当前位置:首页 » 基础知识 » 成人高考数学知识点学习
扩展阅读
请叫我欣欣同学哪个学校 2024-11-17 18:35:12
老同学家在哪里有几个子 2024-11-17 18:16:53

成人高考数学知识点学习

发布时间: 2022-12-22 13:59:21

① 成人高考数学常见知识点

成人高考数学的知识点有很多,建议多看一下官方招生信息及考试大纲,在此基础上好好准备,

② 成人高考数学知识考点

1 集合思想及应用

集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解。

例:已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求实数m的取值范围。

2 充要条件的判定

充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。

例:已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件

3 运用向量法解题

本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。

例:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线

AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。

4 三个“二次”及关系

三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。

例:已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。

5 求解函数解析式

求解函数解析式是高考重点考查内容之一,需引起重视。

例:已知f(2-cosx)=cos2x+cosx,求f(x-1)。

例:(1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。

(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式。

6 函数值域及求法

函数的值域及其求法是近几年高考考查的重点内容之一。

例:设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。

(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。

(2)当m∈M时,求函数f(x)的最小值。

(3)求证:对每个m∈M,函数f(x)的最小值都不小于1。

7 奇偶性与单调性(一)

函数的单调性、奇偶性是高考的重点内容之一,掌握判定方法,正确认识单调函数与奇偶函数的图象。

例:设a>0,f(x)= 是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数。

8 奇偶性与单调性(二)

函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出。本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。

例:已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。

例:已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值。

9 指数函数、对数函数问题

指数函数、对数函数是高考考查的重点内容之一。

例:设f(x)=log2 ,F(x)= +f(x)。

(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;

(2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)> ;

(3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解。

10 函数图象与图象变换

函数的图象与性质是高考考查的重点内容之一,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。

例:已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。

11 函数中的综合问题

函数综合问题是历年高考的热点和重点内容之一,一般难度较大。

例:设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4。

(1)求证:f(x)为奇函数;

(2)在区间[-9,9]上,求f(x)的最值。

12 三角函数的图象和性质

三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来。本节主要帮助考生掌握图象和性质并会灵活运用。

例:已知α、β为锐角,且x(α+β- )>0,试证不等式f(x)= x<2对一切非零实数都成立。

例:设z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围。

163三角函数式的化简与求值

三角函数式的化简和求值是高考考查的重点内容之一。通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍。

例:已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.

14 三角形中的三角函数式

三角形中的三角函数关系是历年高考的重点内容之一。

●已知△ABC的三个内角A、B、C满足A+C=2B. ,求cos 的值。

15 不等式的证明策略

不等式的证明,方法灵活多样,它可以和很多内容结合。高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。

16 解不等式

不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式。

17 不等式的综合应用

不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出。不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题。

例:设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0

(1)当x∈[0,x1 时,证明x

(2)设函数f(x)的图象关于直线x=x0对称,证明:x0< 。

③ 成人高考数学不会怎么办

成人高考数学不会,可以重点复习其他两门课,成考录取看总分,如果不会,选择和填空可以去猜,比如选那个常见的数或式子等。

成人高考数学学习技巧:

1、多想

主要是指养成思考的习惯,学会思考的方法,独立思考是学习数学必须具备的能力,在学习时,要边听课边想,边看书边想,边做题边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。

2、多做

主要是指做习题,学数学一定要做习题,并且应该适当地多做些,做习题的目的首先是熟练和巩固学习的知识。

其次是初步启发灵活应用知识和培养独立思考的能力,最后是融会贯通,把不同内容的数学知识沟通起来,在做习题时,要认真审题,认真思考,做到边做边思考边总结,通过练习加深对知识的理解。

成高历史:

成人高考制度是一项重要的高校入学考试制度,其历史可分为“文革”前和“文革”后两个时期。“文革”前成人高等学历教育的主要形式是大学函授教育和夜大教育,此外,还有独立设置的函授学院和广播电视大学等机构。

函授和夜大,均由学校单独招生。其他业余高等学校的招生,实行单独招生或联合招生,广播电视大学招生则由创办广播电视大学的省、市自行办理。”文革“后,特别是党的十一届三中全会以后,中国成人教育事业发展迅猛。

招生工作大体经历了从学校单独招生,省、自治区、直辖市统一招生,到全国统一招生的发展历程。

1986年,原国家教委对各类成人高等学校实行全国统一招生考试,是根据中国国情采取的一项重大举措,它遏制了社会上一段时期内出的乱招生、乱办班、乱发证的”三乱“象,有效地提高了新生的入学质量,促进了成人高教事业健康而有序的发展。

全国廷议招生制度,作为成人高等教育招生的一项基本制度,从1986年起一直沿用至今,走过了30余年的历史。

④ 成人高考数学答题技巧口诀

成人高考数学答题技巧口诀如下:

一、选择题

1、一般来说前面几道题非常容易,可以把4个选项往题目里面套,看哪个答案符合,就是正确答案。

2、据中时教育教务老师统计:选择题,ABCD任意一个选项成为正确答案的次数都差不多。那么同学们:

(1)一题都不会写,也一定要全部的答满

(2)只会写1-2题,剩下的题都写跟自己懂写题的答案不一样的选项,这样至少可以得20分。例如,会写的题一题选A,一题选B,那么不懂写的题都写C或者D。

(3)懂写3题以上,看看自己懂写的答案中ABCD哪个选项出现的次数少,那么不懂写的题目都写那个选项,这样至少可以得30分以上。

例如:懂写6题,答案分别是AAABBC,那不懂写的就都写D。因为A成为正确答案的次数一般不超过5题,现在已经写出三题选A了,从概率的角度来说A最多会再出现两次,而D则会出现3-5次。

成人高考流程及解题技巧——数学

三、解答题

完全不懂也不要放弃解答题的分数,解答题的特点是一层一层往下求解,最终求出一个答案。解答题的答题步骤。如:

解:依题意可得(题目中已知的数据写上去)

公式

计算得

答:

有些题目,我们可以把题目中给出的公式,变化一下,能顺着下来多少就是多少,把所想的步骤写上去,反正都思考了,不写白不写,写了就有可能得分。

⑤ 成人高考数学一般考哪些的知识点

人高考高起专数学一般考的知识点有:

知识点一:集合思想及应用

集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用。本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用。

例题:已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求实数m的取值范围。

知识点二:充要条件的判定

充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系。

例题:已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件

知识三:运用向量法解题

平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。

例题:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。

知识点四:三个“二次”及关系

三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

例题:已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。

知识点五:求解函数解析式

求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。

例题:(1)已知f(2-cosx)=cos2x+cosx,求f(x-1)。

(2)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。

(3)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求?f(x)的表达式。

⑥ 成人高考数学主要考什么

考试范围包括代数、三角、平面解析几何、概率与统计初步四部分。成人高考数学旨在测试中学数学基础知识、基本技能、基本方法,考察逻辑思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析问题和解决问题的能力。

高起专和高起本的数学就是高中的内容,文科的考文科的数学,理科的考理科的数学;专升本的数学考的是高数(一)和高数(二),这些都是大专的知识。

(6)成人高考数学知识点学习扩展阅读:

考试内容的知识要求作如下说明:

考试大纲对所列知识提出了三个层次的不同要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求.三个层次要求分别为:

1、了解:要求考生对所列知识的含义有初步的认识,识记有关内容,并能进行直接运用。

2、理解、掌握、会:要求考生对所列知识的含义有较深的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。

3、灵活应用:要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题。

⑦ 成人高考数学必考知识点有哪些

人高考高起专数学一般考的知识点有:

知识点一:集合思想及应用。

知识点二:充要条件的判定。

知识三:运用向量法解题。

知识点四:三个“二次”及关系。

知识点五:求解函数解析式。

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:mathematics或maths),其英语源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。

其在英语的复数形式,及在法语中的复数形式加-es,成mathématiques,可溯至拉丁文的中性复数(mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká)。

在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。