‘壹’ 初一下册数学知识点归纳总结
初一数学的知识点并不是很难,但是也不能掉以轻心,对所学的知识点进行归纳总结还是很有必要的。以下是我分享给大家的初一下册数学知识点归纳,希望可以帮到你!
初一下册数学 知识点归纳
一、整式
单项式和多项式统称整式。
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b) 指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
d)当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为整数);
e)公式还可以逆用:(m、n均为整数)
a)幂的乘方法则:(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。b)(m,n都为整数)
c) 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3
d)底数有时形式不同,但可以化成相同。
e) 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn (n为正整数)。
g) 幂的乘方与积乘方法则均可逆向运用。
三、同底数幂的除法
a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).
b)在应用时需要注意以下几点:
1) 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。
2)任何不等于0的数的0次幂等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),则00无意义。
c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如, d)运算要注意运算顺序。
四、整式的乘法
单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
b)相同字母相乘,运用同底数幂的乘法法则;
c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
d)单项式乘法法则对于三个以上的单项式相乘同样适用;
e)单项式乘以单项式,结果仍是一个单项式。
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:
a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;
c) 在混合运算时,要注意运算顺序。
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
b)多项式相乘的结果应注意合并同类项;
c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。
五、平方差公式
两数和与这两数差的积,等于它们的平方差,即。
其结构特征是:
a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
b) 公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
六、完全平方公式
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;
口诀:首平方,尾平方,2倍乘积在中央;
a)公式左边是二项式的完全平方;
b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。
七、整式的除法
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
初一数学学习方法指导
一、数学学习方法的重要性
前苏联教学论专家巴班斯基曾指出的:" 教学方法是由学习方式和教学方式运用的协调一致的效果决定的。" 从国际教育改革和发展趋势来看,教会学生学习、教会学生积极主动发展是世界各国的共同目标。在人类进入信息时代的新世纪,人们将面临知识不断更新,学习成为贯穿人的一生的事情,一方面不仅要关注学生素质发展的全面完善以及个性的健康和谐发展,另一方面还要关注到学生的学习和发展,更为重要的是要让学生愿意学习,学会学习,掌握学习的方法、技能,能够积极主动的学习。
二、数学学习的常用方法
我国要求尊重学生的学习主体地位,要真正把学生作为学习的主人翁看待;关注学生的学习过程,倡导学生主动参与,使学生在自主、合作、探究的方式中积极主动地进行学习活动;培养学生的创新精神与实践能力。特别是对于初中一年级,要为学生学习数学知识打下良好基础,数学学习方法的学习显得更具有时代性和前瞻性。数学学习方法指导是一个由非智力因素、学习方法、学习习惯、学习能力多元组成的统一整体,因此,应以系统整体的观点进行学法指导,目的在于使学生加强学习修养,激发学习动机;指导学生掌握科学的学习方法;指导学生学习数学的良好习惯,进而提高学习能力及效果。
(1 )正确认识数学学习方法的重要性。
启发学生认识到科学的学习方法是提高学习成绩的重要因素,并把这一思想贯穿于整个教学过程之中。可以通过讲述数学名人的故事,激励学生,我结合《数轴》一课的内容,在班上讲述笛卡尔在病床上发现数轴,最终开创了用数轴表示有理数的故事。让孩子懂得了获得数学知识,学习数学的方法才是关键。在班级中,我多次召开数学学法研讨会,让学习成绩优秀的同学介绍经验,开辟黑板报专栏进行学习方法的讨论。
(2 )形成良好的非智力因素
非智力因素是学习方法指导得以进行的基础。初一学生好奇心强烈,但学习的持久性不长,如果在教学中具有积极的非智力因素基础,可以使学生学习的积极性长盛不衰。< 1> 激发学习动机,即激励学生主体的内部心理机制,调动其全部心理活动的积极性。比如在学习《概率初步认识》一课中,教学引入时,我根据学生喜欢玩扑克牌的爱好,和他们来讲扑克游戏,引发学生的兴趣,使学生产生强烈的求知欲。有的课教师还可以运用形象生动、贴近学生、幽默风趣的语言来感染学生。
< 2> 锻炼学习数学的意志。心理学家认为:意志在克服困难中表现,也在经受挫折、克服困难中发展,困难是培养学生意志力的" 磨刀石".我认为应该以练习为主,在初一的数学练习中,要经常给学生安排适当难度的练习题,让他们付出一定的努力,在独立思考中解决问题,但注意难度必须适当,因为若太难会挫伤学生的信心,太易又不能锻炼学生的意志。
< 3> 养成良好的数学学习习惯。有的孩子习惯" 闷" 题目,盲目的以为多做题就是学好数学的方法,这个不良的学习习惯,在平时的教学中老师一定要注意纠正。
(3 )指导学生掌握科学的数学学习方法。
①合理渗透。在教学中要挖掘教材内容中的学法因素,把学法指导渗透到教学过程中。例如我在进行《完全平方公式》教学时,很多孩子老是漏掉系数2 乘以首尾两项,于是我就给他们编了首顺口溜," 头平方,尾平方,头尾组合2 拉走" ,这样选取生动、有趣的记忆法来指导学生学习,有利于突破知识的难点。②随机点拨。无论是在授课阶段还是在学生练习阶段,教师要有强烈的学法指导意识,抓住最佳契机,画龙点睛地点拨学习方法。
③及时总结。在传授知识、训练技能时,教师要根据教学实际,及时引导学生把所学的知识加以总结。我在完成一个单元的学习之后都让孩子们养成自己总结的习惯,使单元重点系统化,并找出规律性的东西。
④迁移训练。总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法。
(4 )开设数学学法指导课,并列入数学教学计划。
在我所任教的初一年级里,我每两周一课时给学生上数学学法的指导课。结合正反例子讲,结合数学学科的具体知识和学法特点讲,结合学生的思想实际讲,边讲边示范边训练。
数学学习能力包括观察力、记忆力、思维力、想象力、注意力以及自学、交往、表达等能力。学习活动过程是一个需要深入探究的过程。在这一过程中,教师要挖掘教材因素,注意疏通信息渠道,善于引导学生积极思维,使学生不断发现问题或提出假设,检验解决问题,从而形成勇于钻研、不断探究的习惯,架设起学生由知识向能力、能力与知识相融合的桥梁。总之,初一是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法。为日后进一步进行数学学习打好良好的基础。
初一数学学习攻略
1.读的方法。同学们往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:
一是粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;
二是细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教);
三是研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。“听”是直接用感官去接受知识,而初中同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听德智课程时注意做到:
(1)听每节课的学习要求;
(2)听知识的引入和形成过程;
(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);
(4)听例题关键部分的提示及应用的数学思想方法;
(5)做好课后小结。
3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:
(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;
(2)善于思考。会抓住问题的关键、知识的重点进行思考;
(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。但七年级同学往往不善于问,不懂得如何问。因此,同学在平时学习中应掌握问问题的一些方法,主要有:
(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;
(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;
(3)类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;
(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:
(1)在“听”,“思”中有选择地记录;
(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;
(3)记解题思路、思想方法;
(4)记课堂小结。并使学生明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践。所以暑期期间每天给自己一些时间学习数学是很有必要的。
猜你喜欢:
1. 7年级上册数学知识点归纳
2. 初一数学上册知识点汇总整理
3. 初中数学知识点全总结
4. 初一数学知识点整理
5. 初一数学重点知识总结归纳
‘贰’ 初一数学知识点下册梳理
为了方便大家更好的学习以及复习初一下册的数学知识,现将初一下册数学知识点分享给大家,供参考。
不等式与不等式组
1.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
2.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
3.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
5.不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
二元一次方程组
(1)定义
二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。
(2)解二元一次方程的方法
①代入消元法
②加减消元法
整式的知识点
1.整式:整式为单项式和多项式的统称。
2.整式加减
整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。
(1)去括号:几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内的符号与原来相同。
如果括号外的因数是负数,去括号后原括号内的符号与原来相反。
(2)合并同类项:
合并同类项后,所得项的系数是合并前各项系数的和,且字母部分不变。
3.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
4.多项式:由若干个单项式相加组成的代数式叫做多项式。
5.同底数幂是指底数相同的幂。
6.同底数幂的乘法:同底数幂相乘,底数不变,指数相加
7.幂的乘方法则:幂的乘方,底数不变,指数相乘。
8.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
9.单项式与单项式相乘
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
10.单项式与多项式相乘
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
11.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
12.同底数幂的除法:同底数幂相除,底数不变,指数相减。
13.单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
14.多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。
‘叁’ 初中七年级数学下册知识点归纳
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的`幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
3、此法则也可以逆用,即:amn =(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn =(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
‘肆’ 初一下数学知识点梳理
初一数学下册的知识点有哪些?我给大家梳理了初一数学下册的重要知识点,接下里分享具体内容,供参考。
平面直角坐标系
1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
3.原点的坐标是(0,0);
纵坐标相同的点的连线平行于x轴;
横坐标相同的点的连线平行于y轴;
x轴上的点的纵坐标为0,表示为(x,0);
y轴上的点的横坐标为0,表示为(0,y)。
4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
5.几个象限内点的特点:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)关于原点对称的点是(—x,—y);
(x,y)关于x轴对称的点是(x,—y);
(x,y)关于y轴对称的点是(—x,y)。
7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;
点P(x,y)到y轴的距离是︱x︳。
8.在第一、三象限角平分线上的点的坐标是(m,m);
在第二、四象限叫平分线上的点的坐标是(m,—m)。
平方根
(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.
(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.
(5)符号:正数a的正的平方根可用。
表示,也是a的算术平方根;正数a的负的平方根可用-表示。
(6)a是x的平方<—>x的平方是a;x是a的平方根<—>a的平方根是x。
实数的知识点
1.加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
2.减法:减去一个数等于加上这个数的相反数。
3.乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0。
4.除法
除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0。
5.乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。
(3)零指数与负指数。
数据的收集与整理
用直方图描述数据的步骤(即做直方图的步骤)
1.计算最大值与最小值的差。
2.决定组距与组数
原则:当数据在100个以内时,按照数据的多少,分成5~12组。
组距:把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)。
3.列频数分布表
频数:各小组内数据的个数称为频数。
4.画频数分布直方图。
5.小长方形的面积表示频数。纵轴为。等距分组时,通常直接用小长方形的高表示频数,即纵轴为“频数”。
6.频数分布折线图。根据频数分布图画出频数分布折线图:
①取每个小长方形的上边的中点,以及x轴上与最左、最右直方相距半个组距的点。②连线。
‘伍’ 初一数学下册知识点归纳
没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初一下册数学知识点 总结 北师大版
一、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、幂的乘方与积的乘方
三、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则
(2)底数可以是具体的数,也可以是单项式或多项式
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负
四、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
六、完全平方公式
完全平方公式中常见错误有:
①漏下了一次项
②混淆公式
③运算结果中符号错误
④变式应用难于掌握。
七、整式的除法
1、单项式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。
七年级下册数学复习资料
【相似变换】
※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.
※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
※3、注意点:
①a:b=k,说明a是b的k倍;
②由于线段a、b的长度都是正数,所以k是正数;
③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;
④除了a=b之外,a:b≠b:a,与互为倒数;
【平移变换】
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)
(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
七年级数学 知识点
一元一次方程
一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).
一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价·折·0.1 ,利润=售价-成本;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=1/3πR2h.
初一数学下册知识点归纳相关 文章 :
★ 初一数学下册知识点归纳总结
★ 初一数学下册基本知识点总结
★ 初一数学下册知识点汇总
★ 初一下期数学知识点总结
★ 初一数学知识点归纳梳理
★ 初一数学下册知识点
★ 初一下册数学重点知识点总结归纳
★ 初一数学知识点归纳与学习方法
★ 人教版初一数学下册知识点复习总结备战中考
★ 初一下册数学知识点总结
‘陆’ 七年级下册数学的知识点
此书名为“知识不是力量”,目的不是要宣扬知识无用论,而是希望借此名重新思考学习的本质。下面我给大家分享一些七年级下册数学的知识,希望能够帮助大家,欢迎阅读!
七年级下册数学的知识1
相交线与平行线
一、相交线 两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。如:∠1、∠3。
③对顶角相等。
二、垂线
1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角
两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
四、平行线及其判定
平行线
1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b(在同一平面内,不相交的两条直线叫做平行线。)
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。如果b//a,c//a,那么b//c
平行线的判定:
1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行)
2. 两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行)
3. 两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行)
推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
平行线的性质
(一)平行线的性质
1.两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
2.两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
3.两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角相等)
(二)命题、定理、证明
1.命题的概念:判断一件事情的语句,叫做命题。
2.命题的组成:每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果??,那么??”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
3.真命题:正确的命题,题设成立,结论一定成立。
4.假命题:错误的命题,题设成立,不能保证结论一定成立。
5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据)
6.证明:推理的过程叫做证明。
平移
1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换 (简称平移),平移不改变物体的形状和大小。
2.平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
七年级下册数学的知识2
实数
一、平方根
1、平方根
(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.
(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.
(7)平方根和算术平方根两者既有区别又有联系:
区别在于正数的平方根有两个,而它的算术平方根只有一个;
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、实数
一、实数的概念及分类
无理数:像前面的很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数。
实数:有理数和无理数统称实数。
1、实数的分类
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
数a的相反数是—a,这里a表示任意一个实数。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,零的绝对值是0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4. 实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
三、科学记数法和近似数
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
把一个数写做±a×10n的形式,其中1≤a<10,n是整数,这种记数法叫做科学记数法。
四、实数大小的比较
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用 方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,
七年级下册数学的知识3
平面直角坐标系
一、平面直角坐标系
有序数对
1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
平面直角坐标系
1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2.X轴:水平的数轴叫X轴或横轴。向右方向为正方向。
3.Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。
4.原点:两个数轴的交点叫做平面直角坐标系的原点。
对应关系:平面直角坐标系内的点与有序实数对一一对应。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限
1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般,在x轴和y轴取相同的单位长度。
2.象限的特点:
1、特殊位置的点的坐标的特点:
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;
第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
2、点到轴及原点的距离:
点到x轴的距离为|y|;
点到y轴的距离为|x|;
点到原点的距离为x的平方加y的平方再开根号;
3、三大规律
(1)平移规律:
点的平移规律
左右平移→纵坐标不变,横坐标左减右加;
上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律 找特殊点
(2)对称规律
关于x轴对称→横坐标不变,纵坐标互为相反数;
关于y轴对称→横坐标互为相反数,纵坐标不变;
关于原点对称→横纵坐标都互为相反数。
(3)位置规律
二、坐标方法的简单应用
用坐标表示地理位置的过程:
1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。
2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
用坐标表示平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去) 一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。
用坐标表示地理位置的过程:
1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。
2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
用坐标表示平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去) 一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。
七年级下册数学的知识点相关 文章 :
★ 初一数学下册知识点
★ 七年级数学下册知识点总结
★ 七年级数学下册知识点归纳
★ 人教版初一数学下册知识点复习总结备战中考
★ 初一下期数学知识点总结
★ 2017年七年级下册数学知识点
★ 初一下册数学重要知识点
★ 人教版七年级下册数学复习提纲
★ 初一数学下册基本知识点总结
‘柒’ 初一数学下册基本知识点总结
学数学要在理解的基础上去做题,学会数学关键在于个人的悟性,除了上课认真听讲、课后做匹配练习外,还需要练就独立解题能力与 总结 反思 能力,学会以不变应万变。这次我给大家整理了初一数学下册基本知识点总结,供大家阅读参考。
初一数学下册基本知识点总结
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
第五章 相交线与平行线
5.1 相交线
对顶角(vertical angles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2 平行线
经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
5.3 平行线的性质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章 平面直角坐标系
6.1 平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。
第七章 三角形
7.1 与三角形有关的线段
三角形(triangle)具有稳定性。
7.2 与三角形有关的角
三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角
7.3 多边形及其内角和
n边形内角和等于:(n-2)?180度
多边形(polygon)的外角和等于360度。
第八章 二元一次方程组
8.1 二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2 消元
将未知数的个数由多化少、逐一解决的想法,叫做消元思想。
第九章 不等式与不等式组
9.1 不等式
用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3 一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。
第十章 实数
10.1 平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。
10.2 立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。
10.3 实数
无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。
如何学好数学
作好 课前预习 ,掌握听课主动权
“凡事预则主,不预则废”。课堂就是战场,学习就是战争,不能打无准备的仗。如果第二天有数学课,第一天就要进行充分准备。一方面要通读教材中的相关内容,看看哪些是懂得的,是已经学过的知识;哪些是不懂的,是要通过老师讲解才能理解的新知识。把不懂的部分标注清楚,进行初步思考,把需要解决的问题提出来。另一方面还要对教材后边的习题初做一遍,把不会做的题做上记号,一起带到课堂去解决。
专心听讲,做好课堂笔记
听课要提前进入状态。课前准备的好坏,直接影响听课的效果。正式上课铃声未响,老师尚未走进教室之前,就该把有关的课本(包括 笔记本 ,练习本)和文具事先摆放在桌面上,等待老师的到来。不要指望老师站在讲台上等大家慢慢翻箱倒柜,找这找那。老师进入教室,就应该带着预习过程中需要解决的问题,专心听讲。还要掌握老师讲课的规律,围绕老师讲课质点,积极思考,踊跃回答老师提出的问题。
及时复习,把知识转化为技能
复习是学习过程的重要环节。复习时,要再次阅读教材,回想当天所学的内容,追忆老师讲课的过程,再现课堂所学的知识,读懂老师已讲的例题,(这些例题通常对完成作业有较强的启发和示范作用),理解和记忆基本的定义、定理、公式、法则(这些就是必须掌握的知识点)。当天及时复习,能够减少知识遗忘,易于巩固和记忆。
数学的 学习 方法
1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
初一数学下册基本知识点总结相关 文章 :
★ 关于初一数学下册知识点归纳
★ 初一数学下册基础知识点
★ 初一数学下册重要知识点
★ 初一数学下册知识点梳理
★ 七年级下数学知识点总结
★ 初一数学下册知识点冀教版
★ 七年级数学下册的知识点
★ 初一数学考试知识点下册
★ 七年级数学下册知识点人教版
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();‘捌’ 七年级下册数学知识点总结归纳
这篇文章我给大家分享七年级下册数学课本的内容,一起看一下具体的内容,仅供参考。
平面直角坐标系
1.有序数对:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
2.坐标平面内的点与有序实数对一一对应。
3.在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。
4.两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,垂直的数轴叫做y轴或纵轴,x轴y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
5.x轴y轴将坐标平面分成了四个象限,右上方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
6.第一象限中的点的横坐标(x)大于0,纵坐标(y)大于0
7.第二象限中的点的横坐标(x)小于0,纵坐标(y)大于0。
8.第三象限中的点的横坐标(x)小于0,纵坐标(y)小于0。
9.第四象限中的点的横坐标(x)大于0,纵坐标(y)小于0。
10.x轴上的点,纵坐标都为0。
11.y轴上的点,横坐标都为0。
12.与x轴做轴对称变换时,x不变,y变为相反数。
13.与y轴做轴对称变换时,y不变,x变为相反数。
14.与原点做轴对称变换时,y与x都变为相反数。
相交线与平行线
1.相交线
在同一平面内,两条直线的位置关系有相交和平行两种。如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线
当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角
两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角
两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角
两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线
几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平方根
1.平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.
2.开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
3.平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3
4.一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.
5.符号:正数a的正的平方根可用。
表示,也是a的算术平方根;正数a的负的平方根可用-表示。
6.a是x的平方<—>x的平方是a;x是a的平方根<—>a的平方根是x。
代数式
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
‘玖’ 七年级数学下册知识点总结
数学是考试的重点考察科目,数学知识的积累和解题 方法 的掌握,需要科学有效的 复习方法 ,同时需要持之以恒的坚持。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。
初一下册数学知识点 总结
相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的.垂线,它们的交点叫做垂足。
平行线及其判定
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
平移
向左平移a个单位长度,可以得到对应点(x-a,y)
向上平移b个单位长度,可以得到对应点(x,y+b)
向下平移b个单位长度,可以得到对应点(x,y-b)
初一下册数学知识点总结北师大版多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
初一下册数学复习资料概念知识
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形 叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
七年级数学下册知识点总结相关 文章 :
★ 七年级下数学知识点总结
★ 初一数学下册基本知识点总结
★ 七年级数学下册知识点整理
★ 七年级数学下册知识点人教版
★ 七年级数学下册知识点总结
★ 初一数学下册知识点归纳总结
★ 七年级数学下册知识点提纲
★ 初一数学下册重要知识点
★ 七年级数学上册、下册重要知识点总结
★ 人教版初一数学下册知识点复习总结备战中考
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();