① 小学数学概念性基础知识总复习
毕业班复习- -
关于毕业班的复习,一直是让师生们头疼的一个问题。在这个阶段,要做的事情很多,比如知识的整理,后进生的“突击”,优生的提升,还有面上的关注……如此等等,让老师往往“心力交瘁”。
要想把复习工作做好,依我的切身体验,大约有以下几点(如有时间,再与大家详细交流) ——
• 只有登高,方能望远。希望老师们能够站得“高”一点,一定要认真研究“课程目标”和学生的“学情”,制定方案,把“力量”用在刀刃上。如果你感到无所适从,请不要急急而行,先冷静下来,用更多的时间思考可能是一个好办法。
• 欲速则不达。复习阶段学生接受的“训练量”(信息量)是很大的,不要搞单纯的“刺激 — 反应”式的机械训练,这样往往费力不讨好,有些学生,特别是“学困生”很容易“疲”,信心的丧失比能力的缺失更可怕。提高复习的“有效性”比单纯提高训练量来得应该更有效。
• 让学生成为“复习”的主人。就如我们上面提到的让学生自己出题,这样的方法通常很有效(经过试验),但是也一定不要脱离教师的“主导”,记住是“自主”学习,而不是“自由”学习,这对老师的要求要高一些。
• 变换形式,让复习变得不再枯燥。许多老师可能都曾遇到在复习阶段,试题满天飞的问题,复习阶段的课堂就变成了“做题—— 订正——再做题”的固定模式,毫无生趣而言。这样的形式不是一点不需要,因为孩子还是需要在这个过程中获得一些关于“应考”的一些体验。但是,日久生厌,自然会影响复习的效率。这时,老师需要冷静分析,在“这样做”和“那样做”之间做出权衡。举个例子,如果我分析在接下来需要复习的几个知识点中孩子普遍会出现哪几个问题,那么,我就会与学生一同商量,制定出克服办法,然后再做题,这样孩子大多能够在做题中获得成功的体验。这让我想起曾经听过一个治疗胃病的方法,对学困生非常有用,那就是“少吃多餐”,大家想想,为什么少吃多餐有助消化? :)
• 螺旋上升,前后呼应,让整个复习阶段成为一个有机的整体。这样,复习过程成了真正促进孩子发展的过程,而不单单是“应试”。不要孤立看待每一个复习过程中遇到的知识点,要分析他们之间的联系。对于复习进程的表述不应该是一条一直指向目标的直线,而是螺旋上升的“曲线”,孩子最终能力的达成往往是需要“迂回”的,因此,老师应该理解学生在复习过程中可能出现的“反复”,对此应该积极对待,正确引导。
• 注意应考心理的引导,让师生都能以愉快的心理面对挑战。不要给学生“大难临头”的感觉,这样做,除了增加孩子的心理负担,一般不会有好的效果,或者只能是短时间的。
一、小学数学毕业总复习的目的意义
小学毕业总复习是小学数学教学的重要组成部分,是对学生全面而系统地巩固整个小学阶段所学的数学基础知识和基本技能,提高知识的掌握水平,进一步发展能力。因此,多年的毕业教学,我都十分重视小学毕业阶段的复习整理工作。而毕业总复习作为一种引导小学生对旧知识进行再学习的过程它应是一个有目的,有计划的学习活动过程。所以,在具体实施前必须制定出切实可行的计划,以增强复习的针对性,提高复习效率。
二、小学数学毕业总复习的任务
从小学毕业总复习在整个小学数学教学过程中所处的地位来看,它的任务概括为以下几点:
1、系统地整理知识。实践表明,学生对数学知识的掌握在很大程度上取决于复习中的系统整理,而小学毕业复习是对小学阶段所学知识形成一种网络结构。
2、全面巩固所学知识。毕业复习的本身是一种重新学习的过程,是对所学知识从掌握水平达到熟练掌握水平。
3、查漏补缺。结合我镇小学实际,大多采取小循环教学,学生在知识的理解和掌握程度上不可避免地存在某些问题。所以,毕业复习的再学习过程要弥补知识上掌握的缺陷。
4、进一步提高能力。进一步提高学生的计算、初步的逻辑思维、空间观念和解决实际问题的能力。让学生在复习中应充分体现从“学会”到“会学”的转化。
三、小学数学毕业总复习内容的组织
九义新教材在教材的编排体系上给我们复习创造了有利条件。教材在统计的初步知识后安排了总复习内容,以多个知识点形成六大知识结构体系,并加以练习。这是旧教材所无法相比的。在复习中,要充分利用教材,合理组织内容,适当渗透,拓展知识面。
四、小学数学毕业总复习过程的安排
由于复习是在原有基础上对已学过的内容进行再学习,所以,学生原有的学习情况直接制约着复习过程的安排。同时,也要根据本班实际复习对象和复习时间来确定复习过程和时间上的安排。结合我班实际,从4月26日进入总复习阶段,共计80课时,复习过程和时间安排大致如下:
(一)、数和数的运算(20课时)
这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。
2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。
3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。
4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。
5、精心设计练习,提高综合计算能力(3课时)。
(二)、代数的初步知识(10课时)
本节重点内容应放在掌握简易方程及比和比例的辨析。
1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。
2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。
3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。
(三)、应用题(30课时)
这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
1、简单应用题的分析与整理(3课时)。
2、复合应用题的分析与整理(6课时)。
3、列方程解应用题的分析与整理(5课时)。
4、分数应用题的分析与整理(10课时)。
5、用比例知识解答应用题的分析与整理(3课时)。
6、应用题的综合训练(3课时)。
(四)、量的计量
本节重点放在名数的改写和实际观念上。
1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。
2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。
3、综合训练与应用(1课时)。
(五)、几何初步知识(12课时)
本节重点放在对特征的辨析和对公式的应用上。
1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。
2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。
4、整体感知、实际应用(1课时)。
(六)、简单的统计(6课时)
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
1、求平均数的方法(1课时)。
2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。
3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。
小学语文是义务教育阶段的一门基础学科,担负着全面提高学生语文素养的重任。经过六年的学习,大多数学生已具备了一定的语文素养,但是由于学生的个体差异,导致了小学生语文素养的参差不齐。在小学生即将结束小学生活的这段时间里,我们有责任集中精力,抓住时机,系统地引导学生复习小学阶段应掌握的知识,最大限度地提高每个学生的语文素养。
从“标准”入手,明确复习的要求:
学生在毕业时,应基本达到《语文课程标准》的要求。复习时,要根据《语文课程标准》及学生“过程性”的学习情况,有针对性地制定出相关复习要求,各部分的重点要求是:
(一)、基础知识
1、汉语拼音。
能读准声母、韵母、声调和整体认读音节;能准确地拼读音节,正确书写声母、韵母和音节;能认识大写字母,并能熟记《汉语拼音字母表》
2、汉字。
认识常用汉字3000个左右,其中2500个会写,要能读准字音,认清字形,了解字义,养成正确的写字习惯;会查字典;能初步辨析字的音、形、义,掌握学过的常用的多音字,注意不写错别字。
3、词语。
能正确地读出和写出学过的词语;能根据词义轻重、范围大小、感情色彩、词语搭配等方面辨析词义,进行归类或顺序排列;学会在具体的语言环境中准确地理解词义;注意积累词语,并能在口头语言和书面语言中正确运用。
4、句子。
熟悉句子的类型;能运用学过的常用词语(包括关联词语)造出思想健康、用词准确、意思完整的句子;能指出句子中的毛病,并加以改正;会区分和运用常用的几种修辞方法;熟练地进行句式互换、扩句和缩句;通过理解、分析句子,能体会句子表达的意思和含义,加深对课文内容的理解。
5、标点。
能正确地使用句号、问号、叹号、逗号、冒号、引号、顿号、分号、书名号和省略号。
(二)、阅读
1、在阅读中能揣摩文章的表达顺序,体会文章的思想感情及表达方法,在交流和讨论中,敢于提出自己的看法,作出自己的判断。
2、阅读说明性文章,能抓住要点,了解文章的基本说明方法;阅读叙事性作品,了解事件梗概,简单描述自己印象最深的场景、人物、细节,说出自己的感受;阅读诗歌,大体把握诗意,想象诗歌描述的情境,体会诗人的情感。
3、能背诵优秀诗文160篇(段);课外阅读总量不少于150万字。
(三)、习作
1、能写简单的记叙文和想象作文,能根据习作内容表达的需要,会分段表述。
2、会写读书笔记和常见的应用文。
3、习作能做到内容具体,感情真实,思想健康,有一定条理。
4、会修改自己的习作,并能主动与他人交换修改,做到语句通顺,行款正确,书写规范、整洁。
5、40分钟能完成不少于400字的习作。
(四)口语交际
1、认真耐心地听别人讲话,能理解主要意思,并能转述。
2、能清楚明白地口述见闻,稍作准备,能围绕一个意思,当众作2、3分钟的发言,举止大方,语句比较通顺连贯。能主动积极地进行口语交际
3、养成专心听讲、认真思考的习惯。养成先想后说的习惯,说话有礼貌。
4、听讲话、看影视,能转述主要内容。
以上所列项目是小学生通过五年的学习,在语文基础知识方面、阅读方面、习作方面、口语交际方面应达到的基本要求,以上要求是互相融合的,不能单独地复习一条而舍弃另一条。教学时要将以上条目展示给学生,让学生对照要求,找到自己的不足,为下一步复习明确目的。
② 谁有小学数学基础知识复习题综合的1-6年级的
我刚好有一本
叫做小学教学教材课内外知识现查现用
你可以去书店找找,我也是偶然的机会在书店看到的
③ 如何进行小学数学基础知识的复习如何进
(1)认真复习
测试前的复习,能把一阶段的知识加以系统化、深化,弥补知识的缺陷,进一步牢固地掌握所学知识.
(2)认真审题
认真审题是指在测试时要先弄清楚题目给出各种信息有关的条件和要求解答的问题,并把题目形象化、具体化.不仅要弄清楚显露的已知条件,还要努力发觉隐含的已知条件;不仅是弄清楚要求解的显露的问题,还要弄清楚要求解的隐含的问题.只有弄清楚已知条件和问题才能正确解题.
(3)认真思索
在解题过程中,要依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“顺藤摸瓜”.或从题断入手,根据问题的条件找到解决问题的方法,即“追根溯源”.或将两种方法结合起来,得到解题的全过程.
(4)认真总结
通过回顾和分析,能查清缺陷的知识和薄弱的环节,使数学知识更加巩固和完整,对失误原因的寻找,能改进学习方法,明确努力方向,使以后的测试更容易取得成功.
④ 小学6年纪数学基础知识
1.36 2.儿子 儿子 爸爸 爸爸 3.1954年03月25日 女 4.12 5.4 6.4 7.8 12
8.27 9.错10.对11.对12错13.对14.A
⑤ 如何夯实小学数学基础知识教学
在小学数学教学中,要重视“数学基础”的理解掌握。理解掌握“数学基础”,要从基本概念、公式、定理、计算、以及解题的步骤,分析问题的方法和掌握简单的逻辑推理入手。在教学中,我们要紧扣教材,体会教材的编排特点,利用知识的迁移规律,引导学生在动手实践中,自己感悟,发现隐藏在教学情境中的“数学基础”,并在练习中有步骤,有计划,有目的地进行反复训练
⑥ 如何进行小学数学基础知识的复习
小学的知识注重于概念,所以小学部分的知识复习要围绕着概念进行。
1、数的认识
从数的基本概念来复习,如:数有自然数、整数、分数、小数、百分数、正数、负数之分。根据数的性质,数又有:偶数、奇数,质数、合数之分;根据数的关系数又有:互质数、约数、倍数、众数、中位数之分。
2、数的运算
加法:求几个数的和的运算;
减法:已知两个数的和,和一个加数,求另一个加数的运算(因为减法是加法的逆运算);
乘法:求几个相同加数和的运算;
除法:已知两个因数的积,和一个因数,求另一个因数的运算。
简便运算:
加法的结合率、交换律;乘法的结合律、交换律和分配率;减法的性质;除法的性质。
3、方程
方程:含有未知数的等式叫方程。
4、解决问题
A、行程问题:路程=速度 * 时间
相遇问题、背向问题、追及问题
B、生产问题:总产量=工效 * 工作时间
C、利润问题:定价=进价 + 利润
D、利率问题:利息=本金 * 利率 * 时间
E、价格问题:总价=单价 * 数量
5、综合图形:
A、平面图形:
三角形: 按角分:钝角三角形、锐角三角形、直角三角形
按边分:等边三角形、等腰三角形、不等边三角形
正方形:
长方形:
平行四边形:
梯形: 直角梯形、等腰梯形、不等腰梯形
圆:
B、立体图形:
正方体:
长方体:
圆柱体:
圆锥体:
小学就学了这些,而这些都是“算术”,而不是真正意义上的“数学”,只是注重于数的运算。所以,在进行小学部分复习时,要加强概念的重要性,教会学生对于数字的运算和一定的运算方法,这才是小学知识点的重点和作用。
⑦ 如何提升小学数学基础知识和技能
无他,多做练习题,把数学理论公式记住,灵活运用,熟练掌握。
⑧ 小学数学要怎么打基础
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
⑨ 小学四到六年级数学公式及概念
小学一至六年级的数学公式
基本公式:
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式:
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 π d=直径 r=半径
(1)周长=直径×π=2×π×半径
C=πd=2πr
(2)面积=半径×半径×n
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
和差问题的公式:
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
棱长总和:
长方体棱长和=(长+宽+高)
正方体棱长和=棱长×12
熟记下列正反比例关系:
正比例关系:
正方形的周长与边长成正比例关系
长方形的周长与(长+宽)成正比例关系
圆的周长与直径成正比例关系
圆的周长与半径成正比例关系
圆的面积与半径的平方成正比例关系
常用数量关系:
1.路程=速度×时间 速度=路程÷时间 时间=路程÷速度
工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
总产量=单产量×面积 单产量=总产量÷面积 面积=总产量÷单产量
单位换算:
长度单位:
一公里=1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=100公亩 1公亩=100平方米
1平方千米=1000000平方米 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体积单位:
1立方千米=1000000000立方米 1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米 1立方分米=1升 1立方厘米=1毫升 1升=1000毫升
重量单位:
1吨=1000千克 1千克=1000克
时间单位:
一世纪=100年 一年=四季度 一年=12月 一年=365天(平年) 一年=366天(闰年)
一季度=3个月 一个月= 3旬(上、中、下) 一个月=30天(小月) 一个月=31天(大月)
一星期=7天 一天=24小时 一小时=60分 一分=60秒
一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月)
一年中的小月:四月、六月、九月、十一月(四个月)
特殊分数值:
=0.5=50% = 0.25 = 25% = 0.75 = 75%
= 0.2 = 20% = 0.4 = 40% = 0.6 = 60% = 0.8 = 80%
=0.125=12.5% = 0.375 = 37.5% = 0.625 = 62.5% = 0.875 = 87.5%
算术
1、加法交换律:两数相加交换加数的位置,和不变。 (2)你最敬重卑微者的哪一点,为什么?
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
一个数除以分数,等于这个数乘以分数的倒数。
甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
比
什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的换算。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
整除
如果c|a, c|b,那么c|(a±b)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)=1, 那么bc|a
如果c|b, b|a, 那么c|a
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数≠偶数
小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
内角和
边数—2乘180