当前位置:首页 » 基础知识 » 数学知识有哪些图形
扩展阅读
初中一年教育支出多少钱 2024-11-16 06:31:33
儿童头撞到墙上会怎么样 2024-11-16 06:29:20

数学知识有哪些图形

发布时间: 2022-12-18 04:42:59

Ⅰ 小学数学小学中所学过的几何图形有哪些

平面(规则):正方形,长方形(矩形),三角,圆,线段,直线,椭圆,角。

立体(规则):正方体,长方体,圆柱,棱柱,圆台,棱台,圆锥,棱锥,球(不是很常见)。

几何图形的应用:

1.几何图形的应用非常广泛,无论在设计、绘画创作、数学研究中都需要借助几何图形进行。

2.数学定义、定理等用数学语言叙述起来很抽象,记住定理有一定难度,因此帮助学生记住定义定理是教学中一个重要环节。若在教学中恰当地借助几何图形,数形结合,使学生对直观图形加深理解以掌握其定理。

Ⅱ 小学数学的基本图形有哪些

平面图形:三角形
平行四边形
正方形
长方形
菱形
圆形
立体图形:圆锥
圆柱
长方体
正方体
(球体一般用不到)
这是小学数学用到的基本图形

Ⅲ 小学数学的基本图形有哪些

平面图形:三角形 平行四边形 正方形 长方形 菱形 圆形
立体图形:圆锥 圆柱 长方体 正方体 (球体一般用不到)
这是小学数学用到的基本图形

Ⅳ 求关于初一数学几何图形的知识点

一、知识点回顾
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形.
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形.
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形.
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
3、生活中的立体图形
圆柱(圆柱的侧面是曲面,底面是圆)

生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
(棱柱的侧面是若干个小长方形构成,底面是多边形)
(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)
棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱.
侧棱:相邻两个侧面的交线叫做侧棱.
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点.
5、正方体的平面展开图:11种
截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.
可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、
五边形、六边形、正六边形
不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
8 三视图
物体的三视图指主视图、俯视图、左视图.
主视图:从正面看到的图,叫做主视图.
左视图:从左面看到的图,叫做左视图.
俯视图:从上面看到的图,叫做俯视图.
注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一.
9 多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形.
1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形.
2.若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2
弧:圆上A、B两点之间的部分叫做弧.
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.

Ⅳ 数学 图形有哪些(详细点告诉)

平面图形,立体图形,几何图形
(正方形 长方形 三角形 四边形 平行四边形 菱形 梯形 圆 扇形 弓形 圆环 立方体 长方体 圆柱 圆台 棱柱 棱台 圆锥 棱锥 直线 射线 角)

Ⅵ 图形数学知识

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面为大家带来了图形数学知识点,欢迎大家参考!

一、认识图形

图形分类

1、按照不同的标准给已学过的图形进行分类:

立体图形

学过的图形圆(曲线围成)

平面图形三角形(3条边)

三角形、四边形四边形平行四边形

(线段围成)(4条边)长方形正方形

①按平面图形和立体图形分;

②把平面图形按图形是否由线段围成来分,分为两大类。一类是由曲线围成的,一类是由线段围成的。

③按图形的边数来分。

2、平行四边形和三角形的性质:三角形具有稳定性,平行四边形具有易变形(不稳定性)的特点。

三角形分类

1、把三角形按照不同的.标准分类,并说明分类依据。

(1)按角分:直角三角形、锐角三角形、钝角三角形。

①三个角都是锐角的三角形是锐角三角形。

②有一个角是直角的三角形是直角三角形。

③有一个角是钝角的三角形是钝角三角形。

(2)按边分:等腰三角形、等边三角形、任意三角形。

①有两条边相等的三角形是等腰三角形。

②三条边都相等的三角形是等边三角形。

2、通过分类发现:等腰三角形和等边三角形的关系:等边三角形是特殊的等腰三角形。

三角形内角和、三角形边的关系

1、任意一个三角形内角和等于180度。

2、三角形任意两边之和大于第三边。

3、能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。

四边形的分类

1、由四条线段围成的封闭图形叫作四边形。四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。

2、长方形、正方形是特殊的平行四边形。正方形是特殊的长方形。

3、正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。

①正方形有4条对称轴。

②长方形有2条对称轴。菱形有2条对称轴。

③等腰梯形有1条对称轴。

④等边三角形有3条对称轴。

⑤圆有无数条对称轴。

图案欣赏

1、通过欣赏图案,体会图形排列的规律,感受图案的美。

2、利用对称、平移和旋转,设计简单的图案。

设计步骤:①制作基本图形。②将基本图形平移、旋转、对称,形成一幅图案。③涂上喜欢的颜色。(涂色要突出图案的规律性)

数图形中的学问

1、从同一点引出n个基本角,那么图中所有角的个数为n+(n-1)+…+2+1=n(n+1)÷2。

2、从同一点引出n个基本三角形,那么图中所有三角形的个数为n+(n-1)+…+2+1=n(n+1)÷2。

二、观察物体

1、观察位置由低到高变化,所观察到物体的画面也发生相应变化。观察物体的时候,站得越高,看到的物体越完整。

2、观察位置由远及近变化,所观察景物的范围也相应变化。观察物体的时候,距离越近,观察到的景物越大,观察景物范围越小;距离越远,观察到的景物越小,观察景物范围越大。

3、识别和判断打拍摄地点与照片中的对应关系:可以假设自己在拍摄地点处,根据图中景物特点,联系自己的生活经验,想想究竟能看到什么,再下结论。判断照片拍摄的先后顺序时可以假设自己随着拍摄者的行走路线游览,想象自己先看到哪些景物,再看到哪些景物,从而判断出照片拍摄的先后顺序。

“概率与统计”知识

游戏公平

1、判断游戏规则是否公平,要看代表双方的事件发生的可能性是否相等。如果相等,则游戏规则公平;否则,游戏规则就不公平。

2、用转盘设计对双方公平的游戏规则步骤:

①把转盘平均分成双数份,把其中的一半份数涂一种颜色,把另一半份数涂别一种颜色。

②确定甲、乙双方各由哪种颜色代表。

③转动转盘,转到哪种颜色的区域,则哪种颜色所代表的一方获胜。

Ⅶ 小学数学中所有图形与几何的知识合集!

(一)图形的认识、测量

量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

 二、长度单位:

1千米=1000米1米=10分米

1分米=10厘米1厘米=10毫米

1米=100厘米1米=1000毫米

三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

1平方千米=100公顷1公顷=10000平方米

1平方米=100平方分米1平方分米=100平方厘米

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

1立方米=1000立方分米1立方分米=1000立方厘米

1升=1000毫升

平面图形【认识、周长、面积】

一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

七、三角形的内角和等于180度。

八、在一个三角形中,任意两边之和大于第三边。

九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

十三、围成一个图形的所有边长的总和就是这个图形的周长。

十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

十五、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程

①把平行四边形通过剪切、平移可以转化成一个长方形。

②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。

【2】三角形面积公式的推导过程

①用两个完全一样的三角形可以拼成一个平行四边形。

②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半

③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。 即:S=ah÷2。

【3】梯形面积公式的推导过程

①用两个完全一样的梯形可以拼成一个平行四边形

②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半

③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。

【4】画图说明圆面积公式的推导过程

①把圆分成若干等份,剪开后,拼成了一个近似的长方形。

②长方形的长相当于圆周长的一半,宽相当于圆的半径。

③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2

十六、平面图形的周长和面积计算公式:

长方形周长 =(长+宽)× 2

长方形面积 = 长 × 宽

正方形周长 = 边长 × 4

正方形面积 = 边长 × 边长

平行四边形面积 = 底 × 高

三角形面积 = 底 × 高 ÷ 2

立体图形【认识、周长、面积】

一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。

二、圆柱的特征:一个侧面、两个底面、无数条高。

三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。

六、圆柱和圆锥三种关系:

 ①等底等高: 体积1︰3  

 ②等底等体积:高1︰3  

 ③等高等体积:底面积1︰3

七、等底等高的圆柱和圆锥:

①圆锥体积是圆柱的1/3,       

②圆柱体积是圆锥的3倍,

③圆锥体积比圆柱少2/3,       

④圆柱体积比圆锥多2倍。

八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

九、立体图形公式推导:

【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)

①圆柱的侧面展开后一般得到一个长方形。    

②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

④圆柱的侧面展开后还可能得到一个正方形。

正方形的边长=圆柱的底面周长=圆柱的高。

【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?

①把圆柱分成若干等份,切开后拼成了一个近似的长方体。

②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。

【3】请画图说明圆锥体积公式的推导过程?

①找来等底等高的空圆锥和空圆柱各一只。

②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。

十、立体图形的棱长总和、表面积、体积计算公式: 

名称 计算公式

长方体棱长总和长方体棱长总和 = (长+宽+高)× 4

长方体表面积长方体表面积=(长×宽+长×高+宽×高)×2

长方体体积长方体体积=长×宽×高

正方体棱长总和正方体棱长总和=棱长×12

正方体表面积正方体表面积=棱长×棱长×6

正方体体积正方体体积=棱长×棱长×棱长

圆柱体侧面积圆柱体侧面积=底面周长×高

圆柱体表面积圆柱体表面积=侧面积+底面积×2

圆柱体体积圆柱体体积=底面积×高

圆锥体体积圆锥体体积=1/3SH

(二)图形与变换

一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。

二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。

三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。

(三)图形与位置

一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。

二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。

Ⅷ 小学图形与几何知识点有哪些

小学图形与几何知识点有如下:

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形;立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

几何图形的组成,点:线和线相交的地方是点,它是几何图形中最基本的图形;线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面。

3、生活中的立体图形

圆柱(圆柱的侧面是曲面,底面是圆)、生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(棱柱的侧面是若干个小长方形构成,底面是多边形)、(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)、棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)。

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱;侧棱:相邻两个侧面的交线叫做侧棱;n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱、n条侧棱;2n个顶点。

5、正方体的平面展开图:11种

截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形;可能出现的:锐角三角形、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、五边形、六边形、正六边形。

不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形。

Ⅸ 小学学过的平面图形和立体图形分别有哪些呀

小学学过的平面图形和立体图形分别有哪些呀

小学学过的平面图形有:三角形,长方形,正方形,平行四边形,梯形,圆。立体图形有:长方体,正方体,圆柱体,圆锥体。

长方形
长方形,数学术语,是有一个角是直角的平行四边形叫做长方形。也定义为四个角都是直角的平行四边形,同时,正方形既是长方形,也是菱形。 长方形的性质为:两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。
长方形的定义
长方形是有一个角是直角的平行四边形。正方形是四条边长度都相等的特殊长方形。

Ⅹ 小学数学几何知识划分为哪几种类型

小学数学几何知识的话,主要分为以下三种类型。
第1种类型是线和角,主要包括直线,射线线段,平行线,垂线。还有锐角,直角,钝角。
第2类平面图形,包括长方形,正方形,正三角形,平行四边形,梯形,圆,扇形,轴对称图形。
第3种立体图形,主要包括长方体,正方体,圆柱和圆锥。