当前位置:首页 » 基础知识 » 数学初一知识点文档
扩展阅读
动漫刮刮乐的视频有哪些 2024-11-16 06:27:09
如何搞好党团教育 2024-11-16 06:26:19
儿童怎么去风 2024-11-16 06:26:15

数学初一知识点文档

发布时间: 2022-12-18 00:38:11

① 初一数学重要知识点总结

初一数学是整个初中数学的基础,初一时期数学的重要知识点有哪些呢?接下来是我为大家带来的初一数学重要的知识点 总结 ,供大家参考。
初一数学重要知识点总结:有理数
知识概念

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0?a+b=0?a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:或;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.

7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减.

本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.

体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
初一数学重要知识点总结:整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标:

1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2.理解同类项概念,掌握合并同类项的 方法 ,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
初一数学重要知识点总结:一元一次方程
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

知识概念

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

4.列一元一次方程解应用题:

(1)读题分析法:…………多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法:…………多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

11.列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间;

(2)工程问题:工作量=工效·工时;

(3)比率问题:部分=全体·比率;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:售价=定价·折·,利润=售价-成本,;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,

② 初一数学的知识点归纳

学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

初中 一年级数学 上册知识点

图形的初步认识

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

初一下册数学知识

1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点

三角形内角和定理;

对三角形有关概念的了解,能用符号语言表示三条形。

三、难点

三角形内角和定理的推理的过程;

在具体的图形中不重复,且不遗漏地识别所有三角形;

用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架

五、知识点、概念 总结

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

初一下学期数学知识点

相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

与互为邻补角。+=180°;+=180°;+=180°;

+=180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;

=。

5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当a⊥b时,====90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样

的两个角叫同位角。图3中,共有对同位角:与是同位角;

与是同位角;与是同位角;与是同位角。

②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。


初一数学第一章知识点相关 文章 :

★ 初一数学上册第一章知识点归纳

★ 初一数学上册第一章知识点总结

★ 初一数学第一章知识点总结

★ 初一数学第一章知识点总结归纳

★ 初一数学重要知识点总结

★ 初一数学上册知识点归纳

★ 初一数学第1章有理数知识点总结

★ 七年级数学上册知识点总结第一章

★ 初一数学第一单元知识点归纳

★ 初一数学上知识点

③ 初一数学知识点整理

学数学要在理解的基础上去做题,学会数学关键在于个人的悟性,除了上课认真听讲、课后做匹配练习外,还需要练就独立解题能力与 总结 反思 能力,学会以不变应万变。这次我给大家整理了初一数学知识点整理,供大家阅读参考。

初一数学知识点整理

一:角的种类

角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

初一数学必考知识点:一元一次方程组的解法

一般步骤:

第一步:去分母,在方程两边同乘以所有分母的最小公倍数.注意:分子要加括号,不要漏乘不含有分母的项;

第二步:去括号,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号内各项,若括号前面是“ - ”,去括号后括号内各项都要变号;

第三步:移项,把含有未知数的项移到方程的一边,其他项移到另一边.注意:移项要变号,不移的项不变号,移项时不要漏项;

第四步:合并同类项,把方程化为 ax=b(a≠0)的形式.注意:系数相加,字母部分不变;

第五步:系数化为 1,把方程两边同除以未知数的系数 a,得到方程的解 x={frac{b}{a}}(a≠0).注意:不要把分子、分母位置颠倒.

二:整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.常数项:不含字母的项叫做常数项。

6.多项式的排列

(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7.多项式的排列时注意:

(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:

a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。

(3)整式:

单项式和多项式统称为整式。

8. 多项式的加法:

多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

初一数学知识点

第一章 有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程

2.1 从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步

3.1 多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段

线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

初一数学知识点整理4-6章

第四章 数据的收集与整理

收集、整理、描述和分析数据是数据处理的基本过程。

第五章 相交线与平行线

5.1 相交线

对顶角(vertical angles)相等。

过一点有且只有一条直线与已知直线垂直(perpendicular)。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

5.2 平行线

经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

直线平行的条件:

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系

6.1 平面直角坐标系

含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

初一数学知识点整理7-10章

第七章 三角形

7.1 与三角形有关的线段

三角形(triangle)具有稳定性。

7.2 与三角形有关的角

三角形的内角和等于180度。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角

7.3 多边形及其内角和

n边形内角和等于:(n-2)?180度

多边形(polygon)的外角和等于360度。

第八章 二元一次方程组

8.1 二元一次方程组

方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2 消元

将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

第九章 不等式与不等式组

9.1 不等式

用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

9.3 一元一次不等式组

把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

第十章 实数

10.1 平方根

如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

0的算术平方根是0。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

求一个数a的平方根的运算,叫做开平方(extraction of square root)。

10.2 立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

求一个数的立方根的运算,叫做开立方(extraction of cube root)。

10.3 实数

无限不循环小数又叫做无理数(irrational number)。

有理数和无理数统称实数(real number)。

数学的 学习 方法

1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。


初一数学知识点整理相关 文章 :

★ 初一数学重要知识点归纳

★ 初一数学重要知识点

★ 初一数学课堂知识点

★ 初一数学知识点归纳

★ 初一数学学习方法总结

★ 七年级数学知识点整理大全

★ 初一数学重要知识点总结

★ 非常实用的初一数学知识点

★ 初一上学期数学知识点归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

④ 初一数学重要知识点总结

知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

初中 一年级数学 上册知识点

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

2021七年级下册数学知识点

概率

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一 数学 学习 方法 技巧

1、做好预习:

单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

2、认真听课:

听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

3、认真解题:

课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆。

4、及时纠错:

课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5、学会 总结 :

冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

6、学会管理:

管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。


初一数学重要知识点总结相关 文章 :

★ 初一数学重要知识点总结

★ 初一数学上册知识点归纳

★ 初一数学课本知识点总结

★ 初一数学上册重点知识整理

★ 初一数学上册知识点汇总归纳

★ 初一数学知识点归纳与学习方法

★ 初一数学知识点归纳梳理

★ 初一数学知识点归纳

★ 初一数学主要知识点

★ 初一数学知识点小归纳

⑤ 初一数学重要知识点归纳

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的初一数学知识点,希望对大家有所帮助。

七年级数学 基础知识

三角形的高线:

1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

2、任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)

3、注意等底等高知识的考试

7、相关命题:

1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

2)锐角三角形中的锐角的取值范围是60≤X<90。锐角不小于60度。

3)任意一个三角形两角平分线的夹角=90+第三角的一半。

4)钝角三角形有两条高在外部。

5)全等图形的大小(面积、周长)、形状都相同。

6)面积相等的两个三角形不一定是全等图形。

7)能够完全重合的两个图形是全等图形。

8)三角形具有稳定性。

9)三条边分别对应相等的两个三角形全等。

10)三个角对应相等的两个三角形不一定全等。

11)两个等边三角形不一定全等。

12)两角及一边对应相等的两个三角形全等。

13)两边及一角对应相等的两个三角形不一定全等。

14)两边及它们的夹角对应相等的两个三角形全等。

15)两条直角边对应相等的两个直角三角形全等。

16)一条斜边和一直角边对应相等的两个三角形全等。

17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18)一角和一边对应相等的两个直角三角形不一定全等。

初一数学下册知识点 总结

篇一:直线、射线、线段

(1)直线、射线、线段的表示方法

①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:

①点经过直线,说明点在直线上;

②点不经过直线,说明点在直线外。

篇二:两点间的距离

(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

篇三:正方体

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

数学初一知识点总结

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:

绝对值的问题经常分类讨论;

(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0

初一数学重要知识点归纳

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

初一数学重要知识点

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学方法技巧

1.请概括的说一下学习的方法

曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。

2.请谈谈超前学习的好处

曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

3.请谈谈联想与总结

曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

4.那么我们怎样预习呢?

曰:“先 说说 学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。

(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

(3)对于例题及习题的处理见上面的(2)及下面的第五条。

初一数学重要知识点归纳相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册重点知识整理

★ 初一数学知识点梳理归纳

★ 初一数学上册知识点汇总归纳

★ 七年级数学重要知识点总结

★ 初一数学知识点整理

★ 初一数学重要知识点总结

★ 初一数学知识点小归纳

★ 初一数学知识点归纳

★ 初一数学知识点归纳与学习方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑥ 初一数学知识点

初一数学知识点范文

在我们平凡无奇的学生时代,看到知识点,都是先收藏再说吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。哪些知识点能够真正帮助到我们呢?下面是我为大家整理的初一数学知识点范文,希望对大家有所帮助。

初一数学知识点范文1

1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)

2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。

4、特殊位置的点的坐标的特点:

(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

5、点到轴及原点的距离

点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;

在平面直角坐标系中对称点的特点:

1、关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

2、关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。

3、关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

各象限内和坐标轴上的点和坐标的规律:

第一象限:(+,+)第二象限:(—,+)第三象限:(—,—)第四象限:(+,—)

x轴正方向:(+,0)x轴负方向:(—,0)y轴正方向:(0,+)y轴负方向:(0,—)

x轴上的点纵坐标为0,y轴横坐标为0。

初一数学知识点范文3

1、数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2、数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3、利用数轴表示两数大小

⑴在数轴上数的`大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4、数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是—1,无最小的负整数

5、a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,,则a=0

初一数学知识点范文2

1、二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程、注意:一般说二元一次方程有无数个解。

2、二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。

3、二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解、注意:一般说二元一次方程组只有解(即公共解)。

4、二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键。

※5、一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解。

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。

一元一次不等式(组)

1、不等式:用不等号,把两个代数式连接起来的式子叫不等式。

2、不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。

3、不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集。

4、一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0)。

5、一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点。

⑦ 初一数学必考知识点总结

初一数学必考知识点总结1

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学必考知识点总结2

有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

平面直角坐标系:

在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

因式分解

因式分解定义 :把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素 :①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式: 一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法 :①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初一数学必考知识点总结3

第一章有理数

1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:

①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数

8、表示数a的点到原点的距离称为数a的绝对值

9、绝对值的三句:正数的绝对值是它本身,

负数的绝对值是它的相反数,0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

12、乘除:同号得正,异号的负

13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数)

17、左边第一个非零的数字起,所有的数字都是有效数字。

【知识梳理】

1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.

5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

一元一次方程知识点

知识点1:等式的概念:用等号表示相等关系的式子叫做等式.

知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.

说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.

知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.

例2:如果(a+1) +45=0是一元一次方程,则a________,b________.

分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.

(2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.

即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.

说明:等式的性质是解方程的重要依据.

例3:下列变形正确的是( )

A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1

C.如果x=y,则x-5=5-y D.如果则

分析:利用等式的性质解题.应选D.

说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.

知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.

知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.

⑵移项时,一定记住要改变所移项的符号.

知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.

例4:解方程 .

分析:灵活运用一元一次方程的步骤解答本题.

解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.

说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.

知识点8:方程的检验

检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.

注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.

初一数学必考知识点总结4

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

初一数学必考知识点总结5

尽快地掌握科学知识,迅速提高学习能力,由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!

一、目标与要求

1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

3.培养学生获取信息,分析问题,处理问题的能力。

二、重点

从实际问题中寻找相等关系;

建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。

三、难点

从实际问题中寻找相等关系;

分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

四、知识点、概念总结

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0.

4.等式的性质:

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项

(1)依据:乘法分配律

(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

(3)合并时次数不变,只是系数相加减。

6.移项

(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质

(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a0)的形式;

(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

8.同解方程

如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!

初一数学必考知识点总结6

一、方程的有关概念

1.方程:含有未知数的`等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质

(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么ac=bc

(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc

三、移项法则:

把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则

1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1.去分母(方程两边同乘各分母的最小公倍数)

2.去括号(按去括号法则和分配律)

3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4.合并(把方程化成ax=b(a0)形式)

5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

六、用方程思想解决实际问题的一般步骤

1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

2.设:设未知数(可分直接设法,间接设法)。

3.列:根据题意列方程。

4.解:解出所列方程。

5.检:检验所求的解是否符合题意。

6.答:写出答案(有单位要注明答案)。

七、有关常用应用类型题及各量之间的关系

1、和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

2、等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积。

3、劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出。

(2)只有调入没有调出,调入部分变化,其余不变。

(3)只有调出没有调入,调出部分变化,其余不变。

4、数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。

5、工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率工作时间

6、行程问题:

(1)行程问题中的三个基本量及其关系:路程=速度时间。

(2)基本类型有

①相遇问题;

②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

7、商品销售问题

有关关系式:

商品利润=商品售价商品进价=商品标价折扣率商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价折扣率

8、储蓄问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金利率期数

本息和=本金+利息

利息税=利息税率(20%)

今天的内容就介绍这里了。

初一数学必考知识点总结7

知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5:相反数的概念:

(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

知识点6:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

⑧ 初一数学总结知识点

总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法。以下是我整理的初一数学知识点总结,希望对大家有帮助。

一、正数和负数

1、以前学过的0以外的数前面加上负号-的数叫做负数。

2、以前学过的0以外的数叫做正数。

3、零既不是正数也不是负数,零是正数与负数的分界。

4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。

二、有理数

1、正整数、0、负整数统称整数,正分数和负分数统称分数。

2、整数和分数统称有理数。

3、把一个数放在一起,就组成一个数的集合,简称数集。

三、数轴

1、规定了原点、正方向、单位长度的直线叫做数轴。

2、数轴的作用:所有的有理数都可以用数轴上的点来表达。

3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

4、性质:(1)在数轴上表示的两个数,右边的`数总比左边的数大。

(2)正数都大于零,负数都小于零,正数大于负数。

四、相反数

1、只有符号不同的两个数叫做互为相反数。

2、数轴上表示相反数的两个点关于原点对称。

3、零的相反数是零。

五、绝对值

1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

六、有理数的大小比较

1、正数大于0,0大于负数,正数大于负数。

2、两个负数,绝对值大的反而小。

七、有理数的加法

1、有理数的加法法则

(1)号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

(3)互为相反数的两个数相加得零。

(4)一个数同零相加,仍得这个数。

2、有理数加法的运算律

(1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a

(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

八、有理数的减法

1、有理数减法法则

减去一个数,等于加这个数的相反数。即a-b=a+(-b)

九、有理数的乘法

1、有理数的乘法法则

(1)两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同0相乘,都得0。

(3)乘积是1的两个数互为倒数。

(4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

(5)几个数相乘,有一个因数为零,积就为零。

2、有理数的乘法的运算律

(1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba

(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)

(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac

十、有理数的除法

1、有理数除法法则

(1)除以一个不等于0的数,等于乘这个数的倒数。

(2)零不能作除数。

(3)两数相除,同号得正,异号得负,并把绝对值相除。

(4)0除以任何一个不等于0的数,都得0。

十一、有理数的乘方

1、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

2、负数的奇次幂是负数,负数的偶次幂是正数。

3、正数的任何次幂都是正数,0的任何正整数次幂都是0。

十二、有理数混合运算的运算顺序

1、先算乘方,再算乘除,最后算加减;

2、同极运算,从左到右进行;

3、有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

十三、科学记数法

1、把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

2、用科学记数法表示一个n位整数,其中10的指数是n-1。

十四、近似数和有效数字

1、接近实际数目,但与实际数目还有差别的数叫做近似数。

2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

4、对于用科学记数法表示的数a10n,规定它的有效数字就是a中的有效数字。

⑨ 初一数学知识点总结

初一数学知识点总结1

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

19.公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

20.多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

21.多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有n(n-3)/2条对角线。

初一数学知识点总结2

平面直角坐标系

1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

3.原点的坐标是(0,0);

纵坐标相同的点的连线平行于x轴;

横坐标相同的点的连线平行于y轴;

x轴上的点的纵坐标为0,表示为(x,0);

y轴上的点的横坐标为0,表示为(0,y)。

4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

5.几个象限内点的特点:

第一象限(+,+);第二象限(—,+);

第三象限(—,—);第四象限(+,—)。

6.(x,y)关于原点对称的点是(—x,—y);

(x,y)关于x轴对称的点是(x,—y);

(x,y)关于y轴对称的点是(—x,y)。

7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;

点P(x,y)到y轴的距离是︱x︳。

8.在第一、三象限角平分线上的点的坐标是(m,m);

在第二、四象限叫平分线上的点的坐标是(m,—m)。

不等式与不等式组

(1)不等式

用不等号(,≥,≤,≠)连接的式子叫做不等式。

(2)不等式的性质

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

(3)一元一次不等式

用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

(4)一元一次不等式组

一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

点、线、面、体知识点

1.几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

2.点动成线,线动成面,面动成体。

点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

注意:

(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

角的种类

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。

初一数学知识点总结3

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学知识点总结4

一、一元一次不等式的解法:

一元一次不等式的解法与一元一次方程的解法类似,其步骤为:

1、去分母;

2、去括号;

3、移项;

4、合并同类项;

5、系数化为1

二、不等式的基本性质:

1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

三、不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

四、不等式的解集:

一个含有未知数的不等式的所有解,组成这个不等式的解集。

五、解不等式的依据不等式的基本性质:

性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,

性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,

性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,

常见考法

(1)考查一元一次不等式的解法;

(2)考查不等式的性质。

误区提醒

忽略不等号变向问题。

初中数学重点知识点归纳

有理数乘法的运算律

1、乘法的交换律:ab=ba;

2、乘法的结合律:(ab)c=a(bc);

3、乘法的分配律:a(b+c)=ab+ac

单项式

只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的'指数构成的。

多项式

1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

提高数学思维的方法

转化思维

转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。

创新思维

创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解

要培养质疑的习惯

在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。

在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。

有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。

初一数学知识点总结5

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①整数②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数0和正整数;a>0a是正数;a<0a是负数;

a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数>0,小数-大数<0.

初一数学知识点总结6

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学知识点总结7

一、知识梳理

知识点1 :正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

知识点2 :有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

知识点3 :数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4 :绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5 :相反数的概念:

(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

知识点6 :有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7 :有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8 :有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9 :有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10 :有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

⑩ 初一数学知识点总结归纳

初一数学是整个数学的基础,一定要扎实把握,我整理了一些初一数学的重要知识点。

正数和负数的概念

1、负数:比0小的数正数:比0大的数0既不是正数,也不是负数。

注意:

①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。

比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人。

(2)0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

数轴

1、数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:

(1)数轴是一条向两端无限延伸的直线;

(2)原点、正方向、单位长度是数轴的三要素,三者缺一不。

2、数轴上的点与有理数的关系

(1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

(2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)。

3.利用数轴表示两数大小

(1)在数轴上数的大小比较,右边的数总比左边的数大;

(2)正数都大于0,负数都小于0,正数大于负数;

(3)两个负数比较,距离原点远的数比距离原点近的数小。

相反数

1、基本概念

只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:

(1)相反数是成对出现的;

(2)相反数只有符号不同,若一个为正,则另一个为负;

(3)0的相反数是它本身;相反数为本身的数是0。

2、相反数的性质与判定

(1)任何数都有相反数,且只有一个;

(2)0的相反数是0;

(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0。

3、相反数的几何意义

在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

以上是我整理的初一数学知识点,希望能帮到你。