当前位置:首页 » 基础知识 » 高考数学必修知识点
扩展阅读
如何把小孩教育好 2024-11-16 14:28:31
怎么给同学做牛肉干 2024-11-16 14:24:09
房建怎么回填基础快 2024-11-16 14:24:09

高考数学必修知识点

发布时间: 2022-12-19 00:51:07

‘壹’ 高考数学知识点归纳整理

高中数学涉及的知识点很多,需要把高中三年的数学知识点 总结 起来,这样比较有利于复习,下面是我为大家整理的高考数学知识点归纳整理,希望对大家有所帮助!

高考数学知识点归纳整理1

考数学知识点:两角和公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式 tan2A=2tanA/(1-tan2A)

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

高考数学知识点:圆的切线方程

(1)已知圆 .

①若已知切点 在圆上,则切线只有一条,利用垂直关系求斜率

②过圆外一点的切线方程可设为 ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.

③斜率为k的切线方程可设为 ,再利用相切条件求b,必有两条切线.

(2)已知圆 .过圆上的 点的切线方程为

高考数学知识点:线线平行常用 方法 总结

(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两只直线互相平行。

(3)初中所学平面几何中判断直线平行的方法

(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

(5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。

(6)面面平行的性质:若两个平行平面同时与第三个平 面相 交,则它们的交线平行。

高考数学知识点归纳整理2

高考数学知识点总结精华一

一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数

对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

高考数学知识点总结精华二

三、数列

数列这个板块,重点考两个方面:一个通项;一个是求和。

四、空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

五、概率和统计

概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。

高考数学知识点总结精华三

六、解析几何

这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题

同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学直线方程知识点:什么是直线方程

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

高考数学知识点归纳整理3

1、空间立体几何的结构。包括棱柱,棱锥和棱台的结构特征。圆柱圆锥圆台和球的结构特征。

2、圆柱侧面积,圆锥侧面积,圆台侧面积,直棱柱侧面积,正棱柱侧面积和正棱台侧面积以及球的面积的求法。

3、柱、锥、台、球体积公式。

4、三视图和直观图。

5、线面平行的判断和性质。线面平行的判定定理、面面平行的判定定理、线面平行的性质定理、面面平行的性质定理。线面垂直的判定和性质。线面垂直的判定定理、面面垂直的判定定理;线面垂直的性质定理、面面垂直的性质定理。

6、统计:用样本估计总体。用样本的频率分布,估计总体的频率分布、用样本的数字特征估计总体的数字特征、方差、标准差。变量间的相关关系与两个变量的线性关系。

高考数学知识点归纳整理相关 文章 :

★ 高考数学必考知识点整理最新

★ 高三数学必备知识点归纳

★ 2022高考数学必考知识点考点总结大全

★ 高考数学常考知识点整理大全

★ 高考数学知识点总结大全

★ 高中数学必考知识点归纳

★ 高考数学知识点总结最新

★ 高考数学常考知识点

★ 高三数学第一轮复习知识点

★ 高中数学必考知识点归纳大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

‘贰’ 高考文科数学知识点总结归纳

对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。

高考文科数学知识点

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。

文科数学高频必考考点

第一部分:选择与填空

1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);

2.常用逻辑用语(充要条件,全称量词与存在量词的判定);

3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);

4.幂、指、对函数式运算及图像和性质

5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);

6.空间体的三视图及其还原图的表面积和体积;

7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;

8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;

9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);

10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;

11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;

12.向量数量积、坐标运算、向量的几何意义的应用;

13.正余弦定理应用及解三角形;

14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;

15.线性规划的应用;会求目标函数;

16.圆锥曲线的性质应用(特别是会求离心率);

17.导数的几何意义及运算、定积分简单求法

18.复数的概念、四则运算及几何意义;

19.抽象函数的识别与应用;

第二部分:解答题

第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;

第18题:(文)概率与统计(概率与统计相结合型)

(理)离散型随机变量的概率分布列及其数字特征;

第19题:立体几何

①证线面平行垂直;面与面平行垂直

②求空间中角(理科特别是二面角的求法)

③求距离(理科:动态性)空间体体积;

第20题:解析几何(注重思维能力与技巧,减少计算量)

①求曲线轨迹方程(用定义或待定系数法)

②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)

③求定点、定值、最值,求参数取值的问题;

第21题:函数与导数的综合应用

这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想

一般设计三问:

①求待定系数,利用求导讨论确定函数的单调性;

②求参变数取值或函数的最值;

③探究性问题或证不等式恒成立问题。

第22题:三选一:

(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;

(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。

(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。

2018高考文科数学知识点:高中数学知识点 总结

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考文科数学知识点总结

乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/aX1__X2=c/a注:韦达定理

判别式

b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实根

b2-4ac<0注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R

注:其中R表示三角形的外接圆半径

余弦定理:b2=a2+c2-2accosB

注:角B是边a和边c的夹角

高考文科数学知识点总结相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国新高考Ⅰ卷文科数学试题及答案解析

★ 2022年全国新高考1卷数学试题及答案解析

★ 2022全国新高考Ⅱ卷文科数学试题及答案解析

★ 高中导数知识点总结大全

★ 山东2022高考文科数学试题及答案解析

★ 湖北2022高考文科数学试题及答案解析

★ 2022河北高考文科数学试题及答案解析

★ 高中文科数学复习指导与注意事项

★ 2017高考数学三角函数知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

‘叁’ 高中数学知识点最全总结

高考数学考试要取得好成绩,一方面要有扎实的基本功、熟练的计算能力,同时还要有一定的答题技巧。下面是我给大家带来的高中数学知识点最全 总结 ,以供大家参考!

数学重点知识点及答题技巧总结

一、高考数学必考题型 之 函数与导数

考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

函数与导数单调性

若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

二、高考数学必考题型 之 几何

公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内

公理2:过不在同一条直线上的三点,有且只有一个平面

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

公理4:平行于同一条直线的两条直线互相平行

定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补

判定定理:

如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行 “线面平行”

如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行”

如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直”

如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直“面面垂直”

三、高考数学必考题型 之 不等式

对称性

传递性

加法单调性,即同向不等式可加性

乘法单调性

同向正值不等式可乘性

正值不等式可乘方

正值不等式可开方

倒数法则

四、高考数学必考题型 之 数列

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种 方法 ,并能根据递推公式写出数列的前几项。

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题。

必背公式

1、一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

b2-4ac<0注:方程有共轭复数根

2、立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py

直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh

正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2

圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl

弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr

锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=sxh圆柱体V=pixr2h

3、图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)x(a+b-c)x1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

常用的三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

高考应试技巧

技巧一提前进入“角色”

考前晚上要睡足八个小时,早晨最好吃些清淡的早餐,带齐一切高考用具,如笔、橡皮、作图工具、身分证、准考证等。

提前半小时到达高考考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动。回忆一下高考数学常用公式,有助于高考数学超常发挥。

技巧二情绪要自控

最易导致高考心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种

转移注意法:把注意力转移到对你感兴趣的事情上或滑稽事情的回忆中。

自我安慰法:如“我经过的考试多了,没什么了不起”等。

抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到高考发卷时。

技巧三摸透“题情”

刚拿到高考数学试卷,不要匆匆作答,可先从头到尾通览全卷,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效 措施 ,也从根本上防止了“漏做题”。

从高考数学卷面上获取最多的信息,为实施正确的解题策略作准备,顺利解答那些一眼看得出结论的简单选择或填空题,这样可以使紧张的情绪立即稳定,使高考数学能够超常发挥。

技巧四信心要充足,暗示靠自己

高考数学答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。

考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态

技巧五数学答题有先有后

1、答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。

2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分”,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。

高中数学知识点最全总结相关 文章 :

★ 高中数学知识点归纳最新

★ 高中数学基本知识点最新

★ 高一数学知识点全面总结

★ 高中数学知识点总结

★ 高中数学知识点:椭圆方程式知识点总结

★ 高一数学考试基础知识

★ 高中数学必修一三角函数知识点总结

★ 高中数学知识点:平面向量的公式的知识点总结

★ 高中数学全部知识点提纲整理

★ 人教版高中数学知识点总结最新

‘肆’ 高考数学必考知识点

2011年高考数学考点(139个)
必修(115个)
一、集合、简易逻辑(14课时,8个)
1.集合; 2.子集; 3.补集;
4.交集; 5.并集; 6.逻辑连结词;
7.四种命题; 8.充要条件.
二、函数(30课时,12个)
1.映射; 2.函数; 3.函数的单调性;
4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;
7.有理指数幂的运算; 8.指数函数; 9.对数;
10.对数的运算性质; 11.对数函数. 12.函数的应用举例.
三、数列(12课时,5个)
1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式;
4.等比数列及其通顶公式; 5.等比数列前n项和公式.
四、三角函数(46课时17个)
1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;
4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;
10.周期函数; 11.函数的奇偶性; 12.函数 的图象;
13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;
16余弦定理; 17斜三角形解法举例.
五、平面向量(12课时,8个)
1.向量 2.向量的加法与减法 3.实数与向量的积;
4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;
7.平面两点间的距离; 8.平移.
六、不等式(22课时,5个)
1.不等式; 2.不等式的基本性质; 3.不等式的证明;
4.不等式的解法; 5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;
4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;
7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;
10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.
八、圆锥曲线(18课时,7个)
1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;
4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;
7.抛物线的简单几何性质.
九、(B)直线、平面、简单何体(36课时,28个)
1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;
4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;
6.三垂线定理及其逆定理; 7.两个平面的位置关系;
8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;
10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;
13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;
16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;
19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;
22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;
25.棱柱; 26.棱锥; 27.正多面体; 28.球.
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’
4.组合; 5.组合数公式; 6.组合数的两个性质;
7.二项式定理; 8.二项展开式的性质.
十一、概率(12课时,5个)
1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率;
4.相互独立事件同时发生的概率; 5.独立重复试验.
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法;
4.总体分布的估计; 5.正态分布; 6.线性回归.
十三、极限(12课时,6个)
1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;
4.函数的极限; 5.极限的四则运算; 6.函数的连续性.
十四、导数(18课时,8个)
1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;
4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式;
7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.
十五、复数(4课时,4个)
1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;
4.数系的扩充.

‘伍’ 数学高考必考知识点总结有哪些

数学高考必考知识点总结有:

1、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项。

2、复合函数奇偶性:内偶则偶,内奇同外。

3、周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

4、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

5、当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0。

‘陆’ 高中数学必考知识点归纳大全

总结 是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,下面是我给大家带来的数学必考知识点归纳大全,以供大家参考!

高中数学必考知识点归纳大全

1、 高一数学 知识点总结:集合一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的 篮球 队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示 方法 :列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大

括号内表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一数学知识点总结:集合间的基本关系

1.“包含”关系—子集

注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2

-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。

3、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集

关于集合的概念:

(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:

含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N;

在自然数集内排除0的集合叫做正整数集,记作N+或N;

整数全体构成的集合,叫做整数集,记作Z;

有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一数学必修一知识点摘要

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(4)直线系方程:即具有某一共同性质的直线

高一数学知识点小结

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

顶点坐标

对称轴

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与 其它 知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的 热点 考题,往往以大题形式出现.


高中数学必考知识点归纳大全相关 文章 :

★ 高中数学必考知识点归纳整理

★ 高中数学必考知识点归纳

★ 高中数学知识点全总结最全版

★ 高一数学有用必考知识点归纳

★ 高考数学必考知识点考点2020大全总结

★ 高中数学知识点大全

★ 高中数学全部知识点提纲整理

★ 高中数学考点整理归纳

★ 高中数学知识点总结及公式大全

★ 高中数学知识点全总结

‘柒’ 高考数学必考知识点归纳总结

高考数学知识点总结:集合知识点汇总

一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N.

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)并集:A∪B={x| x∈A或x∈B}

5)补集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,则? A ;

②若, ,则 ;

③若且 ,则A=B(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与的区别。

4.有关子集的几个等价关系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

高考数学必修三复习知识点

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高考高三数学必修三复习知识点

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。
(一)、高考数学知识点总结及公式大全 (二)、高考数学不好可以报数学师范吗 (三)、高考数学好可以报什么专业 (四)、高考数学造句,用高考数学造句 (五)、宁夏高考最高分是谁,2022年宁夏高考状元名单分数学校 (六)、内蒙古高考最高分是谁,2022年内蒙古高考状元名单分数学校 (七)、西藏高考最高分是谁,2022年西藏高考状元名单分数学校 (八)、新疆高考最高分是谁,2022年新疆高考状元名单分数学校 (九)、河南高考最高分是谁,2022年河南高考状元名单分数学校 (十)、贵州高考最高分是谁,2022年贵州高考状元名单分数学校
②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 ;

‘捌’ 高中数学必考知识点归纳

高考数学必考知识点有哪些,高中数学重点知识有哪些,需要我们掌握?下面是我为大家整理的关于高中数学必考知识点归纳,希望对您有所帮助。

高中数学知识点 总结

1.必修课程由5个模块组成:

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2: 3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.高考数学必考重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数,圆锥曲线

高考相关考点:

1. 集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2. 函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3. 数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

4. 三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5. 平面向量:初等运算、坐标运算、数量积及其应用

6. 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

7. 直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8. 圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9. 直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10. 排列、组合和概率:排列、组合应用题、二项式定理及其应用

11. 概率与统计:概率、分布列、期望、方差、抽样、正态分布

12. 导数:导数的概念、求导、导数的应用

13. 复数:复数的概念与运算

高中数学易错知识点整理

一.集合与函数

1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于__对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.

10.你熟练地掌握了函数单调性的证明 方法 吗?定义法(取值,作差,判正负)和导数法

11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

二.不等式

18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.

19.绝对值不等式的解法及其几何意义是什么?

20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.

23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.

三.数列

24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

四.三角函数

29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)

33.反正弦、反余弦、反正切函数的取值范围分别是

34.你还记得某些特殊角的三角函数值吗?

35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

36.函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.

(3)点的平移公式:点按向量平移到点,则.

37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

38.形如的周期都是,但的周期为。

39.正弦定理时易忘比值还等于2R.

五.平面向量

40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

41.数量积与两个实数乘积的区别:

在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.

已知实数,且,则a=c,但在向量的数量积中没有.

在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.

42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

六.解析几何

43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

45.直线的倾斜角、到的角、与的夹角的取值范围依次是。

46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

47.对不重合的两条直线

(建议在解题时,讨论后利用斜率和截距)

48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)

50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?

52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?

53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)

54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).

55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?

七.立体几何

56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.

60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.

61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

63.两条异面直线所成的角的范围:0°<α≤90° >

直线与平面所成的角的范围:0o≤α≤90°

二面角的平面角的取值范围:0°≤α≤180°

64.你知道异面直线上两点间的距离公式如何运用吗?

65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)

68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?

八.排列、组合和概率

69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.

70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混.二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.

71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式.)

72.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;

事件A发生k次的概率:.其中k=0,1,2,3,…,n,且0

<1,p+q=1.< p="">

73.求分布列的解答题你能把步骤写全吗?

74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)

75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

相关 文章 :

1. 高中数学重要知识点巧记口诀

2. 高中数学学习方法:知识点总结最全版

3. 高一数学必背公式及知识汇总

4. 高一数学重点知识点公式总结

5. 高中数学重点知识结构总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

‘玖’ 高三数学重点知识点

总结 是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,因此我们要做好归纳,写好总结。那么总结有什么格式呢?下面是我给大家带来的 高三数学 重点知识点,以供大家参考!

高三数学重点知识点

1、课程内容:

必修课程由5个模块组成:

必修1:集合、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2、重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的'证明、不等式的解法、绝对值不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学知识点归纳总结

第一部分集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数

1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配 方法 ;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

3、复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;

2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;

3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

高 三年级数学 知识点归纳

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中x+

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法

五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

2、若f(x)为增(减)函数,则-f(x)为减(增)函数。

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的.单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。


高三数学重点知识点相关 文章 :

★ 高三数学考试必考的重要知识点归纳

★ 高三数学知识点考点总结大全

★ 高三数学复习重要知识点

★ 高三数学必考知识点

★ 高三数学的主要知识点笔记

★ 高三数学第一轮复习知识点

★ 高三数学知识点大全

★ 高三数学知识点归纳

★ 高三数学知识点梳理汇总