最小的两位数是( )。
4、小明今年6岁,姐姐今年13岁,5年后姐姐比小明大几岁?
5、小朋友放学排队,丁丁前面有7人,后面有6人,这一队有多少人?
6、小冯这个组共有10个人,他和组内每一个人握一次手,得握几次?
7、同学排队做游戏,一共有15个女生,老师让两个女生之间插一个男生,一共要插多少个男生?
8、把一根木头锯成5段,要锯几次?
9、一个数在70和90之间,个位和十位上的数相差2,这个数可能是( )( )( )。
10、妈妈买2两个面包和2盒饼干,要用20元,买3个面包和2盒饼要用24元,1个面包多少元钱?一盒饼干多少元钱?
11、8连续加8,把每次加的得数写在横线上。8, , , , , , , , , 。
12、小红和明明一起做花,小红做了16朵,送给明明4朵后,两人的花一样多,小红比明明多做了几朵花?
13、81连续减9,把每次减的得数写在横线上。81, , , , , , , , 。
14、三个小朋友在比身高,已知甲比乙高,丙比甲高,你能排出三个人的身高顺序吗?
15、姐姐给洋洋和多多各10颗五角星,然后洋洋把3颗五角星给了多多,这样多多比洋洋多几颗五角星?
16、小丽唱一首歌需要五分钟,全班同学一起唱这首歌需要几分钟?
17、按得数从小到大排列:17-9 12-8 13-6 16-7 11-6 14-8 28-9 36-8
< < < < < < <
18、一队小朋友在排队,林平站在最中间,他前面和后面都是7个人,问这一个小朋友共有多少人?
19、一根绳子把它对折两次,然后用剪刀从中间剪开,这根绳子变成了( )条。
20、一共有16个小朋友排队做操,洋洋前面有6人,她后面有几人?
21、红红参加数学比赛,和参加比赛的每个人握一次手,红红一共握了19次手,参加数学比赛的一共有多少人?
22、从3、6、9、12、15中任意挑三个数,写成一个等式,试一试,你能写出几道?
23、一个两位数,个位上的数比十位上的数多3,你能写出这样的两位数吗?
24、把10个苹果分成不相等的三部分,个数最多的部分是几个?
25、一本书有很多页,丽丽看了17页,红红看了28页,问谁剩下的多?多几页?
26、下面每个()可以填什么数?
50+( )>57 52- ( ) <46
27、有12名男同学做操,老师让两位男同学之间插入一名女同学,一共可以插入几名女同学?
28、一年级一班和一年级二班各有56人,一班转走1人,二班转入1人,问那个班人多?多几人?
29、小龙有14本书,小明有6本书,小龙给小明几本书后,两人的书同样多?
30、明明过11岁生日,请了12位同学,已经来了5位,还有几位没到?
31、原来有15只小鸟,,又飞来3只,接着又飞走8只,树上还剩几只鸟?
32、找规律
1 3 6 10 ( )( )( )( )
1 4 9 16( )( )( )( )
33、用█▲●三张卡片,可以摆出6种排法,例如,█▲●,请你试着摆出其他几种排法。
34、爸爸给亮亮和贝贝各15本练习本,亮亮用去7本,贝贝用去8本,谁剩下的练习本多?多几本?
35、三个小朋友比速度,请你猜一猜:谁最慢?谁最快?
小青说:我比小兵慢;小景说:我比小青快;小兵说我比小景慢;速度最快的是( ),最慢的是( )。
36、学校组织秋游,平平要和自己所在的小队的同学每人合一次影,已知平平一共照了15张照片,平平所在的小队一共有( )人
37、一只蝴蝶有6条腿,那么,2只蝴蝶一共有几条腿?3只蝴蝶一共有几条腿?
38、操场上有7个女生、8个男生在打球,过了一会,2个打球的男生去踢 足球 了,问操场上有几个人在打球?
39、按要求圈一圈
(1)圈出○比●多的部分
○○○○○○○○○
●●●●●
(2)圈出○比●同样多的部分
○○○○○○○○○
●●●●●
40、已知:▲+■+■=7 ▲+▲+▲+■+■=13
则:▲=( ) ■=( )
41、多多的妈妈用4元钱买了一个菠萝,用买一个菠萝的钱可以买两根甘蔗,买一根甘蔗的钱可以买4个梨,一个梨的价格是多少钱?
42、一排同学从左往右数,小红站在第5个,从右往左数,她站在第7个,这排共有多少个同学?
43、小红有8个皮球,小明拿2个给小红后,两人皮球的个数一样多,小明原来有几个皮球?
44、第一排有6个○,第二排有16个○,第二排拿出几个给第一排,两排的个数就同样多?
45、16个小朋友站成一排,站明左边有8个人,他的右边有几人?
46、3个小朋友同时吃3个苹果需要3分钟,照这样10个小朋友同时吃10个苹果需要( )分钟。
47、小丽和爸爸都 集邮 ,爸爸给了小明3枚后,两人的邮票同样多。原来爸爸的邮票比小丽的多几枚?
48、70连续减7,把每次减的得数写在横线上:
70、 、 、 、 、 、 、
49、如果明天是妈妈的生日,你想给妈妈买生日礼物。现在你有50元,可以怎么买?(用算式表示):钱包30元,眼镜35元,丝巾26元,帽子15元,手套10元,雨伞18元
50、姐姐有9个5角,妹妹有5个5角,姐姐给妹妹几个5角,两人的钱就同样多了?
51、已知:▲+●=17 ▲+●+●=20
则:▲=( ) ●=( )
52、搭一个三角形要3根火柴,你能用5根火柴棒搭出两个三角形吗?画一画
53、小朋友排队去公园,小丽前边有4人,后边有9个人,小丽排在第几个?一共有几个小朋友去公园?
54、已知:6+○=11 ○+△=12
则:○=( ) △=( )
55、小红组有12人,他先跟4人握过手,还有几个人没握呢?
56、明明这个组共有12人,他和组里每一个人握一次手,得握几次?
57、一共有16个小朋友排队做操,洋洋前面有6人,她后面有几人?
58、丽丽和鹏鹏都有一些书,丽丽给鹏鹏6本后,他们的书就同样多了,原来丽丽比鹏鹏多几本书?
59、哥哥和弟弟手里都有一些铅笔,哥哥给弟弟5支笔后俩人的笔数才相同,那么原来哥哥比弟弟多几支铅笔?
60、小红有20个皮球,小明拿两个给小红后,两人皮球个数一样多,小明原来有几个皮球?
61、红红和小组的每一个人握了一次手,一共握了13次,这组一共有多少人?
62、洋洋先跟小组的5个人握手,又跟剩下的7个人握手,这个小组一共有多少人?
三年级数学 :12类逻辑思维训练题,附综合练习
一、和差问题
已知两数的和与差,求这两个数。
【口诀】:
和加上差,越加越大;
除以2,便是大的;
和减去差,越减越小;
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
二、鸡兔同笼问题
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12
三、浓度问题
(1)加水稀释
【口诀】:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20X15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
【口诀】:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
四、路程问题
(1)相遇问题
【口诀】:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
先走的路程,为3X2=6(千米)
速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6/3=2(小时)。
五、和比问题
已知整体求部分。
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。
六、差比问题(差倍问题)
【口诀】:
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16。
七、工程问题
【口诀】:
工程总量设为1,
1除以时间就是工作效率。
单独做时工作效率是自己的,
一齐做时工作效率是众人的效率和。
1减去已经做的便是没有做的,
没有做的除以工作效率就是结果。
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
[1-(1/6+1/4)X2]/(1/6)=1(天)
八、植树问题
【口诀】:
植树多少颗,
要问路如何?
直的减去1,
圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?
路是直的。所以植树120/4-1=29(颗)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?
路是圆的,所以植树120/4=30(颗)。
九、盈亏问题
【口诀】:
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。
除以分配的差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?
全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)
十、牛吃草问题
【口诀】:
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
十一、年龄问题
【口诀】:
岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
十二、余数问题
【口诀】:
余数有(N-1)个,
最小的是1,最大的是(N-1)。
周期性变化时,
不要看商,
只要看余。
例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?
分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)。
练习题及答案解析
有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
2、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
3、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
分析知:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。
解:(45-5)÷4+5
=10+5
=15(岁)
答:今年儿子15岁。
4、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语 文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加 的人数减去全班人数就是双科都参加的人数。
解:36+38+5-59=20(人)
答:双科都参加的有20人。
5、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
6、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答、
分析:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题),分析答对、答错和没答的题数。
解:(5×20-75)÷8=2(题)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
7、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
分析:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。
解:(240+264)÷(20+16)
=504÷30
=14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
8、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
分析:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
9、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
分析:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。
解:600÷(400-300)
=600÷100
=6(分)
答:经过6分钟两人第一次相遇
10、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
分析:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
四年级数学 上册逻辑思维训练题
1、四年级同学参加广播 体操 比赛,要排列成每行11人,共11行的方阵。这个方阵里有多少同学?
2、用棋子排成一个6×6的正方形,共需用棋子多少枚?
3、有1764棵树苗,准备在一块正方形的苗圃(实心方阵)里栽培。这个正方形苗圃的每边要栽多少棵树苗?
4、576人排成一个实心方阵,这个方阵每边多少人?
5、棋子若干只,恰好可以排成每边6只的正方形,棋子的总数是多少?棋子最外层有多少?
6、在大楼的正方形平顶四周装彩灯,四个角都装一盏,每边装25盏,四周共装彩灯多少盏?
7、某校五年级学生排成一个方阵,最外一层的人数为60人。问方阵外层每边有多少人?这个方阵共有五年级学生多少人?
8、 有16个学生站在正方形场地的四周,四个角上都站1人,如果每边站的人数相等,那么每边站几个学生?
9、有一个正方形池塘,四个角上都栽1棵树,如果每边栽6棵,四边一共栽多少棵树?
10、有100个少先队员参加广播操比赛,十人一行,排成了一个正方形队。这个正方形四周站了多少个少先队员?
11、在一块正方形场地的四周竖电线杆,四个角上都竖1根,一共竖28根,正方形场地每边竖多少根电线杆?
逻辑思维训练题相关 文章 :
1. 逻辑思维训练500题及答案
2. 经典逻辑思维训练题25题带答案
3. 逻辑思维训练500题
4. 逻辑思维训练题目及答案
5. 逻辑思维训练题目集锦分享
6. 关于逻辑思维的智力训练题
7. 逻辑思维训练500题
8. 逻辑思维训练500题及答案(5)
9. 小学生逻辑思维训练题及答案
10. 经典的逻辑思维训练题