❶ 车床的基础知识
.公制(米制)与英制编程
数控车床使用的长度单位量纲有公制(米制)和英制两种,由专用的指令代码设定长度单位量纲,如FANUC-0TC系统用G20表示使用英制单位量纲,G21表示使用公制(米制)单位量纲。系统通电开机后,机床自动处于公制尺寸状态。
2.直径编程和半径编程
(1)直径编程:采用直径编程时,数控程序中X轴的坐标值即为零件图上的直径值。
(2)半径编程:采用半径编程,数控程序中X轴的坐标值为零件图上的半径值。考虑使用上的方便,一般采用直径编程。CNC系统缺省的编程方式为直径编程。
a) A:(30.0,80.0),B:(40.0,60.0) b) A:(15.0,80.0),B:(20.0,60.0)
3.车床的前置刀架与后置刀架
数控车床刀架布置有两种形式:
(1)前置刀架。前置刀架位于Z轴的前面,与传统卧式车床刀架的布置形式一样,刀架导轨为水平导轨,使用四工位电动刀架;
(2)后置刀架。后置刀架位于Z轴的后面,刀架的导轨位置与正平面倾斜,这样的结构形式便于观察刀具的切削过程、切屑容易排除、后置空间大,可以设计更多工位的刀架,一般多功能的数控车床都设计为后置刀架。
4.刀尖半径补偿
在数控车削编程中为了编程方便,把刀尖看作为一个尖点,数控程序中刀具的运动轨迹即为该假想尖点的运动轨迹。
数控系统中引入了刀尖半径补偿: 在数控程序编写完成后,将已知刀尖半径值输入刀具补偿表中,程序运行时数控系统会自动根据对应刀尖半径值对刀具的实际运动轨迹进行补偿。
数控加工中一般都使用可转位刀片,每种刀片的刀尖圆角半径是一定的,选定了刀片的型号,对应刀片的刀尖圆角半径值即可确定。
刀尖圆弧半径补偿指令:
指令格式 G41(G42、G43)G01(G00)X(U)_Z(W)
指令功能 G41为刀尖圆弧半径左补偿;
G42为刀尖圆弧半径右补偿;
G40是取消刀尖圆弧半径补偿。
指令说明 顺着刀具运动方向看,刀具在工件的左边为刀尖圆弧半径左补偿;刀具在工件的右边为刀尖圆弧半径右补偿。只有通过刀具的直线运动才能建立和取消刀尖圆弧半径补偿。
5.数控机床的初始状态
初始状态: 指数控机床通电后具有的状态,也称为数控系统内部默认的状态,一般设定绝对坐标方式编程、使用米制长度单位量纲、取消刀具补偿、主轴和切削液泵停止工作等状态作为数控机床的初始状态。
❷ 数控机床基础知识
数控机床基本概念
1.1.1 数控技术与数控
数控技术,简称数控(Numerical Control—NC),是利用数字化信息对机械运动及加工过程进行控制的一种方法。由于现代数控都采用了计算机进行控制,因此,也可以称为计算机数控(Computerized Numerical Control—CNC)。
为了对机械运动及加工过程进行数字化信息控制,必须具备相应的硬件和软件。用来实现数字化信息控制的硬件和软件的整体成为数控系统(Numerical Control System),数控系统的核心是数控装置(Numerical Controller)。
采用数控技术进行控制的机床,称为数控机床(NC机床)。它是一种综合应用了计算机技术、自动控制技术、精密测量技术和机床设计等先进技术的典型机电一体化产品,是现代制造技术的基础。控制机床也是数控技术应用最早、最广泛的领域,因此,数控机床的水平代表了当前数控技术的性能、水平和发展方向。
数控机床种类繁多,有钻 铣 镗床类、车削类、磨削类、电加工类、锻压类、激光加工类和其他特殊用途的专用数控机床等等,凡是采用了数控技术进行控制的机床统称为NC机床。
带有自动换刀装置ATC(Automatic Tool Changer—ATC)的数控机床(带有回转刀架的数控车床除外)称为加工中心(Machine Center—MC)。它通过刀具的自动交换,工件可以一次装、夹完成多工序的加工,实现了工序集中和工艺的复合,从而缩短了辅助加工时间,提高了机床的效率;减少了工件安装、定位次数,提高了加工精度。加工中心是目前数控机床中产量最大、应用最广的数控机床。
在加工中心的基础上,通过增加多工作台(托盘)自动交换装置(Auto Pallet Changer—APC)以及其他相关装置,组成的加工单元称为柔性加工单元(Flexible Manufacturing Cell—FMC)。FMC不仅是现了工序的集中和工艺的复合,而且通过工作台(托盘)的自动交换和较完善的自动监测、监控功能,可以进行一定时间的无人化加工,从而进一步提高了设备的加工效率。FMC既是柔性制造系统FMS(Flexible Manufacturing System)的基础,又可以作为独立的自动化加工设备使用,因此其发展速度较快。
在FMC和加工中心的基础上,通过增加物流系统、工业机器人以及相关设备,并由中央控制系统进行集中、统一控制和管理,这样的制造系统称为柔性制造系统FMS(Flexible Manufacturing System)。FMS不仅可以进行长时间的无人化加工,而且可以实现多品种零件的全部加工和部件装配,实现了车间制造过程的自动化,它是一种高度自动化的先进制造系统。
随着科技发展,为了适应市场需求多变的形势,对现代制造业来说,不仅需要发展车间制造过程的自动化,而且要实现从市场预测、生产决策、产品设计、产品制造直到产品销售的全面自动化。将这些要求综合、构成的完整的生产制造系统,称为计算机集成制造系统(Computer Integrated Manufacturing System-—CIMS)。CIMS将一个更长的生产、经营活动进行了有机的集成,实现了更高效益、更高柔性的智能化生产,是当今自动化制造技术发展的最高阶段。在CIMS中,不仅是生产设备的集成,更主要的是以信息为特征的技术集成和功能集成。计算机是集成的工具,计算机辅助的自动化单元技术是集成的基础,信息和数据的交换及共享是集成的桥梁,最终形成的产品,可以看成是信息和数据的物质体现。
1.1.2 数控系统及其组成
数控系统的基本组成
数控系统是所有数控设备的核心。数控系统的主要控制对象是坐标轴的位移(包括移动速度、方向、位置等),其控制信息主要来源于数控加工或运动控制程序。因此,作为数控系统的最基本组成应包括:程序的输入/输出装置、数控装置、伺服驱动这三部分。
输入/输出装置输入/输出装置的作用是进行数控加工或运动控制程序、加工与控制数据、机床参数以及坐标轴位置、检测开关的状态等数据的输入、输出。键盘和显示器是任何数控设备都必备的'最基本的输入/输出装置。此外,根据数控系统的不同,还可以配光电阅读机、磁带机或软盘驱动器等。作为外围设备,计算机是目前常用的输入/输出装置之一。
数控装置数控装置是数控系统的核心。它由输入/输出接口线路、控制器、运算器和存储器等部分组成。数控装置的作用是将输入装置输入的数据,通过内部的逻辑电路或控制软件进行编译、运算和处理,并输出各种信息和指令,以控制机床的各部分进行规定的动作。
在这些控制信息和指令中,最基本的是坐标轴的进给速度、进给方向和进给位移量指令。它经插补运算后生成,提供给伺服驱动,经驱动器放大,最终控制坐标轴的位移。它直接决定了刀具或坐标轴的移动轨迹。
此外,根据系统和设备的不同,如:在数控机床上,还可能有主轴的转速、转向和起、停指令;刀具的选择和交换指令;冷却、润滑装置的起、停指令;工件的松开、夹紧指令;工作台的分度等辅助指令。在数控系统中,它们是通过接口,以信号的形式提供给外部辅助控制装置,由辅助控制装置对以上信号进行必要的编译和逻辑运算,放大后驱动相应的执行器件,带动机床机械部件、液压气动等辅助装置完成指令规定的动作。
伺服驱动伺服驱动通常由伺服放大器(亦称驱动器、伺服单元)和执行机构等部分组成。在数控机床上,目前一般都采用交流伺服电动机作为执行机构;在先进的高速加工机床上,已经开始使用直线电动机。另外,在20世纪80年代以前生产的数控机床上,也有采用直流伺服电动机;对于简易数控机床,也有用作为执行器件。伺服放大器的形式决定于执行器件,它必须与驱动电动机配套使用。
以上是数控系统最基本的组成部分。随着数控技术的发展和机床性能水平的提高,对系统的功能要求也日益增强,为了满足不同机床的控制要求,保证数控系统的完整性和统一性,并方便用户使用,常用较为先进的数控系统,一般都带有内部可编程控制器作为机床的辅助控制装置。此外,在金属切削机床上,主轴驱动装置也可以成为数控系统的一个部分;在闭环数控机床上,测量、检测装置也是数控系统必不可少的。对于先进的数控系统,有时甚至采用计算机作为系统的人机界面和数据的管理、输入/输出设备,从而使数控系统的功能更强、性能更完善。
总之,数控系统的组成决定于控制系统的性能和设备的具体控制要求,其配置和组成具有很大的区别,除加工程序的输入/输出装置、数控装置、伺服驱动这三个最基本的组成部分外,还可能有更多的控制装置。图1-1的虚线框部分表示计算机数控系统。
NC、CNC、SV与PLC的概念
NC(CNC)、SV与PLC(PC、PMC)是数控设备中最为常用的英文缩写,在实际使用中,在不同的场合具有不同的含义。
NC(CNC)NC与CNC分别是数控(Numerical Control)与计算机数控(Computerized Numerical Control)的常用英文缩写。由于现代数控都采用了计算机控制,因此,可以认为NC和CNC的含义完全等同。在工程应用上,根据使用场合的不同,NC(CNC)通常有三种不同的含义:在广义上代表一种控制技术——数控技术;在狭义上代表一种控制系统的实体——数控系统;此外,还可以代表一种具体的控制装置——数控装置。
SVSV是伺服驱动(Servo Drive,简称伺服)的常用英文缩写。按日本JIS标准规定的术语,它是“以物体的位置、方向、状态作为控制量,追踪目标值的任意变化的控制机构”。简言之,它是一种能够自动跟随目标位置等物理量的控制装置。
在数控机床上,伺服驱动的作用主要有两个方面:一是使坐标轴按照数控装置给定的速度运行;二是使坐标轴按照数控装置给定的位置定位。
伺服驱动的控制对象通常是机床坐标轴的位移和速度;执行机构是伺服或;对输入指令信号进行控制和功率放大的部分常称为伺服放大器(亦称为驱动器、放大器、伺服单元等),它是伺服驱动的核心。
伺服驱动不仅可以和数控装置配套使用,而且还可以单独作为一个位置(速度)随同系统使用,故也常称为伺服系统。在早期的数控系统上,位置控制部分一般与CNC制成一体,伺服驱动只进行速度控制,因此,伺服驱动又常称为速度控制单元。
PLCPC是可编程序控制器(Programmable Controller)的英文缩写。随着个人计算机的日益普及,为了避免和个人计算机(亦称PC)混淆,现在一般都将可编程序控制器称为可编程序逻辑控制器(Programmalbe Logic Controller——PLC)或可编程序机床控制器(Programmable Machine Controller——PMC)。因此,在数控机床上,PC、PLC、PMC具有完全相同的含义。
PLC具有响应快、性能可靠、使用方便、编程和调试容易等特点,并可直接驱动部分机床电器,因此,被广泛用来作为数控设备的辅助控制装置。目前,大多数数控系统都带有内部PLC,用于处理数控机床的辅助指令,从而大大简化了机床的辅助控制装置。此外,在很多场合,通过PLC的轴控制模块、定位模块等特殊功能模块,还可以直接利用PLC,实现点位控制、直线控制以及简单的轮廓控制,组成数控专用机床或数控生产线。
1.1.3 数控机床的组成与加工原理
数控机床的基本组成
数控机床是最典型的数控设备。为了了解数控机床的基本组成,首先需要分析数控机床加工零件的工作过程。在数控机床上,为了进行零件的加工,可以通过如下步骤进行:
据被加工零件的图样与工艺方案,用规定的代码和程序格式,将刀具的移动轨迹、加工工艺过程、工艺参数、切削用量等编写成数控系统能够识别的指令形式,即编写加工程序。
将所编写的加工程序输入数控装置。
数控装置对输入的程序(代码)进行译码、运算处理,并向各坐标轴的伺服驱动装置和辅助机能控制装置发出相应的控制信号,以控制机床的各部件的运动。
在运动过程中,数控系统需要随时检测机床的坐标轴位置、行程开关的状态等,并与程序的要求相比较,以决定下一步动作,直到加工出合格的零件。
操作者可以随时对机床的加工情况、工作状态进行观察、检查,必要时还需要对机床动作和加工程序进行调整,以保证机床安全、可靠的运行。
由此可知,作为数控机床的基本组成,它应包括:输入/输出装置、数控装置、伺服驱动和反馈装置、辅助控制装置以及机床本体等部分(如图1-1所示)。
图1—1中的虚线框部分统称为数控系统,实现对机床主机的加工控制。目前数控系统大部分采用计算机数控(即CNC),图中的输入/输出装置、数控装置、伺服驱动和反馈装置构成的机床数控系统,作用在上面已经叙述。下面再简要介绍其他组成部分。
图1—1数控机床的组成
测量反馈装置它是闭环(半闭环)数控机床的检测环节,其作用是通过现代化的测量元件:脉冲编码器、旋转变压器、感应同步器、光栅、磁尺和激光测量仪等,将执行元件(如、刀架等)或工作台等的实际位移的速度和位移量检测出来,反馈回伺服驱动装置或数控装置,并补偿进给的速度或执行机构的运动误差,以达到提高运动机构精度的目的。检测装置的安装、检测信号反馈的位置,决定于数控系统的结构形式,伺服内装式脉冲编码器、测速机以及直线光栅等都是较常用的检测部件。
由于先进的伺服都采用了数字式伺服驱动技术(称为数字伺服),伺服驱动和数控装置间一般都采用总线进行连接;反馈信号在大多数场合都是与伺服驱动进行连接,并通过总线传送到数控装置。只有在少数场合或采用模拟量控制的伺服驱动(俗称模拟伺服)时,反馈装置才需要直接和数控装置进行连接。
辅助控制机构、进给传动机构它是介于数控装置和机床机械、液压部件之间的控制部件。其主要作用是接受数控装置输出的主轴转速、转向和启停指令;刀具选择交换;冷却、润滑装置的启停指令;工件和机床部件的松开、夹紧工作台转位等辅助指令信号,以及机床上检测开关的状态等信号,经必要的编译、逻辑判断、功率放大后直接驱动相应的执行元件,带动机床机械部件、液压气动等辅助装置完成指令规定的动作。它通常由PLC和强电控制回路构成,PLC在结构上可以与CNC一体化(内置式PLC),也可以相对独立(外置式PLC)。
机床本体就是数控机床的机械结构件,也是由主传动系统、进给传动系统、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置、排屑、防护系统等部分组成。但为了满足数控的要求,充分发挥机床性能,它在总体布局、外观造型、传动系统结构、刀具系统以及操作性能方面都已发生了很大的变化。机床机械部件包括床身、箱体、立柱、导轨、工作台、主轴、进给机构、刀具交换机构等。
数控加工的原理
在传统的金属切削机床上,加工零件时需要操作者根据图样的要求,通过不断改变刀具的运动轨迹和运动速度等参数,使刀具对工件进行切削加工,最终加工出合格零件。
数控机床的加工,其实质是应用了“微分”原理。其工作原理与过程可以简述如下(图1-2):
数控装置根据加工程序要求的刀具轨迹,将轨迹按机床对应的坐标轴,以最小移动量(脉冲当量)进行微分(图1-2中的△X、△Y),并计算出各坐标轴需要移动的脉冲数。
通数控装置的“插补”软 件或“插补”运算器,把要求的轨迹用以“最小移动单位”为单位的等效折线进行拟合,并找出最接近理论轨迹的拟合折线。
③数控装置根据拟合折线的轨迹,给相应的坐标轴连续不断地分配进给脉冲,并通过伺服驱动使机床坐标轴按分配的脉冲运动。图1-2数控加工原理示意图
由上可见:第一,只要数控机床的最小移动量(脉冲当量)足够小,所用的拟合折线就可以等效代替理论曲线。第二,只要改变坐标轴的脉冲分配方式,即可以改变拟合折线的形状,从而达到改变加工轨迹的目的。第三,只要改变分配脉冲的频率,即可改变坐标轴(刀具)的运动速度。这样就实现了数控机床控制刀具移动轨迹的根本目的。
以上根据给定的数学函数,在理想轨迹(轮廓)的已知点之间,通过数据点的密化,确定一些中间点的方法,称为插补。能同时参与插补的坐标轴数,称为联动轴数。显然,当数控机床的联动轴数越多,机床加工轮廓的性能就越强。因此,联动轴的数量是衡量数控机床性能的重要技术指标。
❸ 数控车床方面全面的知识
一 数控车床的分类
数控车床品种繁多,规格不一,可按如下方法进行分类。
1. 按车床主轴位置分类
1) 卧式数控车床 卧式数控车床又分为数控水平导轨卧式车床和数控倾斜导轨卧式车床。其倾斜导轨结构可以使车床具有更大的刚性,并易于排除切屑。
卧式数控车床
2) 立式数控车床 立式数控车床简称为数控立车,其车床主轴垂直于水平面,一个直径很大的圆形工作台,用来装夹工件。这类机床主要用于加工径向尺寸大、轴向尺寸相对较小的大型复杂零件。
立式数控车床
2. 按刀架数量分类
1) 单刀架数控车床 数控车床一般都配置有各种形式的单刀架,如四工位卧动转位刀架或多工位转塔式自动转位刀架。
单刀架数控车床
2) 双刀架数控车床 这类车床的双刀架配置平行分布,也可以是相互垂直分布。
双刀架数控车床
3. 按功能分类
1) 经济型数控车床
采用步进电动机和单片机对普通车床的进给系统进行改造后形成的简易型数控车床,成本较低,但自动化程度和功能都比较差,车削加工精度也不高,适用于要求不高的回转类零件的车削加工。
经济型数控车床
2) 普通数控车床 根据车削加工要求在结构上进行专门设计并配备通用数控系统而形成的数控车床,数控系统功能强,自动化程度和加工精度也比较高,适用于一般回转类零件的车削加工。这种数控车床可同时控制两个坐标轴,即X轴和Z轴。
普通数控车床
3) 车削加工中心 在普通数控车床的基础上,增加了C轴和动力头,更高级的数控车床带有刀库,可控制X、Z和C三个坐标轴,联动控制轴可以是(X、Z)、(X、C)或(Z、 C)。由于增加了C轴和铣削动力头,这种数控车床的加工功能大大增强,除可以进行一般车削外可以进行径向和轴向铣削、曲面铣削、中心线不在零件回转中心的孔和径向孔的钻削等加工。
车削加工中心内部示意图
二 数控车床的结构特点
与传统车床相比,数控车床的结构有以下特点:
1) 由于数控车床刀架的两个方向运动分别由两台伺服电动机驱动,所以它的传动链短。不必使用挂轮、光杠等传动部件,用伺服电动机直接与丝杠联结带动刀架运动。伺服电动机丝杠间也可以用同步皮带副或齿轮副联结。
2) 多功能数控车床是采用直流或交流主轴控制单元来驱动主轴,按控制指令作无级变速,主轴之间不必用多级齿轮副来进行变速。为扩大变速范围,现在一般还要通过一级齿轮副,以实现分段无级调速,即使这样,床头箱内的结构已比传统车床简单得多。数控车床的另一个结构特点是刚度大,这是为了与控制系统的高精度控制相匹配,以便适应高精度的加工。
3) 数控车床的第三个结构特点是轻拖动。刀架移动一般采用滚珠丝杠副。滚珠丝杠副是数控车床的关键机械部件之一,滚珠丝杠两端安装的滚动轴承是专用铀承,它的压力角比常用的向心推力球辆承要大得多。这种专用轴承配对安装,是选配的,最好在轴承出厂时就是成对的。
4) 为了拖动轻便,数控车床的润滑都比较充分,大部分采用油雾自动润滑。
5) 由于数控机床的价格较高、控制系统的寿命较长,所以数控车床的滑动导轨也要求耐磨性好。数控车床一般采用镶钢导轨,这样机床精度保持的时间就比较长,其使用寿命也可延长许多。
6) 数控车床还具有加工冷却充分、防护较严密等特点,自动运转时一般都处于全封闭或半封闭状态。
7) 数控车床一般还配有自动排屑装置。
三 数控车床的布局
典型数控车床的机械结构系统组成,包括主轴传动机构、进给传动机构、刀架、床身、辅助装置(刀具自动交换机构、润滑与切削液装置、排屑、过载限位)等部分。
数控车床床身导轨与水平面的相对位置如图1 - 2所示,它有4种布局形式:图1-2 (a)平床身,图1-2(b)斜床身,图1-2(c)平床身斜滑板,图1-2(d)为立床身。
数控车床床身导轨与水平面的相对位置图
水平床身的工艺性好,便于导轨面的加工。水平床身配上水平放置的刀架可提高刀架的运动精度,一般可用于大型数控车床或小型精密数控车床的布局。但是水平床身由于下部空间小,故排屑困难。从结构尺寸上看,刀架水平放置使得滑板横向尺寸较长,从而加大了机床宽度方向的结构尺寸。如下图所示,
数控车床水平床身
水平床身配置倾斜放置的滑板,并配置倾斜式导轨防护罩,这种布局形式—方面有水平床身丁艺性好的特点,另一方面机床宽度方向的尺寸较水平配置滑板的要小,且排屑方便。水平床身配上倾斜放置的滑板和斜床身配置斜滑板布局形式被中、小型数控车床所普遍采用。此两种布局形式的特点是排屑容易,热铁屑不会堆积在导轨上,也便于安装自动排屑器;操作方便,易于安装机械手,以实现单机自动化;机床占地面积小,外形简单、美观,容易实现封闭式防护。
数控车床倾斜床身
斜床身其导轨倾斜的角度分别为30°、45° 、60°、75°和90°(称为立式床身),若倾斜角度小,排屑不便;若倾斜角度大,导轨的导向性差,受力情况也差。导轨倾斜角度的大小还会直接影响机床外形尺寸高度与宽度的比例。综合考虑上面的因素,中小规格的数控车床其床身的倾斜度以60为宜。
立式床身
❹ 普通车床入门的基础知识有哪些
1、主轴箱。支撑主轴并通过三爪卡盘等夹具带动工件作旋转运动;其上有4个手柄,通过2个手柄配合实现24个正转速度和12个反转转速。
2、挂轮箱。箱内3轴,4个齿轮;更换这4个齿轮,配合进给箱变速机构,可以拓展螺纹导程和纵横向进给量。
3、进给箱。进给传动系统的变速机构,经光杠或丝杠(二者相互否定)传递给溜板箱,其上有4个手柄。
4、溜板箱。接受光杠(或丝杠)传递来的运动,通过手柄和快移机构实现车刀的纵横向运动。
5、刀架部分。床鞍、中滑板、小滑板和四方刀架等,完成纵向、横向、斜向和曲线运动。
6、尾座。安装床身导轨上,和床鞍不一样的导轨;安装后顶尖,支撑较长工件;装钻夹头、丝锥或铰刀进行孔的加工。
7、床身。支撑连接车床各部件。
8、床脚。支撑床身,安装床身上的各部件;通过垫块和地脚螺栓调整车床为水平并固定。
9、冷却系统。冷却泵通过冷却管、喷嘴将切削液喷射到切削区域。
❺ 车床基本知识
车床是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。
中文名
车床
外文名
lathe
别名
旋床
性质
对旋转的工件进行车削加工的机床
地位
被认为是所有设备的工作“母机”
快速
导航
车床发展车床类型发展方向拖动特点润滑保养工作安全问题修整步骤操作规程
组成部分
主轴箱:又称床头箱,它的主要任务是将主电机传来的旋转运动经过一系列的变速机构使主轴得到所需的正反两种转向的不同转速,同时主轴箱分出部分动力将运动传给进给箱。主轴箱中的主轴是车床的关键零件。主轴在轴承上运转的平稳性直接影响工件的加工质量,一旦主轴的旋转精度降低,则机床的使用价值就会降低。
进给箱:又称走刀箱,进给箱中装有进给运动的变速机构,调整其变速机构,可得到所需的进给量或螺距,通过光杠或丝杠将运动传至刀架以进行切削。
丝杠与光杠:用以联接进给箱与溜板箱,并把进给箱的运动和动力传给溜板箱,使溜板箱获得纵向直线运动。丝杠是专门用来车削各种螺纹而设置的,在进行工件的其他表面车削时,只用光杠,不用丝杠。同学们要结合溜板箱的内容区分光杠与丝杠的区别。
溜板箱:是车床进给运动的操纵箱,内装有将光杠和丝杠的旋转运动变成刀架直线运动的机构,通过光杠传动实现刀架的纵向进给运动、横向进给运动和快速移动,通过丝杠带动刀架作纵向直线运动,以便车削螺纹。
刀架:有两层滑板(中、小滑板)、床鞍与刀架体共同组成。用于安装车刀并带动车刀作纵向、横向或斜向运动。
尾架:安装在床身导轨上,并沿此导轨纵向移动,以调整其工作位置。尾架主要用来安装后顶尖,以支撑较长工件,也可安装钻头、铰刀等进行孔加工。
床身:是车床带有精度要求很高的导轨(山形导轨和平导轨)的一个大型基础部件。用于支撑和连接车床的各个部件,并保证各部件在工作时有准确的相对位置。
冷却装置:冷却装置主要通过冷却水泵将水箱中的切削液加压后喷射到切削区域,降低切削温度,冲走切屑,润滑加工表面,以提高刀具使用寿命和工件的表面加工质量。
以上资讯由固蓝建筑防水摘自网络,仅供参考!