❶ 五年级下册数学人教版的知识概括
小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.
②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数. 循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
19、解方程原理:天平平衡.
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的检验过程:方程左边=…… 23、方程的解是一个数;
=…… 解方程式一个计算过程.
=方程右边
所以,X=…是方程的解.
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高. 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行.
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍.
29、长方形框架拉成平行四边形,周长不变,面积变小.
30、组合图形:转化成已学的简单图形,通过加、减进行计算.
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码.
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女.
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数.)
1、像0、1、2、3、4、5、6……这样的数是自然数.
2、像-3、-2、-1、0、1、2、3……这样的数是整数.3、整数与自然数的关系:整数包括自然数.
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的.
5、找倍数:从1倍开始有序的找.
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数.
7、找因数:找一个数的因数,一对一对有序的找较好.
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身.
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数.
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数.
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数.
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数.
13、既是2的倍数又是5的倍数的特征:个位是0的数.
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数.最小的质数是2,是唯一的质数中的偶数.
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数.
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类.
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.
2、 分母:表示平均分的份数.分子:表示取出的份数.
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数.表示其中的一份的数,叫做这个分数的分数单位.
4、 真分数:分子小于分母的分数叫做真分数.真分数小于1.
5、 假分数:分子大于或等于分母的分数,叫做假分数.假分数都大于或等于1.
6、 带分数:由整数和真分数组成的分数叫做带分数.
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变.
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子.
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变.
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数.
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数.其中最大的一个,叫做它们的最大公因数.
13 互质:两个数的公因数只有1,这两个数叫做互质.
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质.
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数.
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数.
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分.计算结果通常用最简分数表示.
18、 通分:把异分母分数分别化成同分母分数,叫通分.通常用最小公倍数
做分数的分母较简便.
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比.
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变.
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份.
②把3平均分成4份,表示这样的1份.
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票.若只有A、B两种方案是,只要选择
其中一种价格便宜的就行.
②租车问题: 用列表法解决问题.两个原则:多用单价低的,少空座.
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么.
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速.
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地.
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算.
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数.
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数.
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分.
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积.(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积.
2.不规则图形面积的估算:
(1)数格子的方法.
(2)把不规则图形看成近似的基本图形,估算出面积.
鸡兔同笼:
1, 列表法.
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小.
2,设计活动方案.
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值
❷ 五年级下册的数学每个单元都讲一下重点知识
五年级下册的数学每个单元重要知识点
第一单元 图形的变换:画轴对称图形,及将简单图形以旋转90度;灵活运用平移、对称、和旋转在方格上设计图案。
第二单元 因数与倍数:掌握因数和倍数、质数和合数、奇数和偶数等概念,及掌握2、3、5倍数的特征。
第三单元 长方体和正方体:探索它们的特征,并掌握求它们的表面积和体积。知道容积的意义及测量,并运用体积公式来求物体的容积。
第四单元 分数的意义和性质:理解分数的意义和性质,会比较分数的大小,会把假分数化带分数或整数,会进行整数和小数的互化。
第五单元 分数加法和减法:掌握计算方法,并能解决有关分数加、减法的简单实际问题。
第六单元 统计:认识复式的折线统计图,能根据需要选择合适的统计图表示数据。会求一组数中的众数。
第七单元 数学广角体会解决问题的策略的多样性及运用优化的数学思想方法解决问题的有效性,感受数学魅力。
❸ 人教版五年级下册数学中有关倍数与因数的知识点都有哪些
因数与倍数重要知识点.....
1. 因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。倍数和因数是相互依存的。
2. 一个数的因数个数是有限的,最小因数是1,最大因数是它本身。一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。 3. 2、3、5倍数的特征。
(1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。
(2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。 (3)个位上是0、5的数都是5的倍数。 4.质数和合数。
(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。最小的质数是2。
(2) 一个数,除了1和它本身还有别的因数,这样的因数叫做合数。最小的合数是4,合数至少有三个因数。 (3)1既不是质数,也不是合数。 5.质因数和分解质因数。
(1)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
(2) 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例:30=2×3×5 6.最大公因数和最小公倍数。
(1) 几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
(2)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
7.互质数:公因数只有1的两个数,叫做互质数。
8. 100以内质数:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、97 9. 13的倍数:26、39、52、65、78、91、104、117 17的倍数:34、51、68、85、102、119、136、153 19的倍数:38、57、76、95、114、133、152、171 因数与倍数专项练习题.......... 一.我会填.
1.一个数是3、5、7的倍数,这个数最小是( 105 ). 2.是3的倍数的最小三位数是( 102).
3.三个数相乘,积是70,这三个数是(2 )( 5 )( 7 )
4.同时是2、3、5的倍数的最小两位数是( 30 ),最大两位数( 90 )最小三位数( 120 )最大三位数( 990 )。
5.用8、5、1、0中三个数组成同时是2、3、5的倍数的最大三位数是( 810 )同时是3、5倍数的最小三位数是( 105 )。 6.100以内6和15的公倍数有(30、60、90)。 7.一个数最小倍数除以它的最大因数,商是( 1 )。
8.既是2的倍数,又是3的倍数,最小的一位数是(6 ),最大的三位数是( 996 )。
9.有两个不同质数的和是22,它们的积是( 85 )。
10.两个数是质数,那么它们的乘积是( 合数 )。
11.一个数是9的倍数,还是72的因数,这个数是( 18或36 )。 12.甲=2×3×5乙=2×3×7,甲和乙的最大公因数是( 6 )。 13.把154分解质因数是( 7 2 11)。
14.有两个连续自然数都是质数,这两个数的和是( 5 ) 15.两个质数得积一定是( 合数 ),两个合数的积一定是( 合数 )。 二.我会选。
1.下列各组数中,两个数只有公因数1的是( C )A.17和51 B.52和91 C.24和25 D.11和22
2.当a是自然数时,2a+1一定是( A )A.奇数 B.偶数 C.质数 D.合数
3.在自然数中,能同时被2、5整除的数一定是( C )A.质数 B.奇数 C.个位上是0的数
4.a是21的因数,a+21的值有( C)个A.2 B.3 C.4 D.5
5.要使四位数4 □27是3的倍数,□内应填( B )A.0、3、6、9 B.2、5、8 C.2、6 D.任何数字
三.我会算(计算最大公因数和最小公倍数) 1.56和42 2.225和15 3.54、72和90
解:7 168 解:15 225 解:18 1080 4. 84和105 5.66、165和231 6.13、26和52
解:21 420 解:33 2310 解:13 52 四.我会列.
1.三个连续自然数的和是72,这三个自然数分别是多少?如果是三个连续的偶数,这三个数又是多少?
解: 三个自然数为 23 24 25 三个连续偶数为 22 24 26 2.一块长45厘米,宽20厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形边长最长是多少厘米? 提示:找45和20的最大公因数 答:所锯成正方形边长最长是5厘米
3. 有一车饮料,如果3箱一数,还剩一箱;如果5箱一数,还剩一箱;如果7箱一数,也剩一箱,这车饮料至少有多少箱? 提示:找3,5,7的最小公倍数,加1即所求结果 答:这车饮料至少有106箱。
5.班级要召开联欢会,同学们剪彩带布置教室,有三根彩带,分别长18分米,24分米,48分米,要把它们剪成同样长的小段,不能有剩余,每段彩带最长多少分米?一共剪几段? 提示:找18,24,48的最大公因数 答:每段彩带最长是6分米,一共剪成15段。
6.一个长60分米,宽35分米的房间内铺同样大小的正方形地砖,铺的时候地砖要完整而没有剩余,地砖边长最大是几分米? 提示:找60,35的最大公因数 答:地砖边长最大是5分米
7.甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次,甲3天去一次,乙4天去一次,丙5天去一次,有一天他们三个恰好在图书馆相会。至少又过多少天他们又在图书馆相会? 提示:找3,4,5的最小公倍数 答:至少过60天他们又在图书馆相会。
8.级三个班分别有24人,36人,42人参加体育活动,要把它们分成人数相等的小组,但各班同学不能打乱,最多每组多少人?每班可以分几组?提示:找24,36,42的最大公因数
答:每组最多6人。每班分别可分4组 ,6组,7组
因数与倍数练习题一
一、判断题
( )1、任何自然数,它的最大因数和最小倍数都是它本身。 ( )2、一个数的倍数一定大于这个数的因数。 ( )3、个位上是0的数都是2和5的倍数。
( )4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。 ( )5、5是因数,10是倍数。
( )6、36的全部因数是2、3、4、6、9、12和18,共有7个。 ( )7、因为18÷9=2,所以18是倍数,9是因数。 ( )9、任何一个自然数最少有两个因数。
( )10、一个数如果是24的倍数,则这个数一定是4和8的倍数。 ( )11、15的倍数有15、30、45。
( )12、一个自然数越大,它的因数个数就越多。 ( )13、两个素数相乘的积还是素数。 ( )14、一个合数至少得有三个因数。
( )15、在自然数列中,除2以外,所有的偶数都是合数。 ( )16、15的因数有3和5。
( )17、在1—40的数中,36是4最大的倍数。 ( )18、1是16的因数,16是16的倍数。 ( )19、8的因数只有2,4。
( )20、一个数的最大因数和最小倍数都是它本身,也就是说一个数的最大因数等于它的最小倍数。
( )21、任何数都没有最大的倍数。 ( )22、1是所有非零自然数的因数。 ( )23、所有的偶数都是合数。 ( )24、素数与素数的乘积还是素数。
( )25、个位上是3、6、9的数都能被3整除。 ( )26、一个数的因数总是比这个数小。
( )27、743的个位上是3,所以743是3的倍数。 ( )28、100以内的最大素数是99。 二、填空。
1、在50以内的自然数中,最大的素数是( ),最小的合数是( )。 2、既是素数又是奇数的最小的一位数是( )。 3、在20以内的素数中,( )加上2还是素数。
4、如果有两个素数的和等于24,可以是( )+( ),( )+( )或( )+( )。
5、一个数的最小倍数减去它的最大因数,差是( )。 6、一个数的最小倍数除以它的最大因数,商是( )。
7、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是()。 8、如果a的最大因数是17,b的最小倍数是1,则a+b的和的所有因数有( )个;a-b的差的所有因数有( )个;a×b的积的所有因数有( )个。 9、比6小的自然数中,其中2是( )的因数,又是( )的倍数。
10、个位上是( )的数,都能被2整除;个位上是( )的数,都能被5整除。
11、在自然数中,最小的奇数是( ),最小的偶数是( ),最小的素数是( ),最小的合数是( )。
12、同时是2和5倍数的数,最小两位数是( ),最大两位数是( )。 13、1024至少减去( )就是3的倍数,1708至少加上 ( )就是5的倍数。 14、素数只有( )个因数,它们分别是( )和( )。
15、一个合数至少有( )个因数,( )既不是素数,也不是合数。 16、自然数中,既是素数又是偶数的是( )。 17、在20至30中,不能分解质因数的数是( )。
18、三个连续偶数的和是186,这三个偶数是( )、( )、 ( )。 19、我是54的因数,又是9的倍数,同时我的因数有2和3。( ) 20、我是50以内7的倍数,我的其中一个因数是4。( ) 21、我是30的因数,又是2和5的倍数。( )
22、我是36的因数,也是2和3的倍数,而且比15小。( )
23、 根据算式25×4=100,( )是( )的因数,( )也是( )的因数;( )是( )的倍数,( )也是( )的倍数。 24、在1—20的自然数中,奇数有( ),偶数有( )素数有( ),合数有( )。
25、 在18、29、45、30、17、72、58、43、75、100中,2的倍数有( );3的倍数有( );5的倍数有( ),既是2的倍数又是5的倍数有( ),既是3 的倍数又是5的倍数有( )。
26、 48的最小倍数是( ),最大因数是( )。最小因数是( )。 27、 用5、6、7这三个数字,组成是5的倍数的三位数是( );组成一个是3的倍数的最小三位数是( )。
28、一个自然数的最大因数是24,这个数是( )。
29、在 27、68、44、72、587、602、431、800中。(共4分) 奇数是: 偶数是:
30、在2、3、45、10、22、17、51、91、93、97中。(共5分) 素数是: 合数是: 31、按要求做。(6~7题共12分)
从0、3、5、7、这4个数中,选出三个组成三位数。 (1)组成的数是2的倍数有: (2)组成的数是5的倍数有: 。 (3)组成的数是3的倍数有: 32、偶数+偶数= 奇数+奇数= 偶数+奇数=
33、幼儿园的大班有36个小朋友,中班有48个小朋友,小班有54个小朋友。按班分组,三个班的各组人数一样多,问每组最多有( )个小朋友。 三、选择题
1、15的最大因数是( ),最小倍数是( )。 ①1 ②3 ③5 ④15
2、在14=2×7中,2和7都是14的( )。 ①素数 ②因数 ③质因数
3、一个数,它既是12的倍数,又是12的因数,这个数是( )。 ①6 ②12 ③24 ④144
4、一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有( )。
①120个 ②90个 ③60个 ④30个
5、自然数中,凡是17的倍数( )。 ①都是偶数 ②有偶数有奇数 ③都是奇数
6、下面的数,因数个数最多的是( )。A 18 B 36 C 40
7、两个素数的和是( )。A 偶数 B 奇数 C奇数或偶数 8、自然数按是不是2的倍数来分,可以分为( )。A奇数和偶数 B素数和合数 C素数、合数、0和1
9、1是( )。A 素数 B 合数 C 奇数 D 偶数
10、甲数×3=乙数,乙数是甲数的( )。A 倍数 B 因数 C 自然数
11、同时是2、3、5的倍数的数是( )。A 18 B 120 C 75 D 810 四、应用题。
1、一个小于30的自然数,既是8的倍数,又是12的倍数,这个数是多少? 2、当a分别是1、2、3、4、5时,6a+1是素数,还是合数?
3、 幼儿园里有一些小朋友,王老师拿了32颗糖平均分给他们,正好分完。小朋友的人数可能是多少?
4、小朋友到文具店买日记本,日记本的单价已看不清楚,他买了3本日记本,售货员阿姨说应付134元,小红认为不对。你能解释这是为什么吗?
因数与倍数练习题二 一、填空。(33%)
(1)6×4=24,6和4是24的( ),24是6的( ),也是4的( )。 (2)24的因数有( )。 (3)下面的数中,把质数划去,留下合数。
2 9 23 27 28 29 31 35 37 39 51
(4)一个数,既是12的倍数,又是12的因数,这个数是( )。 (5)两个都是质数的连续自然数是( )和( )。 (6)在15、18、29、35、39、41、47、58、70、87这些数中: ①是偶数的有( ); ②是奇数的有( ); ③有因数3的是( ); ④5的倍数有( )。 (7)最小的自然数是( ),最小的质数是( )最小的合数是( )。
(8)有因数3,也是2和5的倍数的最小三位数是( )。 (9)在0、1、7、8中选3个数字,组成一个能同时被3、5整除的最小三位数是( )。
(10)三个连续奇数的和是45,这三个奇数分别是( )、( )和( )。 (11)100以内最大的质数与最小的合数的和是( ),差是( )。 (12)是42的因数,又是7的倍数,这些数有( )、( )、( )、( )、。
(13)凡是5的倍数,个位上一定是( )或( )。 (14)既是3的倍数,又是5的倍数的最大两位数是( )。 (14)67至少要加上( )就是3的倍数。
(15)两个质数和为18,积是65,这两个质数是( )和( )。 二、判断题。下列说法正确的在括号里打“√”,错误的打“×”。并订正。(8%) (1)在自然数中与1相邻的数只有2。………………………………………( ) 订正:
(2)3的倍数,一定是9的倍数。……………………………………………( ) 订正:
(3)奇数都比偶数小。…………………………………………………………( ) 订正:
(4)质数的因数只有一个。……………………………………………………( ) 订正:
(5)个数上是3、6、9的数,都是3的倍数。……………………………( ) 订正:
(6)一个数的因数的个数是无限的。………………………………………( ) 订正:
(7)质数一定是奇数,合数一定是偶数。…………………………………( ) 订正:
(8)两个质数的和一定是偶数。……………………………………………( ) 订正:
三、选择题。将正确答案的序号填在题中的括号里。(8%) (1)一个数是3的倍数,这个数各位上数的和( )。 ①大于3 ②等于3 ③是3的倍数 ④小于3 (2)一个合数至少有( )。
①一个因数 ②二个因数 ③三个因数 ④四个因数 (3)87是( );41是( )。
①合数 ②质数 ③因数 ④倍数 (4)既不是质数又不是合数的是( )。 ①1 ②2 ③3 ④4 (5)42÷3=14,我们可以说( )。
①42是倍数 ②3是因数 ③ 42是3的倍数 ④42是3的因数 (6)两个奇数的和( )。
①一定是奇数 ②一定是偶数 ③可能是奇数也可能是偶数 ④一定是质数 (7)几个质数之积一定是( )。
①奇数 ②偶数 ③合数 ④质数 (8)5和7都是35的( )。
①奇数 ②偶数 ③因数 ④倍数 四、解方程。(6%)
(1)X ÷ 36=0.4 (2)8X-9.1=22.9 (3)36+2X=78.6 (4)4×0.9+3X=46.2 五、列方程解文字题。(4%)
(1)一个数的13倍加4与1.7的积,和是162,这个数是多少? (2)一个数的3倍减去5.8,差是13.4,求这个数。 六、按要求完成下列各题。(41%) (1)在圈内写上合适的数。(4%)
60的因数 50以内6的倍数
(2)从四张数字卡片中选出三张,按要求组成三位数。(10%)
①奇数 ②偶数 ③3的倍数 ④5的倍数 ⑤既是2的倍数,又是5的倍数 (3)在括号里填上适当的质数。(8%)
①8=( )+( ) ②12=( )+( )+( ) ③15=( )+( ) ④18=( )+( )+( ) ⑤24=( )+( )=( )+( )=( )+( ) (4)在1~100的自然数中写出9的所有倍数。(4%)
(5)在□里填上一个数字,使这个数成为3的倍数。(写出所有填法)(6%) □8 4□6 2 3□1
(6)写出一些三位数,这些数都同时是2、3、5的倍数。(每种写两个数)(6%)
①有两个数字是质数: ②有两个数字是合数: ③有两个数字是奇数:
(7)1+2+3+……+999+1000+1001的和是奇数还是偶数?请写出理由。(3%)
因数与倍数练习题三 一、填空(30分)
1、像0,1,2,3,4,5,6,……这样的数是( ) 2、像-3,-2,-1,0,1,2,3,……这样的数是( )
3、有一个算式7×8=56,那么可以说( )和( )是( )的因数,( )是( )和( )的倍数。 4、是2的倍数的数叫( )。 5、不是2的倍数的数叫( )。
6、凡是个位上是( )或( )的数,都是5的倍数。一个数既是2的倍数,又是5的倍数,这个数的个位上的数字一定是( )。
7、一个数各个数位上的数字加起来的和是9的倍数,那么这个数也是( )的倍数。如果要让□729成为3的倍数,那么□里可以填( )。 8、一个数只有( )两个因数,这个数叫作质数。
一个数除了( )以外还有( ),这个数叫做合数。合数最少有( )个因数,质数只有( )个因数。 9、要使5□是质数,□可以填( )
10、最小的质数是( ),最小的合数是( )。 11、写出1~20的所有质数是( ),
1~20中共有( )个质数,在1~20中,共有( )个合数。( )既不是质数,也不是合数。
12、有一个比14大,比19小的奇数,它同时是质数,这个数是( )。 13、任何大于6的质数除以6,肯定有余数,余数只会是( )或( )。 14、有一个两位数,它是2的倍数,同时,它的各个数位上的数字的积是12,这个两位数可能是 ( )。 二、判断(6分)
1、大于2的所有的偶数都是合数。 ( ) 2、除2以外,所有的质数都是奇数。 ( ) 3、6的所有倍数都是合数。 ( )
4、一个数是9的倍数,这个数一定也是3的倍数。 ( ) 5、连续的两个自然数相加的和一定是奇数。 ( ) 6、8是因数,12是倍数。 ( )
❹ 五年级下册数学内容有哪些
第一单元观察物体考查的比较多内容是画出三个方向的观察图或者是根据三视图判断出来原题什么样形状。
第二单元因数和倍数,这一单元内容比较抽象有些难以理解。质数合数考查的比较多,如何找因数和如何找倍数也是考试中经常出现的内容。
第三单元长方体和正方体,这一单元中考查比较多的是棱长、表面积和体积的计算,一定要灵活运用公式,选择合适的变形式进行计算。
第四单元分数的意义和性质,这一单元内容是最多的、也是最难的部分。真假分数、分数基本性质都是经常考的内容,约分、通分、分数小数的互化是期末考试中的必考内容。
第六单元分数的加法和减法,这一单元中考查的最多的是异分母分数的加减法运算、分数的混合运算,一定要加强孩子的约分能力。
第七八单元都是比较简单的内容,找次品时候要尽可能平均分成3份。
内容简介
《七彩课堂:数学(5年级下册)(人教实验版)》课堂练习:及时讲,及时练,及时掌握知识点。小提示:指出错误的学习习惯、学习方法,提出修改的建议。举一反三:深刻领会相应知识点,提高解题能力,触类旁通培养思维的灵活性和深刻性。
创新题:热点、开方、创新。举例说明:呈现与重要知识点相关的例子,到达“一题领一串”的效果。金点子:知识和技能有机结合,构建完善的知识网络。易错集锦:易错环节的归纳与梳理,深入分析易错的原因总结,总结避免错误的方法。
以上内容参考网络-数学五年级下册
❺ 五年级下册数学重点
五年级下册数学知识要点:
第一单元:图形的变换
1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。
2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。
3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。
第二单元:因数与倍数
1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。
2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。
3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。
5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。
6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。
8.
四则运算中的奇偶规律:
奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数
偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数
奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数
偶数-奇数=奇数
9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。
10. 1既不是质数,也不是合数。
11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。
12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三单元:长方体和正方体
1. 正方体也叫立方体。
2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。
3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。
5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。
6. 长方体的棱长总和=(长+宽+高)×4
7. 正方体的棱长总和=棱长×12
8. 长方体六个面的面积总和叫做长方体的表面积。
9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。
10. 长方体的表面积=(长×宽+长×高+宽×高)×2
11. 正方体的表面积=棱长2×6
12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4
13. 长方体的侧面积=底面周长×高
14. 物体所占空间的大小,叫做物体的体积。
15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。
16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。
17. 长方体的体积=长×宽×高;用字母表示是V=abh
18. 正方体的体积=棱长3;用字母表示是V=a3
19. 长方体(或正方体)的体积=底面积×高=横截面积×长
20. 在工程上,1立方米简称1方。
21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。
22. 棱长总和相等的长方体或正方体,正方体的体积最大。
23. 1立方米=1000立方分米;1立方分米=1000立方厘米。
24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。
25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。
26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。
27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。
28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。
29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度
30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。
第四单元:分数的意义和性质
1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。
2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。
3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。
4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。
5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。
7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。
8. 分子比分母小的分数叫真分数。真分数小于1。
9. 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。
11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
12. 整数可以看成分母是1的假分数。例如5可以看成是5/1。
13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。
15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。
16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。
17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。
18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。
19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。
20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。
21. 数A×数B=它们的最大公因数×它们的最小公倍数。
22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。
23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。
25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。
27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。
此资料来源于网络。希望对你有帮助。
❻ 人教版五年级下册数学重要复习资料
九、解决问题的策略
1.学会用“倒过来推想”的策略解题。
十、圆
1.圆的特征,圆心、半径、直径;
2.能用圆规画指定大小的圆;
3.会用圆的知识解释生活中的一些现象与解决一些简单问题;
4.圆周率的含义;圆周长、面积计算。 ?
五年级下册数学总复习 一、数与运算 《分数乘法》:
1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子,能约分的要约成最简分数,计算结果能化成整数的要化成整数。 注:0乘以任何数还得0。
3、分数乘分数的意义:求这个数的几分之几是多少。
4、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。
注:理解打折的含义。例如:九折,是指现价是原价的十分之九。 六五折,是指现价是原价的百分之六十五。
5、知道一个数是多少,求这个数的几分之几是多少?这样的应用题,可以用乘法解答。 《分数除法》
1、倒数:如果两个数的乘积是1,那么其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。乘积是1的两个数互为倒数。 2、求倒数的方法。
3、1的倒数仍是1;0没有倒数。(理由:0没有倒数,是因为在分数中,0不能做分母)。 4、一个数(A)除以另一个数(B)(零除外)等于乘这个数(B)的倒数。 5、分数除以整数表示的意义:就是求这个数的几分之几是多少。 6、比较商与被除数的大小。 除数小于1,商大于被除数;
除数等于1。商等于被除数;
除数大于1,商小于被除数。 《分数的混合运算》
1、分数的混合运算顺序与整数混合运算顺序相同。(有括号先算括号里,再算括号外;没括号,先算乘除,再算加减;有乘有除,从左往右依次计算。除法先转换成乘法再约分,最后结果是最简分数)
2、整数运算定律在分数运算中同样适用。 3、用方程解决有关分数混合运算的实际问题。 4、会利用线段图来分析应用题题中的数量关系、 《百分数》
1、百分数的意义:表示一个数是另一个数的百分之几的数叫作百分数,百分数又叫百分比、百分率。
2、百分数的读法、写法。
3、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
4、分数化成百分数的方法:把分数化成百分数,可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
5、百分数化成小数、分数的方法。
百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。
6、用方程解决“已知一个数的百分之几多少,求这个数”的实际问题。 7、百分数和分数的区别:
意义不同:百分数只表示两个数量之间的关系,后面不加单位;而分数既可以表示两个数量之间的关系,也可以表示某个具体数量,可加单位。 读法不同:百分数只读作百分之几,不读作一百分之几。 写法不同
二、空间与图形
1、长方体、正方体各自的特点: 3、知道正方体是特殊的长方体。
4、计算长方体、正方体的棱长总和:
长方体的棱长总和=(长 宽 高)?4或者是长?4 宽?4 高?4 正方体的棱长总和=棱长?12 5、长方体的表面积
长方体的表面积=长?宽?2 长?高?2 宽?高?2=(长?宽 长?高 宽?高)?2 正方体的表面积=棱长?棱长?6 6、计算露在外面的面的面积时:
首先数出露在外面的面的个数,再求露在外面的面的面积=露在外面的面的个数?一个面的面积。
《长方体(二)》
1、体积与容积的概念。
体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳入体的体积叫做物体的容积。 2、体积单位
常用的体积单位有:立方厘米、立方分米、立方米。常用的容积单位有:升、毫升。 补充特殊的知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。 3、长方体的体积
长方体的体积=长?宽?高
正方体的体积=棱长?棱长?棱长
长方体(正方体)的体积=底面积?高
4、不规则物体体积的测量方法和不规则物体体积的计算方法。 物体的体积=升高的水的体积=容器的底面积?水面上升的高度。 (参看课本55页第二题) 5、体积、容积单位之间的进率。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升 1立方米=1000立方分米
( 相邻两个体积单位、容积单位之间的进率是1000) 6、其他单位之间的进率
1米=100厘米 1立方米=1000000立方厘米 长度单位:
1米=10分米 1分米=10厘米(相邻两个长度单位间的进率是10) 面积单位:
1平方米=100平方分米 1平方分米=100平方厘米 (相邻两个面积单位间的进率是100) 体积单位:
1立方分米=1000立方厘米 1立方米=1000立方分米 容积单位: 1升=1000毫升 质量单位:
1吨=1000千克 1千克=1000克 三、统计
1、扇形统计图:以一个圆作为整体,把各部分所占的百分比表现在这个圆中。 2、条形统计图、扇形统计图、折线统计图的不同特点: 条形统计图便于看出数据的多少;
扇形统计图能清楚地看出整体与部分之间的关系; 折线统计图能看出数据的变化趋势(或变化情况)。
3、中位数和众数
将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。 一组数据中出现次数最多的数称为这组数据的众数。 4、中位数和众数的求法。
将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。众数,就是一组数据中出现次数最多的。
四、重点题目
❼ 小学五年级下册(人教版)数学概念的整理,有谁知道
一、分数乘法、分数除法
1. 分数乘法的意义:求几个相同分数的和的简便运算
2. 分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算
3. 分数乘法的运算法则:
(1) 分数与整数相乘:分子和整数相乘,分母不变。
(2) 分数与分数相乘:分子与分子相乘,分母与分母相乘,能约分的可以先约分。
4. 分数除法的运算法则:
(1)一个数除以一个整数(0除外)等于这个数乘以这个整数的倒数。
(2)一个数除以一个分数等于这个数乘以这个分数的倒数。
(3) 除以一个数(0除外)等于乘这个数的倒数。
5. 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。比如1/2的倒数是2,2的倒数是1/2,这两个数互为倒数。1的倒数是1,0没有倒数。
6. 分数乘、除法的实际问题
(1)求一个数的几分之几是多少,用乘法。
(2)已知一个数的几分之几是多少,求这个数,用除法,也可以用解方程。
二、分数的混合运算
1. 分数混合运算的顺序与整数混合运算的顺序一样:先算乘除后算加减,有括号的先算括号里面的,再算括号外面的。
2. 运算定律:
(1)乘法分配律:
(2)乘法结合律:
(3)乘法交换律:
运用运算定律可对分数的混合运算进行简便运算。
三、长方体的认识、表面积、体积和容积
1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
3. 正方体是特殊的长方体。(长宽高都相等)
4. 长方体的棱长总和=(长+宽+高)×4
5. 正方体的棱长总和=棱长×12
6. 长方体6个面的总面积叫作它的表面积。长方体相对的面的面积相等,前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽
7. 长方体的表面积=(长×宽+长×高+宽×高)×2
8. 长方体的体积=长×宽×高
9. 正方体的体积=棱长×棱长×棱长
10. 长方体(正方体)的体积=底面积×高
四、百分数
1. 百分数表示一个数是另一个数的百分之几。百分数也叫百分比、百分率。
写作22%,读作:百分之二十二
2. 百分数与小数的互化:
(1)小数化百分数:小数点向右移两位,再加上百分号。
(2)百分数化小数:去掉百分号,百分号前的数的小数点向左移两位。
3. 百分数与分数的互化:
(1)分数化百分数:用分子除以分母,除得的商再化成百分数。或者把分数化成分母是100的分数,再改写成百分数。
(2)百分数化分数:把百分数写成分母是100的分数,能约分的要约分成最简分数。
4. 优秀率=优秀人数÷总人数
5. 及格率=及格的人数÷总人数
6. 合格率=合格的产品数÷产品总数
7. 出勤率=出勤人数÷总人数
8. 命中率=命中次数÷总次数
9. 发芽率=发芽的种子数÷种子总数
10. 成活率=成活的棵数÷种植的总棵数
11. 出粉率=面粉的重量÷小麦的重量
12. 出油率=榨出的油的重量÷花生仁的重量
五、统计
1. 条形统计图能清楚地表示地各种数量的多少,并且方便进行比较。
2. 扇形统计图能直观地表示出各种量分别占总量的百分之几。
3. 折线统计图能直观地表示出数量的变化情况。
4. 平均数=总数量÷总份数
5. 把一组数据从小到大(或从大到小)排列,中间的数叫这组数据的中位数。
6. 一组数据中出现次数最多的数叫这组数据的众数。
五年级数学下册概念公式
一、分数乘法、分数除法
1. 分数乘法的意义:求几个相同分数的和的简便运算
2. 分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算
3. 分数乘法的运算法则:
(4) 分数与整数相乘:分子和整数相乘,分母不变。
(5) 分数与分数相乘:分子与分子相乘,分母与分母相乘,能约分的可以先约分。
4. 分数除法的运算法则:
(1)一个数除以一个整数(0除外)等于这个数乘以这个整数的倒数。
(2)一个数除以一个分数等于这个数乘以这个分数的倒数。
(6) 除以一个数(0除外)等于乘这个数的倒数。
5. 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。比如1/2的倒数是2,2的倒数是1/2,这两个数互为倒数。1的倒数是1,0没有倒数。
6. 分数乘、除法的实际问题
(1)求一个数的几分之几是多少,用乘法。
(2)已知一个数的几分之几是多少,求这个数,用除法,也可以用解方程。
二、分数的混合运算
1. 分数混合运算的顺序与整数混合运算的顺序一样:先算乘除后算加减,有括号的先算括号里面的,再算括号外面的。
2. 运算定律:
(1)乘法分配律:
(2)乘法结合律:
(3)乘法交换律:
运用运算定律可对分数的混合运算进行简便运算。
三、长方体的认识、表面积、体积和容积
1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
11. 正方体是特殊的长方体。(长宽高都相等)
12. 长方体的棱长总和=(长+宽+高)×4
13. 正方体的棱长总和=棱长×12
14. 长方体6个面的总面积叫作它的表面积。长方体相对的面的面积相等,前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽
15. 长方体的表面积=(长×宽+长×高+宽×高)×2
16. 正方体6个面的总面积叫作它的表面积,6个面的面积都相等。
17. 正方体的表面积=棱长×棱长×6
18. 物体所占空间的大小叫作物体的体积。常用的体积单位有:立方厘米,立方分米,立方米。
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米
19. 容器所能容纳物体的体积叫作容器的容积。常用的容积单位有:升和毫升
1升=1立方分米 1毫升=1立方厘米
20. 相邻的的体积单位之间的互化
低级单位 高级单位
21. 计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。
22. 长方体的体积=长×宽×高
23. 正方体的体积=棱长×棱长×棱长
24. 长方体(正方体)的体积=底面积×高
四、百分数
1. 百分数表示一个数是另一个数的百分之几。百分数也叫百分比、百分率。
写作22%,读作:百分之二十二
2. 百分数与小数的互化:
(1)小数化百分数:小数点向右移两位,再加上百分号。
(2)百分数化小数:去掉百分号,百分号前的数的小数点向左移两位。
3. 百分数与分数的互化:
(1)分数化百分数:用分子除以分母,除得的商再化成百分数。或者把分数化成分母是100的分数,再改写成百分数。
(2)百分数化分数:把百分数写成分母是100的分数,能约分的要约分成最简分数。
13. 优秀率=优秀人数÷总人数
14. 及格率=及格的人数÷总人数
五、统计
1. 条形统计图能清楚地表示地各种数量的多少,并且方便进行比较。
7. 扇形统计图能直观地表示出各种量分别占总量的百分之几。
8. 折线统计图能直观地表示出数量的变化情况。
9. 平均数=总数量÷总份数
10. 把一组数据从小到大(或从大到小)排列,中间的数叫这组数据的中位数。
11. 一组数据中出现次数最多的数叫这组数据的众数。
❽ 人教版五年级下册数学中有关倍数与因数的知识点都有哪些
是这个吗?
两个数共有的倍数是这两个数的公倍数,由于一个数的倍数有无数个,所以两个数的公倍数也是无数个。因此在写两个数的公倍数时要在最后写上省略号,其中最小数是这两个数的最小公倍数。找两个数的公倍要注意,一从小到大依次找,最后写省略号,二是不要简单认为两个数的最小公倍数是这两个数的积。
❾ 五年级数学下册的重点
五年级下册数学知识要点:
第一单元:图形的变换
1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。
2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。
3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。
第二单元:因数与倍数
1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。
2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。
3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。
5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。
6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。
8.
四则运算中的奇偶规律:
奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数
偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数
奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数
偶数-奇数=奇数
9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。
10. 1既不是质数,也不是合数。
11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。
12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三单元:长方体和正方体
1. 正方体也叫立方体。
2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。
3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。
5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。
6. 长方体的棱长总和=(长+宽+高)×4
7. 正方体的棱长总和=棱长×12
8. 长方体六个面的面积总和叫做长方体的表面积。
9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。
10. 长方体的表面积=(长×宽+长×高+宽×高)×2
11. 正方体的表面积=棱长2×6
12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4
13. 长方体的侧面积=底面周长×高
14. 物体所占空间的大小,叫做物体的体积。
15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。
16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。
17. 长方体的体积=长×宽×高;用字母表示是V=abh
18. 正方体的体积=棱长3;用字母表示是V=a3
19. 长方体(或正方体)的体积=底面积×高=横截面积×长
20. 在工程上,1立方米简称1方。
21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。
22. 棱长总和相等的长方体或正方体,正方体的体积最大。
23. 1立方米=1000立方分米;1立方分米=1000立方厘米。
24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。
25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。
26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。
27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。
28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。
29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度
30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。
第四单元:分数的意义和性质
1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。
2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。
3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。
4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。
5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。
7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。
8. 分子比分母小的分数叫真分数。真分数小于1。
9. 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。
11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
12. 整数可以看成分母是1的假分数。例如5可以看成是5/1。
13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。
15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。
16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。
17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。
18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。
19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。
20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。
21. 数A×数B=它们的最大公因数×它们的最小公倍数。
22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。
23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。
25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。
27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。
希望我的回答能对你有所帮助咯。。。(*^__^*) 嘻嘻……