当前位置:首页 » 基础知识 » 运算比较属于哪个数学知识点
扩展阅读
动漫设计类是什么专业 2024-11-17 23:13:02

运算比较属于哪个数学知识点

发布时间: 2022-12-23 03:08:23

A. 初中数学知识点总结

很多人不知道怎么才能学好初中数学,想知道提高数学成绩的 方法 有哪些,其实还要掌握了 复习方法 ,就能学好数学,下面我给大家分享一些初中数学知识点 总结 ,希望能够帮助大家,欢迎阅读!

初中数学知识点总结

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点知识:

初中数学第一课,认识正数与负数!新初一的来~

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

重点知识:

初中数学第二课,有理数的相关知识!新初一的来~

4.有理数大小比较

1.有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:

(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

(3)作差比较:

若a﹣b>0,则a>b;

若a﹣b<0,则a<b;< p="">

若a﹣b=0,则a=b.

5.有理数的减法

有理数减法法则

减去一个数,等于加上这个数的相反数。 即:a﹣b=a+(﹣b)

方法指引:

①在进行减法运算时,首先弄清减数的符号;

②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);

注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。

减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

6.有理数的乘法

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同零相乘,都得0。

(3)多个有理数相乘的法则:

①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

②几个数相乘,有一个因数为0,积就为0。

(4)方法指引

①运用乘法法则,先确定符号,再把绝对值相乘.

②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.

7.有理数的混合运算

1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

有理数混合运算的四种运算技巧:

(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.

(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.

(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.

(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

8.科学记数法—表示较大的数

1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

2.规律方法总结

①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.

重点知识:

初中数学第八课:科学计数法,新初一的来~

9.代数式求值

(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。

题型简单总结以下三种:

①已知条件不化简,所给代数式化简;

②已知条件化简,所给代数式不化简;

③已知条件和所给代数式都要化简.

10.规律型:图形的变化类

首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。探寻规律要认真观察、仔细思考,善用联想来解决这类问题。

11.等式的性质

1.等式的性质

性质1 等式两边加同一个数(或式子)结果仍得等式;

性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

2.利用等式的性质解方程

利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.

应用时要注意把握两关:

①怎样变形;

②依据哪一条,变形时只有做到步步有据,才能保证是正确的.

新初一第二章知识点总结:整式的加减,为孩子 收藏 !

12.一元一次方程的解

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13.解一元一次方程

1.解一元一次方程的一般步骤

去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14.一元一次方程的应用

1.一元一次方程解应用题的类型

(1)探索规律型问题;

(2)数字问题;

(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

(5)行程问题(路程=速度×时间);

(6)等值变换问题;

(7)和,差,倍,分问题;

(8)分配问题;

(9)比赛积分问题;

(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

2.利用方程解决实际问题的基本思路

首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤

(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

(3)列:根据等量关系列出方程.

(4)解:解方程,求得未知数的值.

(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

15.正方体相对两个面上的文字

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

16.直线、射线、线段

(1)直线、射线、线段的表示方法

①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:

①点经过直线,说明点在直线上;

②点不经过直线,说明点在直线外。

17.两点间的距离

(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

18.角的概念

(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。

(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。

(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″。

19.角平分线的定义

从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线。

①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC。

②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的运算

(1)度、分、秒的加减运算。

在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。

(2)度、分、秒的乘除运算

①乘法:度、分、秒分别相乘,结果逢60要进位。

②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。

21.由三视图判断几何体

(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。

(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。

学好初中数学的小窍门

(一)、兴趣

都说兴趣是最好的老师,最重要的是要对数学有兴趣,如果厌烦它,是怎么也提不高的。

(二)、理解能力

数学是理科,理解能力很重要,没有理解能力,你的数学乃至所有理科的学习将举步难行。而理解能力的培养很难,你必须尝试去理解一些对你很难的哲学理论和相对抽象的数学模型。最简单的培养也十分艰辛,需要做到对于一道中等难度的题,看到辅助线能在1分钟以内反应出其做法。其次,对老师所讲的题不仅要懂,而且还要揣摩老师做题时的具体心路历程,这才是为什么很多人数学学得好的基础能力。

(三)、勤奋

我见过很多很努力但仍学不好理科的同学。数学考试的令人无语之处在于只要你认真按老师的要求学习很容易及格,但要想考上145分靠老师的那点练习则远远不够。即使是对于差生来说,学习仍然有简单易行的方法。掌握正确的方法,才能勤奋有所获。

初中数学成绩如何提高

1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。

2. 专心听讲:

(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。

若老师讲到你早先预习时不了解的那部份,你就要特别注意。

有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。

(2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。

待回家后只需花很短的时间,便能将今日所教的课程复习完毕。事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什么都不记得,白白浪费一节课,真可惜。

3. 课后练习 :

(1) 整理重点

有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学着重推理,不必死背,所以什么都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的 医学知识 、 用药知识 熟记心中,如何在第一时间救人。很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地〃背熟。

(2) 适当练习

重点整理完后,要适当练习。先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。

(3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。

4. 测验 :

(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。

(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。

(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。


初中数学知识点总结相关 文章 :

★ 初中数学知识点总结大全

★ 初中数学知识点总结

★ 初中数学知识点总结大全2020

★ 2021初中数学知识点总结

★ 初中数学知识点总结:常用的数学公式

★ 初中数学知识点总结梳理

★ 初中数学知识点总结梳理2020

★ 2020初中数学知识点总结归纳

★ 初中数学知识点总结归纳

★ 初二数学知识点整理归纳

B. 加减乘除算不算数学的知识点

是的。加减乘除属于数学这门学科的范畴,而且在小学就会学习,慢慢再学习各个算法的延伸,算是基础的知识点。

C. 九年级数学代数式知识点归纳

一、 重要概念

分类:

1.代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的'代数式为对象。划分代数式类别时,是从外形来看。如,

=x, =│x│等。

4.系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5.同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6.根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。

7.算术平方根

⑴正数a的正的平方根( [a与平方根的区别]);

⑵算术平方根与绝对值

① 联系:都是非负数, =│a│

②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数

⑴ ( 幂,乘方运算)

① a0时, ②a0时, 0(n是偶数), 0(n是奇数)

⑵零指数: =1(a0)

负整指数: =1/ (a0,p是正整数)

二、 运算定律、性质、法则

1.分式的加、减、乘、除、乘方、开方法则

2.分式的性质

⑴基本性质: = (m0)

⑵符号法则:

⑶繁分式:①定义;②化简方法(两种)

3.整式运算法则(去括号、添括号法则)

4.幂的运算性质:① ② ③ = ;④ = ;⑤

技巧:

5.乘法法则:⑴单⑵单⑶多多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(ab) =

7.除法法则:⑴单⑵多单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质: = ; ; (a0); (a0)(正用、逆用)

10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

11.科学记数法: (110,n是整数=

三、 应用举例(略)

四、 数式综合运算(略)

D. 小数的大小比较属于数与代数中的数与运算吗

小数的大小比较属于数与代数领域的知识,在本册数学书中,隶属于第三单 元“小数的意义和性质”。

E. 初中数学知识点有哪些

初中数学知识点有:

1、实数的运算顺序是乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

2、代数式是用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。

3、一个单项式中,所有字母的指数叫做这个单项式的次数。

4、整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

5、方程的解是使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

F. 六年级数学整数运算知识点整理

1、整数加法:

把两个数合并成一个数的运算叫做加法。

在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

加数+加数=和一个加数=和-另一个加数

2、整数减法:

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

加法和减法互为逆运算。

3、整数乘法:

求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的.个数都叫做因数。相同加数的和叫做积。

在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。

一个因数×一个因数=积一个因数=积÷另一个因数

4、整数除法:

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

乘法和除法互为逆运算。

在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

被除数÷除数=商除数=被除数÷商被除数=商×除数

G. 数学角的比较与运算

在数学角的比较与运算中,知识点主要是角的和与差的加减运算,另外有角的平分线和三等分线、四等分线,但是在几何题书写过程的时候一定要规范。

H. 六年级数学数和数的运算知识点基本概念

一 概念

(一)整数

1 整数的意义 自然数和0都是整数。

2 自然数 我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。

一个物体也没有,用0表示。0也是自然数。

3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5数的整除 整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的.末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数

几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18

3的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6是它们的最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

I. 运算定律是几年级的内容

《运算定律》是部编版四年级数学下册第三单元的知识点,本单元主要学习的内容有两个小节,第一小节是加法运算定律及其应用;第二小节是乘法运算定律及其应用。总共学习到的定律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律这五条定律。

本单元所学习的五条运算定律,不仅适用于整数的加法和乘法,同时也适用于有理数的加法和乘法。随着数的范围的扩充,在实数甚至复数的加法和乘法中,它们仍然成立。

因此,这五条运算定律在数学中具有重要的地位和作用。在学习和应用这些定律时一定要扎实掌握,为以后的学习打好基础。

运算定律的举例

一、加法交换律:两个数相加,交换加数的位置,和不变。用字母表示:a+b=b+a。

二、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。用字母表示:(a+b)+c=a+(b+c)。

三、减法的性质:一个数连续减去两个数,可以减去这两个数的和;也可以先减去第一个减数,再减去第二个减数,结果不变。用字母表示:a-b-c=a-(b+c)。

四、乘法交换律:两个数相乘,交换两个因数的位置,积不变。字母表示:axb=bxa。

五、乘法结合律:三个数相乘,先乘前两个数或者先乘后两个数,积不变。用字母表示:(axb)xc=ax(bxc)。

六、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数相乘,再相加,结果不变。

J. 初一数学知识点总结

第一册

第一章 有理数
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。

1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a• (b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

第二章 一元一次方程
2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘

2.4再探实际问题与一元一次方程

第三章 图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体
几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量
角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图

第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多——全面调查举例
用划记法记录数据,“正”字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况——抽样调查举例
抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习 调查“你怎样处理废电池?”
调查活动主要包括以下五项步骤:
一、 设计调查问卷
⑴设计调查问卷的步骤
①确定调查目的;
②选择调查对象;
③设计调查问题
⑵设计调查问卷时要注意:
①提问不能涉及提问者的个人观点;
②不要提问人们不愿意回答的问题;
③提供的选择答案要尽可能全面;
④问题应简明;
⑤问卷应简短。
二、实施调查
将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:
⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;
⑵告诉被调查者你收集数据的目的。
三、处理数据
根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流
根据调查结果,讨论你们小组有哪些发现和建议?
五、写一份简单的调查报告

第二册

第五章 相交线与平行线
5.1相交线
5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
5.1.2
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线
5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。
两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。
两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。
判定两条直线平行的方法:
方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。

第六章 平面直角坐标系
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章 三角形
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。
三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的稳定性
三角形具有稳定性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)
多边形的外角和等于360。
7.4课题学习 镶嵌

第八章 二元一次方程组
8.1二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元
由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
8.3再探实际问题与二元一次方程组

第九章 不等式与不等式组
9.1不等式
9.1.1不等式及其解集
用“<”或“>”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
9.1.2不等式的性质
不等式有以下性质:
不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
9.2实际问题与一元一次不等式
解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。
9.3一元一次不等式组
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
9.4课题学习 利用不等关系分析比赛