❶ 小学数学概念大全
小学数学知识概念公式汇总
小学一年级 九九乘法口诀表。学会基础加减乘。
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数 差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 长方形 C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高
面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径
周长=直径×∏=2×∏×半径 C=∏d=2∏r
面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
❷ 小学数学知识集锦
小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。2、什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积。3、加法各部分的关系:一个加数=和-另一个加数4、减法各部分的关系:减数=被减数-差 被减数=减数+差5、乘法各部分之间的关系:一个因数=积÷另一个因数6、除法各部分之间的关系:除数=被除数÷商 被除数=商×除数7、角(1)什么是角?从一点引出两条射线所组成的图形叫做角。(2)什么是角的顶点?围成角的端点叫顶点。(3)什么是角的边?围成角的射线叫角的边。(4)什么是直角?度数为90°的角是直角。(5)什么是平角?角的两条边成一条直线,这样的角叫平角。(6)什么是锐角?小于90°的角是锐角。(7)什么是钝角?大于90°而小于180°的角是钝角。(8)什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.8、(1)什么是互相垂直?什么是垂线?什么是垂足?两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。(2)什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。9、三角形(1)什么是三角形?有三条线段围成的图形叫三角形。(2)什么是三角形的边?围成三角形的每条线段叫三角形的边。(3)什么是三角形的顶点?每两条线段的交点叫三角形的顶点。(4)什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形。(5)什么是直角三角形?有一个角是直角的三角形叫直角三角形。(6)什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形。(7)什么是等腰三角形?两条边相等的三角形叫等腰三角形。(8)什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰。(9)什么是等腰三角形的顶点?两腰的交点叫做等腰三角形的顶点。(10)什么是等腰三角形的底?在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?底边上两个相等的角叫等腰三角形的底角。(12)什么是等边三角形?三条边都相等的三角形叫等边三角形,也叫正三角形。(13)什么是三角形的高?什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。(14)三角形的内角和是多少度?三角形内角和是180°.10、四边形(1)什么是四边形?有四条线段围成的图形叫四边形。(2)什么是平等四边形?两组对边分别平行的四边形叫做平行四边形。(3)什么是平行四边形的高?从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。(4)什么是梯形?只有一组对边平行的四边形叫做梯形。(5)什么是梯形的底?在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。(6)什么是梯形的腰?在梯形里,不平等的一组对边叫梯形的腰。(7)什么是梯形的高?从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。(8)什么是等腰梯形?两腰相等的梯形叫做等腰梯形。11、什么是自然数?用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。12、什么是四舍五入法?求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。13、加法意义和运算定律(1)什么是加法?把两个数合并成一个数的运算叫加法。(2)什么是加数?相加的两个数叫加数。(3)什么是和?加数相加的结果叫和。(4)什么是加法交换律?两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。14、什么是减法?已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。15、什么是被减数?什么是减数?什么叫差?在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。16、加法各部分间的关系:和=加数+加数 加数=和-另一加数17、减法各部分间的关系:差=被减数-减数 减数=被减数-差 被减数=减数+差18、乘法(1)什么是乘法?求几个相同加数的和的简便运算叫乘法。(2)什么是因数?相乘的两个数叫因数。(3)什么是积?因数相乘所得的数叫积。(4)什么是乘法交换律?两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。(5)什么是乘法结合律?三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。19、除法(1)什么是除法?已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。(2)什么是被除数?在除法中,已知的积叫被除数。(3)什么是除数?在除法中,已知的一个因数叫除数。(4)什么是商?在除法中,求出的未知因数叫商。20、乘法各部分的关系:积=因数×因数 一个因数=积÷另一个因数21、(1)除法各部分间的关系:商=被除数÷除数 除数=被除数÷商(2)有余数的除法各部分间的关系:被除数=商×除数+余数22、什么是名数?通常量得的数和单位名称合起来的数叫名数。23、什么是单名数?只带有一个单位名称的数叫单名数。24、什么是复名数?有两个或两个以上单位名称的数叫复名数。25、什么是小数?仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
❸ 小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
❹ 小学数学知识大全
良好的学习习惯能使孩子收益终身,尤其是小学阶段,小学阶段是孩子从一个天真顽劣的小孩到一个真正接受知识的小学生,从各个方面进行要求规范的时期。在这个时期良好的学习方法是孩子成绩优异的关键,很多家长不知道如何给孩子补习小学数学,那今天就带大家一起了解补习小学数学的五大技巧。
现在的时代是一个多元化的教育时代,孩子们的大脑不仅仅是课上的40分钟,而是要勇于积极的探索,在给孩子补习小学数学的时候着眼于以上几点,加上对课本知识的结合,孩子的成绩定会有所提高,于此同时孩子更多的学习到的是掌握知识的方法。
❺ 小学六年级数学重点知识大全和公式。
小学数学图形计算公式 1、正方形 C周长 S面积 a边长 周长边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、平行四边形 s面积 a底 h高 面积=底×高 s=ah 7、梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圆形 S面积 C周长 л d=直径 r=半径 (1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л 9、圆柱体 v:体积 h:高 s底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 4体积侧面积÷2×半径 10、圆锥体 v:体积 h:高 s底面积 r:底面半径 体积=底面积×高÷3 11、总数÷总份数平均数 12、和差问题的公式(和差)÷2大数 (和差)÷2小数 13、和倍问题 和÷(倍数1)小数 小数×倍数大数 (或者 和小数大数) 14、差倍问题 差÷(倍数1)小数 小数×倍数大数 (或 小数差大数) 15、相遇问题 相遇路程速度和×相遇时间 相遇时间相遇路程÷速度和 速度和相遇路程÷相遇时间 16、浓度问题 溶质的重量溶剂的重量溶液的重量 溶质的重量÷溶液的重量×100%浓度 溶液的重量×浓度溶质的重量 溶质的重量÷浓度溶液的重量 17、利润与折扣问题 利润售出价成本 利润率利润÷成本×100%(售出价÷成本1)×100% 涨跌金额本金×涨跌百分比 利息本金×利率×时间 税后利息本金×利率×时间×(120%) 常用的数量关系式 1、每份数×份数总数 总数÷每份数份数 总数÷份数每份数 2、1倍数×倍数几倍数 几倍数÷1倍数倍数 几倍数÷倍数1倍数 3、速度×时间路程 路程÷速度时间 路程÷时间速度 4、单价×数量总价 总价÷单价数量 总价÷数量单价 5、工作效率×工作时间工作总量 工作总量÷工作效率工作时间 工作总量÷工作时间工作效率 6、加数加数和 和一个加数另一个加数 7、被减数减数差 被减数差减数 差减数被减数 8、因数×因数积 积÷一个因数另一个因数 9、被除数÷除数商 被除数÷商除数 商×除数被除数 常用单位换算 长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 一整数 1 整数的意义 自然数和0都是整数。 2 自然数 我们在数物体的时候用来表示物体个数的123……叫做自然数。 一个物体也没有用0表示。0也是自然数。 3计数单位 一个、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4 数位 计数单位按照一定的顺序排列起来它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0除得的商是整数而没有余数我们就说a能被b整除或者说b能整除a 。 如果数a能被数bb ≠ 0整除a就叫做b的倍数b就叫做a的约数或a的因数。倍数和约数是相互依存的。 因为35能被7整除所以35是7的倍数7是35的约数。 一个数的约数的个数是有限的其中最小的约数是1最大的 约数是它本身。例如10的约数有1、2、5、10其中最小的约数是1最大的约数是10。 一个数的倍数的个数是无限的其中最小的倍数是它本身。3的倍数有3、6、9、12……其中最小的倍数是3 没有最大的倍数。 个位上是0、2、4、6、8的数都能被2整除例如202、480、304都能被2整除。。 个位上是0或5的数都能被5整除例如5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除这个数就能被3整除例如12、108、204都能被3整除。 一个数各位数上的和能被9整除这个数就能被9整除。 能被3整除的数不一定能被9整除但是能被9整除的数一定能被3整除。 一个数的末两位数能被4或25整除这个数就能被4或25整除。例如16、404、1256都能被4整除50、325、500、1675都能被25整除。 一个数的末三位数能被8或125整除这个数就能被8或125整除。例如1168、4600、5000、12344都能被8整除1125、13375、5000都能被125整除。 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数如果只有1和它本身两个约数这样的数叫做质数或素数100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数如果除了1和它本身还有别的约数这样的数叫做合数例如 4、6、8、9、12都是合数。 1不是质数也不是合数自然数除了1外不是质数就是合数。如果把自然数按其约数的个数的不同分类可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数叫做这个合数的质因数例如15=3×53和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来叫做分解质因数。 例如把28分解质因数 几个数公有的约数叫做这几个数的公约数。其中最大的一个叫做这几个数的最大公约数例如12的约数有1、2、3、4、6、1218的约数有1、2、3、6、9、18。其中1、2、3、6是12和1 8的公约数6是它们的最大公约数。 公约数只有1的两个数叫做互质数成互质关系的两个数有下列几种情况 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时这个合数和这个质数互质。 两个合数的公约数只有1时这两个合数互质如果几个数中任意两个都互质就说这几个数两两互质。 如果较小数是较大数的约数那么较小数就是这两个数的最大公约数。 如果两个数是互质数它们的最大公约数就是1。 几个数公有的倍数叫做这几个数的公倍数其中最小的一个叫做这几个数的最小公倍数如2的倍数有2、4、6 、8、10、12、14、16、18 …… 3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数6是它们的最小公倍数。。 如果较大数是较小数的倍数那么较大数就是这两个数的最小公倍数。 如果两个数是互质数那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的而几个数的公倍数的个数是无限的。 二小数 1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。 一位小数表示十分之几两位小数表示百分之几三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点小数点左边的数叫做整数部分小数点左边的数叫做整数部分小数点右边的数叫做小数部分。 在小数里每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类 纯小数整数部分是零的小数叫做纯小数。例如 0.25 、 0.368 都是纯小数。 带小数整数部分不是零的小数叫做带小数。 例如 3.25 、 5.26 都是带小数。 有限小数小数部分的数位是有限的小数叫做有限小数。 例如 41.7 、 25.3 、 0.23 都是有限小数。 无限小数小数部分的数位是无限的小数叫做无限小数。 例如 4.33 …… 3.1415926 …… 无限不循环小数一个数的小数部分数字排列无规律且位数无限这样的小数叫做无限不循环小数。 例如∏ 循环小数一个数的小数部分有一个数字或者几个数字依次不断重复出现这个数叫做循环小数。 例如 3.555 …… 0.0333 …… 12.109109 …… 一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。 例如 3.99 ……的循环节是“ 9 ” 0.5454 ……的循环节是“ 54 ” 。 纯循环小数循环节从小数部分第一位开始的叫做纯循环小数。 例如 3.111 …… 0.5656 …… 混循环小数循环节不是从小数部分第一位开始的叫做混循环小数。 3.1222 …… 0.03333 …… 写循环小数的时候为了简便小数的循环部分只需写出一个循环节并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字就只在它的上面点一个点。例如 3.777 …… 简写作 0.5302302 …… 简写作 。 三分数
1 分数的意义 把单位“1”平均分成若干份表示这样的一份或者几份的数叫做分数。 在分数里中间的横线叫做分数线分数线下面的数叫做分母表示把单位“1”平均分成多少份分数线下面的数叫做分子表示有这样的多少份。 把单位“1”平均分成若干份表示其中的一份的数叫做分数单位。 2 分数的分类 真分数分子比分母小的分数叫做真分数。真分数小于1。 假分数分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 带分数假分数可以写成整数与真分数合成的数通常叫做带分数。 3 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 叫做约分。 分子分母是互质数的分数叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数叫做通分。 四百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。 运算定律 1. 加法交换律 两个数相加交换加数的位置它们的和不变即a+b=b+a 。 2. 加法结合律 三个数相加先把前两个数相加再加上第三个数或者先把后两个数相加再和第一个数相加它们的和不变即a+b)+c=a+(b+c) 。 3. 乘法交换律 两个数相乘交换因数的位置它们的积不变即a×b=b×a。 4. 乘法结合律 三个数相乘先把前两个数相乘再乘以第三个数或者先把后两个数相乘再和第一个数相乘它们的积不变即(a×b)×c=a×(b×c) 。 5. 乘法分配律 两个数的和与一个数相乘可以把两个加数分别与这个数相乘再把两个积相加即(a+b)×c=a×c+b×c 。 6. 减法的性质 从一个数里连续减去几个数可以从这个数里减去所有减数的和差不变即a-b-c=a-(b+c) 。
❻ 6年级数学知识大全
我为大家收集整理了六年级数学知识大全,供大家学习借鉴参考,希望对你有帮助!
6年级数学知识大全之小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长 )
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本; 利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比; 利息=本金×利率×时间; 税后利息=本金×利率×时间×(1-20%)
6年级数学知识大全之常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
6年级数学知识大全之常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算: 1元=10角 1角=10分 1元=100分
时间单位换算:
1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
6年级数学知识大全之基本概念
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义: 自然数和0都是整数。
2 自然数:
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 …… 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 …… 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
6年级数学知识大全之运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
❼ 小学数学必背公式大全你知道多少
小学数学知识概念公式汇总
小学一年级 九九乘法口诀表.学会基础加减乘.
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形.
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位.路程计算,分配律,分数小数.
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算.
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积.
小学六年级 比例百分比概率,圆扇圆柱及圆锥.
必背定义、定理公式
三角形的面积=底×高÷2. 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度.
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh
圆锥的体积=1/3底面×积高.公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
分数的除法则:除以一个数等于乘以这个数的倒数.
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变.
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.
3、乘法交换律:两数相乘,交换因数的位置,积不变.
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O.
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8、什么叫方程式?答:含有未知数的等式叫方程式.
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15、分数除以整数(0除外),等于分数乘以这个整数的倒数.
16、真分数:分子比分母小的分数叫做真分数.
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18、带分数:把假分数写成整数和真分数的形式,叫做带分数.
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20、一个数除以分数,等于这个数乘以分数的倒数.
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变.例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米. 1亩=666.666平方米.
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.
8、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积.
10、解比例:求比例中的未知项,叫做解比例.如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.
15、要学会把小数化成分数和把分数化成小数的化发.
16、最大公约数:几个数都能被同一个数一次性整除,这个数