① 八年级数学知识点梳理总结
没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
8年级上册数学知识点 总结 归纳
一、全等形
1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。
2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。
二、全等多边形
1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、性质:
(1)全等多边形的对应边相等,对应角相等。
(2)全等多边形的面积相等。
三、全等三角形
1、全等符号:≌。如图,不是为:△ABC≌△ABC。读作:三角形ABC全等于三角形ABC。
2、全等三角形的判定定理:
(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,边角边);
(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,角边角)
(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,角角边)
(4)有三边对应相等的两三角形全等。(即SSS,边边边)
(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,斜边直角边)
3、全等三角形的性质:
(1)全等三角形的对应边相等、对应角相等;
(2)全等三角形的周长相等、面积相等;
(3)全等三角形对应边上的中线、高,对应角的平分线都相等。
4、全等三角形的作用:
(1)用于直接证明线段相等,角相等。
(2)用于证明直线的平行关系、垂直关系等。
(3)用于测量人不能的到达的路程的长短等。
(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。
(5)用于解决有关等积等问题。
苏教版8年级上册数学复习资料
1. 整式的乘法 幂的运算性质: 同底数幂的乘法
幂的乘方
积的乘方
单项式乘以单项式
单项式乘以多项式
多项式乘以多项式
乘法公式
2.整式的除法 幂的运算性质:同底数幂的除法
单项式除以单项式
多项式除以单项式
3.因式分解 提公因式法 公式法
十字相乘法 分组分解法
【练习1】 口答:
(1) x3x2 = (103)5= (-3x)3=
(2) 105.103.10= (am)2 = (-5ab)2=
(3) -y3y4 = -(x4)3 = (xy2)2 =
(4) Xm+2.x3m= (a4)4= (-2xy3z2)4=
【练习2】计算
(1) 5x2y2(-3x2y)
(2) (-2ax2)2.(-3a2x)3
(3) 5b2c.(3ab-2b3)
(4) (4x2-3x+6).2x
(5) 先化简,再求值:x2(x-1)-x(x2+2x-6), 其中x=2
【练习3】计算
1. x(4x-y)-(2x+y)(2x-y)
2. (a+2b)2+(a-2b)2
3. (a-b)2-(a+b)(a-b)
4. (x+y+z)(x-y-z)
5. (x-y-z)2
【练习4】计算
【练习5】因式分解
1. a2-ab
2. 3a3+12ab2-9a4b3
3. -8x4y+6x3y-2x2y
4. m(4x+y)-2mn(4x+y)
5. 3a(a-2b)2-18b(2b-a)2
6. x2-81
7. x3-4x
8. 25m2-10mn+n2
9. 4(x-y)2+12(y-x)+9
10. x2-4x-5
(苏科版)八年级下册数学复习计划
一、复习目标:
初二数学本学期教学内容多,难度大,导致本次复习时间较短,只有三个周的复习时间。根据实际情况,特作计划如下:
(一)、整理本学期学过的知识与 方法 :
1.知识要点综合复习,加入适当的练习。课堂上逐一对易错题进行讲解,多强调有针对性的解题方法。最后针对平时练习中存在的问题,查漏补缺。
2. 考试 热点 的归纳,要以与课本同步的训练题型为主,要列表或作图的,让学生积极动手操作,并得出结论,有些考试题型学生可能不熟悉,所以教师要讲解解题方法和步骤。课堂上教师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出解决问题的常用分析方法。
3.几何部分。重点是特殊平行四边形和等腰梯形的性质及其判定定理。所以记住性质是关键,学会判定是重点。要学会判定方法的选择,不同图形之间的区别和联系要非常熟悉,掌握常用添加辅助线的方法,形成一个有机整体。对常见的证明题要多练多总结。
(二)、在自己经历过的解决问题活动中,选择一个有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。
(三)、 进一步培养学生的应用意识,建立数形结合思想、化归思想、统计思想以及合情推理能力和演绎推理能力。
(四)、通过本学期的数学学习,让同学总结自己有哪些收获?有哪些需要改进的地方。
二、 复习方法 :
1、强化训练
这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。特别是分式方程,在复习过程中,重点是解题方法,同时使学生养成检验的习惯。还有几何证明题,要通过针对性练习,力争少失分,达到证明简练又严谨的效果。
2、加强管理严格要求
根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。
3、加强证明题的训练
通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。
4、加强成绩不理想学生的辅导
制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。
八年级数学知识点梳理总结相关 文章 :
★ 八年级数学知识点整理归纳
★ 八年级数学知识点归纳总结
★ 人教版八年级数学上册知识点总结
★ 八年级下册数学知识点整理
★ 八年级数学知识点总结归纳
★ 初二数学知识点归纳总结
★ 初二数学知识点归纳
★ 初二数学上册知识点总结
★ 初二上册数学知识点归纳总结
★ 初二数学知识点整理归纳
② 数学如何整理笔记
分几个部分整理。
第一步:
把书本上讲的基础重点内容整理在笔记本上。知识点要简练,能突出知识点内容就行,不需要记一大堆没用的。
第二:把平时所做错的题目整理在笔记本上。重新做一遍。
第三
在第二步的基础上,把最后从中得到的经验以及感想批注在题目旁边。然后联系第一步记的知识店看一遍,加深理解相关知识点的原理。
第四:在做过一定题的基础上,总体归纳总结知识点。分成几个大框归类。
第一个框:记基础内容。
第二个框:记错题。
第三个框:记经验感想并联系基础知识
第四个框:数图结合。
做错的题目旁边引入相关知识点,第一步先把相关知识点的定义抄在错题旁边,然后写出这个错题的解析,清晰明了。接着在做完这道题后,把从错题中得到的经验感悟写在下面。
③ 怎么整理高中数学知识点
我们知道,高考所有的考点,知识点的出题都是建立在教材上的。所以,最开始的准备就是先找齐你的所有数学教科书。我们可以先从课本的目录入手,同时在草稿纸上规划知识点,将知识点进行分类,再在笔记本上誊写新的属于知识点的分类目录——例如:一.集合
将知识点分好类后,再将大的知识点细分为几个小的知识点,例如:1.集合的含义与表示2.集合间的基本关系。像这样细分之后,逐一开始正式归纳笔记了!首先,我们需要宏观的扫一遍本小节的重点,哪些是可以剔除的,哪些是必须记录的,都需要根据自身的学习程度来把握,总的来说,就是书本总结要抓重点。特别提一句:书本用其他颜色标出的句子一定要抄,因为这些句子一般都是定义,掌握好该知识点的意思,才能更好的理解,帮助做题!
数学笔记最重要的学会掌握做题的基本方法,剩余的高级难度题目是需要自我去拓展的。教科书最直接的方法是将做题的基本步骤都融入到了例题中。所以,我们在抄上每一小节例题的同时也不要忘了认真的看一遍做题步骤,并且还要掌握此题的规律,真正的学会“做”这道题,最好是将此题看一遍,然后将题目抄到笔记本上,自己再做一遍,然后再对照教材用红笔更正一遍更有效!
除了以上这些,还有划记笔的作用没有用到。划记笔的作用如其名一样,当然就是划记重要的关键词了,或者一句相当重要定理,划记是需要适当的,只需要划记重要的部分,不要错以为划记都要满满地划,搞得整个笔记本都是五颜六色的,看都看花了,在考试之前都找不到重点在哪,那笔记本的作用也会大大减小了。
我们做的笔记不需要有多漂亮,多整洁,只需要自己能看得懂便是极好的!所以,我们可以放心的使用便利贴,随时将老师上课补充的知识点以及需要注意的事项写在便利贴上对笔记进行补充,所以,平时也不必将笔记本写得满满当当的,还可以留一些空白给便利贴随时进行补充说明,完善笔记。
最后,也是不可忽视的一件事。那就是教材每一小节的最后都有该节的练习,题目虽然不多,但是确是精炼,而且整理笔记本来就需要花很多时间,何况是整个高中的书本,这样简短的练习不仅能够检验自己的水平,同时还能节约自己的时间,何乐而不为呢?
④ 如何有效地复习整理数学知识点
数学的逻辑性很强,知识往往分散在不同阶段,学生对这些知识理解容易割裂。在阶段学习的基础上需对各领域内容进行系统整理与复习。整理与复习是要把平时相对独立进行教学的知识,其中特别重要的是把带有规律性的知识,以再现、整理、归纳等方法串联起来,进而加深学生对知识的理解、沟通。它既不同于新授课,更不同于练习课。其基本任务就是整理知识,使之系统化、清晰化,并具有拓展性。
它的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通,做到梳理——训练——拓展,有序发展,真正提高复习的效果。
如何进行有效地复习与整理呢?
一、梳理归纳,沟通联系,强化基础
基础知识与基本技能是数学学习的基础,创新能力的高楼必须建立在扎实的双基基础之上,只有具备扎实的数学基础,学生才会出现创新的可能。教师要引导学生进行回顾与整理,使学生在平时学习的基础上沟通各部分之间的联系。在回顾与整理时,应以双基为基础,充分发挥学生的主体作用,引导学生自主整理知识,形成知识网络,体验数学的系统性。
但是在这样的学习过程中,必须注意两个问题:一是由于小学生受到知识结构和能力水平的限制,学生所要整理、沟通的知识内容的切人点一定要小,做到小而精,提出的学习要求要明确,以便学生能更好地进行整理;二是在学生整理时,教师应适当给予一些帮助,学生的整理尽管是不完整或粗糙的,教师也应给予充分地评价,并结合学生的整理,取其精华概括出较合理的知识网络图。
在平时的学习中,有些学生可能对基本概念的理解不够重视,有些学生则会在理解法则上有些模糊。对于易混淆的知识点,教师适时引导学生结合具体的事例进行理解,让学生在理解的基础上进行记忆;同时对学生已能熟练记忆的基础知识,再要求学生加强理解,弄清知识间的联系,分清类似知识点的区别,从而更好地掌握基础知识。如果学生对钝角的概念只是机械记忆,只记概念“大于90度,小于180度的角是钝角”,没有准确理解钝角概念的内涵与外延,会认为“钝角大于90度”是正确的。对于商不变规律“被除数和除同时乘或除以相同的数(零除外),商不变”。学生往往会把0除外忽视,还会影响分数的基本性质的学习。
二、合理训练,提高能力,发展思维
在回顾与整理的基础上,需要通过合理的训练以巩固学生所学知识。只有通过合理的训练、反馈,才能暴露出学生在学习中存在的问题,同时训练可以锻炼学生如何应用已有知识解决具体的数学问题的能力。学生在回顾与整理中具备了一定的数学基础知识与技能,那么在巩固与应用环节的训练中,首先要培养学生的应用意识,让他们学会合理地应用已有知识和常见的解题策略来解决数学问题。巩固与应用中的训练应注重训练量的合理,这就要求教师在训练中精选习题,注重习题的创新性,同时适当加强训练题的趣味性和生活味,以激发学生的兴趣,调节学生心理。
从教学实践来看,有时一些具有一定思维难度的数学题,也会激起学生的探究欲望。激发学生的学习兴趣与热情是平常教学,更是复习时很重要的教学手段:即通过创设情境激发学生学习的兴奋点,让学生在复习时也有新鲜感,从而以一种积极的心态投人到复习中,避免以往复习课那种沉闷的气氛及面面俱到的“炒冷饭”般的复习方式。
数学是思维的体操,思维活动是数学学科的特征,任何数学教学活动都不能缺少思维活动,复习课同样不例外。因此在复习的全过程中,教师必须以培养学生的思维能力为目标,注重学生思维的发展与提高,在发展与提高学生思维能力的过程中,教师应注重培养学生的解题的灵活性与创新意识。培养学生解题的灵活性,可通过一题多解进行,例如在解决“5米长的铁丝重250克,2500克的一捆铁丝有多长?”时,学生可能会先求出每米铁丝的重量再求这捆铁丝的重量或先求出每克铁丝的长度再求这捆铁丝的长或根据重量比与长度之比求出铁丝的长度。在这种一题多解的训练中,让学生体验解题的灵活性,发展他们的思维能力。同时,一题多解的训练,还可培养学生在解题过程中,当某种思路受阻时,可以换一种思路来解决问题。此外教师要在课堂上留给学生思考的时间和空间,鼓励他们发挥自己的创造力,让他们的想象得到充分的展现。让学生提数学问题,解决生活实际的问题。
三、培养良好的学习习惯,提高学习效益
在复习过程中,要注意培养学生良好的学习习惯。良好的学习习惯不仅能提高学习,而且一生受益。
总之,整理和复习课的形式要多样化,运用多种方法和策略,揭示数学知识之间的联系与区别,并帮助学生掌握相关规律,认识事物的本质,达到整理有序和复习有效的目的,使学生在获得对数学理解的同时,思维能力、个性品质、情感态度等方面都得到发展。
⑤ 考研数学笔记应该如何整理好
总体上来说,我们在看书的时候,要重在理解书中的大体意思,把感觉有所心得或感兴趣的地方记下来,供以后复习或寻找线索。根据心理学的记忆编码原理,只有那些经过自己提炼过的知识才能真正地被纳入我们已有的知识体系,所以记笔记的时候好用自己的话来阐述某一知识点或原理。
1.利用记忆树
记忆树是利用关联性记忆法,将看似混乱的知识点梳理出清晰的脉络,特色是会以一个主题作为是主干,然后将与其相关联的资料以上下半辐射状呈现出来,最后出现树状图的图像,故称为记忆树。记忆树能把你觉得很混乱的知识点理得一清二楚,并且可以让知识点在大脑中形成一个大致脉络。
其次,我们须要改正对于传统抄写笔记的观念,一般的学生都认为在抄写笔记时,应力求版书的工整以及字迹的漂亮。事实上字丑一点没有关系,图画的不好看也无所谓,但是笔记须能够帮自己建构出一个完整的知识框架。
2.使用不同色号的笔
记笔记一定要避免通篇都是一个颜色的记号,很容易审美疲劳,而且在翻阅查找的时候非常的不方便。
建议大家用不同颜色的荧光笔标注重要的公式或句子,还有彩色的水性笔记录一些重点内容。这样在看的时候就会有侧重点,而且也利用了心理学中的视觉感知来帮助记忆。但是需要注意的是,切忌不可以出现笔记全篇都是荧光笔,这样对于帮助我们区分重点毫无裨益。
3.力求条理清晰
记笔记一定要有层次条理,我们可以用大标题、小标题来区分层次。如果对整理的知识点不加以区分,那么后期复习起来,很容易乏味,又抓不住重点。不过大小标题的序号也一定要有所区别,不然到最后自己会分不清到底是哪一层次的内容。
4.留出空白
记笔记一定不要太紧密,挤得满满当当就会很混乱,要给自己留出一定空白。笔记本上留出的空白主要有以下几个用处:首先随着我们对知识理解深度的增加,需要及时在笔记上做出补充。在补充的过程中,我们可以使用引箭头的方式,哪里有空白,就可以引个箭头出来进行知识点的细化其次,我们可以把刷题过程中出现的典型例题和自己疏漏的知识点补充到笔记上最后,我们可以根据自己对某一章节的理解,在空白处做一个小总结。
⑥ 小学数学复习课中课后的总结梳理的方式方法有哪些
一、制定切实可行的复习计划,并认真执行计划。为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。复习时要弄清学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。
02
二、分类整理、梳理,强化复习的系统性。复习的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。做到梳理——训练——拓展,有序发展,真正提高复习的效果。
03
三、辨析比较,区分弄清易混概念。对于易混淆的概念,首先抓住意义方面的比较,再者是对易混概念的分析,这样能全面把握概念的本质,避免不同概念的干扰,另外对易混的方法也应进行比较,以明确解题方法。
04
四、一题多解,多题一解,提高解题的灵活性。有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养分析问题的能力。灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果。同时也给其他同学以启迪,开阔解题思路。有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,要对各类习题进行归类,这样才能使所所学知识融会贯通,提高解题灵活性。
05
五、有的放矢,挖掘创新。机械的重复,什么都讲,什么都练是复习大忌,复习一定要有目的,有重点,要对所学知识归纳,概括。习题要具有开放性,创新性,使思维得到充分发展,要正确评估自己,自觉补缺查漏,面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的经验。
⑦ 如何引导学生进行数学知识梳理
一、让学生自我梳理,合作学习,形成自己的知识网。
课前放手让学生自我梳理,课内交流完善,使知识条理化、系统化,形成良好的知识网络,这是整理最基本的要求和目的。由于课题本身所容纳的知识点的不同,有些知识在学生头脑中很快就会再现,而有些知识可能被遗忘,因而首先要让学生自己通过回忆再现,建立记忆表象,同时结合读书,搜集与课题有关的知识,清楚每一知识点的意义,这是梳理知识的重要基础。其次让学生合作交流,每位学生在小组里交流自己整理的思路,在相互补充的过程中完善知识体系,以文字、图表等表现形式将所学过的知识梳理总结,形成网络。整个过程要求教师放手让学生自我梳理或通过小组合作完成。要充分发挥学生的主体作用,通过交流,弄清知识之间的联系,构建知识体系,使每个人的经验得到共享,激发学生整理知识的热情。教师要注意观察,适时、适当引导、点拨学生,使学生从不同角度梳理知识,发展学生的思维,提高复习效率。
二、典型练习,寻找发现规律,引导学生进行整理。
让学生初步进行典型练习,将零碎的知识系统梳理、综合,从而上升为可感受的规律和学习方法。教师在这一环节要把握要领,精讲善导,生生、师生合作,在练习的基础上引导学生采用表格、提纲或图等形式把有关的知识、规律和方法整理出来。比如:列方程解应用题,我们可归纳几类,然后教会学生找等量关系的方法,这样就可把内容繁杂的知识归为几类,以一般的规律性知识去对待多种题目,从而把课本从厚教到薄。
三、通过“一题多解,多题一解”理清知识点。
数学知识是一个有机的整体,各部分知识之间有着内在联系,设计的问题情境要对所有知识有所兼顾。有些题目,可以从不同的角度去分析,得到不同的解题方法。“一题多解、多题一解”可以培养分析问题的能力,灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果,给学生以启迪,开阔解题思路。例如:有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,这样才能使所学知识融会贯通,提高解题灵活性。在方法的对比中,寻求共性,有效提高学生综合应用知识解决问题的能力。
整理意识和整理能力是一种数学习惯,帮助学生把知识系统化、清晰化,让学生学会从数学系统化的角度认识世界、观察世界,最后形成数学知识和生活的融会贯通,学有所用,从整理知识到随时整理自己的“生活”,才能使学生在原有知识基础上进行高层次的再学习,更好地体现学习的整体性、序列性。