当前位置:首页 » 基础知识 » 数学公理定理定义的知识点
扩展阅读
艺术设计基础考试怎么考 2024-11-17 00:21:21
学前教育统考是什么学历 2024-11-17 00:20:20

数学公理定理定义的知识点

发布时间: 2022-12-20 08:10:24

⑴ 数学公理的定义

公理是一个汉语词汇,读音为gōng lǐ,是指依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。

在数学中,公理这一词被用于两种相关但相异的意思之下——逻辑公理和非逻辑公理。在这两种意义之下,公理都是用来推导其他命题的起点。和定理不同,一个公理(除非有冗余的)不能被其他公理推导出来,否则它就不是起点本身,而是能够从起点得出的某种结果—可以干脆被归为定理了。

中文名
公理
外文名
axiom
拼音
gōng lǐ
注音
ㄍㄨㄙ ㄌㄧˇ
适用范围
数学,物理学
快速
导航
词语概念

公理系统

实例

公理集合论

公理化

更多的探讨
历史发展
古希腊
经由可靠的论证(三段论、推理规则)由前提(原有的知识)导至结论(新的知识)的逻辑演绎方法,是由古希腊人发展出来的,并已成为了现代数学的核心原则。除了重言式之外,没有任何事物可被推导,若没有任何事物被假定的话。公理即是导出特定一套演绎知识的基本假设。公理不证自明,而所有其他的断言(若谈论的是数学,则为定理)则都必须借助这些基本假设才能被证明。然而,对数学知识的解释从古至今已不太一样,且最终“公理”这一词对今日的数学家眼中和在亚里斯多德和欧几里得眼中的意思也有了些许的不同。
古希腊人认为几何学也是数种科学的其中之一,且视几何学的定理和科学事实有同等地位。他们发展并使用逻辑演绎方法来作为避免错误的方法,并以此来建构及传递知识。亚里斯多德的后分析篇是对此传统观点的一决定性的阐述。
“公理”,以传统的术语来说,是指在许多科学分支中所共有的一个不证自明的假设。
在各种科学领域的基础中,或许会有某些未经证明而被接受的附加假定,此类假定称为“公设”。公理是许多科学分支所共有的,而各个科学分支中的公设则是不同的。公设的有效性必须建立在现实世界的经验上。确实,亚里斯多德曾言,若读者怀疑公设的真实性,这门科学之内容便无法成功传递。
传统的做法在《几何原本》中很好地描绘了出来,其中给定一些公设(从人们的经验中总结出的几何常识事实),以及一些“公理”(极基本、不证自明的断言)。
公设
能从任一点画一条直线到另外任一点上去。
能在一条直线上造出一条连续的有限长线段。
能以圆心和半径来描述一个圆。
每个直角都会相互等值。
(平行公设)若一条直线与两条直线相交,在某一侧的内角和小于两个直角,那么这两条直线在各自不断地延伸后,会在内角和小于两直角的一侧相交。
公理
等同于相同事物的事物会相互等同
若等同物加上等同物,则整体会相等。
若等同物减去等同物,则其差会相等。
相互重合的事物会相互等同。
整体大于部分。
近代的发展
近150年来,数学家所学到的是,将意思从数学陈述(公理、公设[1] 、命题、定理)和定义中抽离出去是很有用的。此一抽象化(或甚至可说是公式化)使得数学知识变得更一般化,容许多重不同的意思,且因此可以用在多重的方面上。
结构主义的数学走得更远,并发展出没有“任一”特定应用的理论和公理(如体论、群论、拓扑学、向量空间)。“公理”和“公设”之间的差异消失了。欧几里得公设因为可以导出大量的几何事实而被创造出来。这些复杂事实的真实性依赖于对基本假定的承认。然而,若舍弃第五公设,则可以得到有更多内容的理论,如双曲几何。我们只需要准备以更弹性的方式来使用“线”和“平行”等术语。

⑵ 定理,定律,公理的区别和概念分别是

1、概念:

定理是经过受逻辑限制的证明为真的陈述。

定律是对客观事实的一种表达形式,通过大量具体的客观事实归纳而成的结论。

公理是指依据人类理性的不证自明的基本事实,经过人类长期反复实践的考验,不需要再加证明的基本命题。

2、区别:

定律是描述客观世界变化规律的表达式或者文字。

公理是不需要认证的,是大家公认的,可以直接拿来用的。

定理是需要证明它是对的,才可以拿来用的。

⑶ 什么叫“公理”公理,定理,定义,三者的内涵和外延有

定义:人根据某些基础条件给出的一个概念,不需要证明,一般格式为“什么是什么”
公理:人为的根据某一领域的学科基础,给出一个公认的规律,不需要证明。一般来说在一个领域内公理都很少而且很基础。
定理:根据定义和公理得到的推论。需要证明。一般来说同一领域内有无数的定理,有些定理应用范围很广而很出名,有些定理相对应用范围小。

⑷ 定义,公理,定理,命题 的区别

首先、定义和公理是任何理论的基础,定义解决了概念的范畴,公理使得理论能够被人的理性所接受。
其次、定理和命题就是在定义和公理的基础上通过理性的加工使得理论的再延伸,我认为它们的区别主要在于,定理的理论高度比命题高些,定理主要是描述各定义(范畴)间的逻辑关系,命题一般描述的是某种对应关系(非范畴性的)。而推论就是某一定理的附属品,是该定理的简单应用。
最后、引理就是在证明某一定理时所必须用到的其它定理。而在一般情况下,就像前面所提到的定理的证明是依赖于定义和公理的。
定义就是规定意义,相当于取名字,定理就是根据定义和公理推导演绎出来的命题。
公理就是人们通过实际生活观察到的一些人们共同赞同的但又无法证明的;
根本差别在于:定义不可证明,而定理一定是经过了证明的!
数学就是在定义和公理(经验的总结,不需证明,如过两点可画一条直线)基础上,演绎出的一整套定理组成的逻辑体系.(演绎的过程就是证明定理)
定义:对概念的内涵或语词的意义所做的简要而准确的描述
定理:通过理论证明能用来作为原则或规律的命题或公式

⑸ 什么是公理什么是定理

公理”:是人们在长期实践中总结出来的基本数学知识并作为判定其它命题真假的根据
“定理”:用推理的方法得到的真命题叫做“定理”,这种推理的方法也叫“证明”.
公理是一些前提假设,这些前提假设规定了整个理论的最基本的概念之间的关系,它们并不需要任何事实和经验的支持,只要它们本身在逻辑上没有矛盾就可以了。它们不能被推出,因为它们是最基本的东西。所有的定理都是由公理推出来的。

一个典型的例子是非欧几何的基本公理,它们提出时并没有任何事实和经验的支持,而且是违反直观的,尽管后来发现确实有事实支持这样一种几何的存在,但这并不能说明公理一定是需要经验的。

⑹ 初中数学定义和公理

直线、线段、射线

1. 过两点有且只有一条直线.

(简:两点决定一条直线)

2.两点之间线段最短

3.同角或等角的补角相等.

同角或等角的余角相等.

4. 过一点有且只有一条直线和已知直线垂直

5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)

平行线的判断

1.平行公理 经过直线外一点,有且只有一条直线与这条直线平行.

2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)

3.同位角相等,两直线平行.

4.内错角相等,两直线平行.

5.同旁内角互补,两直线平行.

平行线的性质

1.两直线平行,同位角相等.

2.两直线平行,内错角相等.

3.两直线平行,同旁内角互补.

三角形三边的关系

1.三角形两边的和大于第三边、三角形两边的差小于第三边.

三角形角的关系

1. 三角形内角和定理 三角形三个内角的和等于180°.

2.直角三角形的两个锐角互余.

3.三角形的一个外角等于和它不相邻的两个内角的和.

4. 三角形的一个外角大于任何一个和它不相邻的内角.

全等三角形的性质、判定

1.全等三角形的对应边、对应角相等.

2.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等.

3. 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等.

4.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等.

5. 边边边公理(SSS) 有三边对应相等的两个三角形全等.

6. 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等.

角的平分线的性质、判定

性质:在角的平分线上的点到这个角的两边的距离相等.

判定:到一个角的两边的距离相同的点,在这个角的平分线上.

等腰三角形的性质

1.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角).

2.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 .

3.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.

4.推论3 等边三角形的各角都相等,并且每一个角都等于60° .

等腰三角形判定

1等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

2.三个角都相等的三角形是等边三角形.

3.有一个角等于60°的等腰三角形是等边三角形.

线段垂直平分线的性质、判定

1. 定理: 线段垂直平分线上的点和这条线段两个端点的距离相等 .

2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合.

轴对称、中心对称、 平移、旋转

1. 关于某条直线对称的两个图形是全等形

2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

4.若两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.

5.关于中心对称的两个图形是全等的.

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.

6. 若两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称.

7.平移或旋转前后的图形是不变的.中心对称是旋转的特殊形式。

勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 .

勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角①直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半.

②直角三角形斜边上的中线等于斜边上的一半.

n边形、四边形的内角和、外角和

1.四边形的内角和等于360°.

2.四边形的外角和等于360°

3.多边形内角和定理 n边形的内角的和等于(n-2)180°.

4.推论 任意多边的外角和等于360°.

平行四边形性质

1.平行四边形的对角相等.

2.平行四边形的对边相等.

3.夹在两条平行线间的平行线段相等.

4.平行四边形的对角线互相平分.

平行四边形判定

1.两组对边分别平行的四边形是平行四边形.

2.两组对角分别相等的四边形是平行四边形. 3.两组对边分别相等的四边形是平行四边形.

4.对角线互相平分的四边形是平行四边形.

5. 一组对边平行相等的四边形是平行四边形
矩形性质

1. 矩形的四个角都是直角 .

2. 矩形的对角线相等.

矩形判定

1.有一个角是直角的平行四边形是矩形.

2.有三个角是直角的四边形是矩形.

3. 对角线相等的平行四边形是矩形 .

菱形性质

1、菱形的四条边都相等.

2. 菱形的对角线互相垂直,并且每一条对角线平分一组对角.

3、菱形面积=对角线乘积的一半,即
菱形判定

1.有一组邻边相等的平行四边形是菱形

2.四边都相等的四边形是菱形

3.对角线互相垂直的平行四边形是菱形.

正方形性质

1.正方形的四个角都是直角,四条边都相等.

2.正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.

正方形判定

1.四个角都是直角,四条边都相等的四边形是正方形

2.对角线互相垂直平分且相等的四边形是正方形.

等腰梯形性质

1.等腰梯形在同一底上的两个角相等.

2.等腰梯形的两条对角线相等.

等腰梯形判定

1.同一底上的两个角相等的梯形是等腰梯形

2.对角线相等的梯形是等腰梯形.

①经过梯形一腰的中点与底平行的直线,必平分另一腰.

②经过三角形一边的中点与另一边平行的直线,必平分第三边.

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.

⑺ 关于数学的定义,命题,公理和定理的含义!

公理是不需要证明,人人都知道的。
定理是从性质得到的,需要证明。
定则和定理相似
定义是解释,是性质
命题是提出来的,有正确和错误区别,也需要证明