❶ 请举出一个你运用数学知识解决日常生活中实际问题的例子
例如,工人在用砂浆做一个圆形盖板时,在没有任何精密仪器的情况下,他们的手里只有一根小棍(长度等于所需圆的半径),以小棍一端为圆心,将小棍旋转一周,则小棍扫过的图形即为圆。
从这一点我启发学生用运动的观点给圆定义:线段绕其端点旋转一周所得到的图形即为圆。接着又启发学生思考:为什么这些盖子(包括日常所见到的井盖)通常大多作为圆形。
对于这一问题,学生普遍认为这样好盖,但其好盖的根本原因还在于圆的性质:同圆的半径都相等,圆是中心对称图形与轴对称图形,它的对称轴有无数条,这样从实际中抽象出理论,又以理论来解释现实,加深了学生对知识的理解与应用。
(1)生活中用数学知识解决的问题扩展阅读:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
❷ 用数学解决生活问题的例子 不要空洞。要实际例子
实际生活中用数学的例子很多,例如: 1.自家计算每月电费、水费。 2.为室内装修户测量并计算铺地面用多少地板砖,粉刷四壁和屋顶要购买多少涂料,需多少材料费。 3.植树节活动中,根据种植面积和树苗棵数,计算行距、株距。 4.学校操场大约的面积,一件物体(一袋盐、几个苹果、一瓶墨水等)大概的重量,估计人或物的高度等。 5.帮助爸妈计算银行存款利息 6.外出旅行,帮爸妈设计旅行路线,并计算时间。
失 物 招 领
李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。
校少先队大队部
2002.3
学生惊奇于数学课上老师怎么讲起了失物招领的事呢?我和学生通过分析、讨论A元所表示的意义,
师:A元可以是1元钱吗? 生1:A元可以是1元钱,表示拾到1元钱。
师:A元可以是5元钱吗? 生2:可以!表示拾到5元钱。
师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。
师:A元还可以是多少钱呢?生4:还可以是0.5元,表示拾到5角钱。……
师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑!
师:为什么不直接说出拾到多少元,而用A元表示呢?……
由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。
2、 运用数学知识解决实际问题
例如学习了长方形、正方形面积的计算及组合图形的计算后,我尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;接下来我还让学生们回家测算一下自己家的实际居住面积。在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。
如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆?
通过观察、思考、讨论,在我的鼓励指导下,同学们用式子有序地依次表示为:
(1)把100元分解为两个数的和: (2)把100元分解为3个数的和:
50+50=100 40+60=100 30+70=10020+80=100 60+20+20=10050+20+30=10040+40+20=10030+30+40=100
(3)把100元分解为4个数的和 (4)把100元分解为5个数的和 40+20+20+20=100
20+20+20+20+20=100 30+30+20+20=100
1.为了考察某市初中3500名毕业生的中考数学成绩,从中抽取了20本试卷,每本30份。在这个问题中,总体是:(某市初中3500名毕业生的中考数学成绩)个体是:(1名毕业生的中考数学成绩 )样本是:(600名毕业生的中考数学成绩),样本容量是:(600) 2..在三角形ABC中,角C=90度,AC,BC的长分别是方程X的平方 -7X +12=0的两个根,三角形ABC内一点P到三边的距离都相等,则PC的长为?2、作PE⊥BC于E,作PD⊥AC于D,作PF⊥AB于F。∵解方程X的平方 -7X +12=0得:x1=3 x2=4∴AC=3,BC=4或AC=4,BC=3当AC=3,BC=4时,由勾股定理得:AB=5∵(AB+BC+AC)×PE=AC×BC∴(5+4+3)×PE=3×4解得:PE=1∵四边形PECD是正方形∴由勾股定理可得PC=√2当AC=3,BC=4时,方法与上相同,PC=√2
红花衬衫厂要制做一批衬衫,原计划每天生产400件,60天完成。实际每天生产的件数是原计划每天生产件数的1.5倍。完成这批衬衫的制做任务,实际用了多少天?
分析与解 要求完成这批衬衫的制做任务,实际用了多少天,必须知道这批衬衫的总数和实际每天生产的件数。已知原计划每天生产400件,60天完成,就可以求出这批衬衫的总数量;又知道实际每天生产的件数是原计划生产件数的1.5倍,就可以求出实际每天生产的件数。
完成这批衬衫的制做任务,实际用的天数是:
40060(4001.5)
=24000600
=40(天)
也可以这样想:要生产的衬衫的总数量是一定的,所以,完成这批衬衫制做任务所需要的天数与每天生产衬衫的件数成反比例关系。由此可得,实际完成这批衬衫制做任务的天数的1.5倍,正好是60天,于是得出制做这批衬衫实际需要的天数是:
601.5=40(天)
答:完成这批衬衫制做任务,实际用了40天。
例2、 东风机器厂原计划每天生产240个零件,18天完成。实际比原计划提前3天完成,实际每天比原计划每天多生产多少个零件?
分析与解 要求实际每天比原计划每天多生产多少个零件,得先求出实际每天生产多少个零件,再减去计划每天生产的零件数:
24018(18-3)-240
=432015-240
=288-240
=48(个)
也可以这样想:实际与计划所完成的零件总数是相同的。根据反比例意义可知,每天生产零件的个数与完成生产这批零件所用的天数成反比例关系。由此可知,原计划完成任务的天数与实际完成任务的天数比18∶(18-3)即 6∶5,就是实际每天生产零件的个数与原计划每天生产零件个数的比。当然,实际每天生产零件的个数是原计划每天生产零件的个数的6/5。于是求出实际每天比原计划每天多生产零件的个数是:
=48(个)
还可以这样想:生产零件的总数是 24018=4320(个);把这个数分解质因数,然后再把分解的质因数适当地分组,分别表示出原计划每天生产的个数与完成天数的乘积和实际每天生产的个数与实际完成天数的乘积。
4320=25×33×5
=(24×35)(232)……原计划每天生产的个数与完成
天数的乘积
=(25×32)×(35)……实际每天生产的个数与完成天数的
乘积
进而求出实际每天比原计划每天多生产的个数是:
25×32-24×35
=288-240
=48(个)
答:实际每天比原计划每天多生产48个。
❸ 所学的数学知识能解决什么生活中的问题
数学知识能解决生活中很多问题,比如说买东西计算根据重量和单价计算价值;比如根据时间和速度计算路程等等。最重要的是能培养逻辑感。
❹ 用数学知识解决生活实际问题
数学源于现实并用于现实,运用数学知识解决日常生活和工作中的实际问题是学习数学的归宿。人人要学习有用的数学,教学中必须充分利用学生已有的生活经验,重视挖掘教材与生活实际有联系的因素。教师要随时引导学生把所学知识应用到生活的实际中去,从而体验到所学知识的意义和作用。
如学习了“分类”后,可以让学生自己动手来整理自己的书包和书桌,让整理好的学生来说一说他是按什么进行分类整理的;学习了“生活空间”的前、后、左、右后,可以让学生说出自己座位的前、后、左、右分别是谁,学校的前、后、左、右分别是什么地方;学习了“统计”,让学生统计教室内各种清洁用具的数量、统计一年级各班学生人数及男女生人数,统计班里学生是在那个季节出生的;在学完“20以内的加减法”后,有意识的带领学生搞一次社会实践活动,让每个孩子拿20角钱去菜市场买菜。在这次活动中,就有许多学生出现了不会算账的想象,有的是口算不过关,有的是弄不清元、角的关系……无论是哪一种原因,都使学生深刻的认识到数学对于我们的生活有多么重要,学数学的价值有多么大,从而激发了他们学好数学的强烈欲望。
学生从活动中不仅理解、掌握了数学知识,而且能观察生活中存在的数学问题,并加以解决。在解决中又会出现一些小问题,再开动脑筋加以完善解决,从而获得应用的技能。
❺ 生活中用学过的知识解决一些问题,有哪些(小学)
1、可以用乘法算出买几斤菜需要花多少钱。
2、两点之间直线最短,所以你知道怎样走路最近。
3、根据影子的长短判断时间。
4、根据北斗星辨别方向。
5、水缸出汗意味着要下雨。
(5)生活中用数学知识解决的问题扩展阅读:
北斗星的位置也随着季节的变化在周转,黄昏时的春季,北斗星的斗柄指东;夏季指南(即朝上);秋季指西;冬季指北(即朝下,且在地平线以下)。所以可以根据不同季节的斗柄方向来辨别该往哪个方向走。在户外的晚上,这个方法很好用。
俗语说:“水缸穿裙,大雨淋淋。”意思是水缸的外面因为空气里的水分子比较多凝结起来所以变得潮像人出汗一样,这就预示着要下大雨。还有燕子飞的底、鱼儿不断跃出水面也是预示要下雨。
数学在生活中的应用很多,比如说班级要集体举办活动需要买一些饰品,那就需要预算,你可以根据要买东西的件数乘以单价来算算大概需要带多少钱去买。
❻ 6个用数学知识解决实际问题的例子
例1、
红花衬衫厂要制做一批衬衫,原计划每天生产400件,60天完成。实际每天生产的件数是原计划每天生产件数的1.5倍。完成这批衬衫的制做任务,实际用了多少天?
分析与解
要求完成这批衬衫的制做任务,实际用了多少天,必须知道这批衬衫的总数和实际每天生产的件数。已知原计划每天生产400件,60天完成,就可以求出这批衬衫的总数量;又知道实际每天生产的件数是原计划生产件数的1.5倍,就可以求出实际每天生产的件数。
完成这批衬衫的制做任务,实际用的天数是:
40060(4001.5)
=24000600
=40(天)
也可以这样想:要生产的衬衫的总数量是一定的,所以,完成这批衬衫制做任务所需要的天数与每天生产衬衫的件数成反比例关系。由此可得,实际完成这批衬衫制做任务的天数的1.5倍,正好是60天,于是得出制做这批衬衫实际需要的天数是:
601.5=40(天)
答:完成这批衬衫制做任务,实际用了40天。
例2、
东风机器厂原计划每天生产240个零件,18天完成。实际比原计划提前3天完成,实际每天比原计划每天多生产多少个零件?
分析与解
要求实际每天比原计划每天多生产多少个零件,得先求出实际每天生产多少个零件,再减去计划每天生产的零件数:
24018(18-3)-240
=432015-240
=288-240
=48(个)
也可以这样想:实际与计划所完成的零件总数是相同的。根据反比例意义可知,每天生产零件的个数与完成生产这批零件所用的天数成反比例关系。由此可知,原计划完成任务的天数与实际完成任务的天数比18∶(18-3)即
6∶5,就是实际每天生产零件的个数与原计划每天生产零件个数的比。当然,实际每天生产零件的个数是原计划每天生产零件的个数的6/5。于是求出实际每天比原计划每天多生产零件的个数是:
=48(个)
还可以这样想:生产零件的总数是
24018=4320(个);把这个数分解质因数,然后再把分解的质因数适当地分组,分别表示出原计划每天生产的个数与完成天数的乘积和实际每天生产的个数与实际完成天数的乘积。
4320=25×33×5
=(24×35)(232)……原计划每天生产的个数与完成
天数的乘积
=(25×32)×(35)……实际每天生产的个数与完成天数的
乘积
进而求出实际每天比原计划每天多生产的个数是:
25×32-24×35
=288-240
=48(个)
答:实际每天比原计划每天多生产48个。
还有好多,自己去看
❼ 用数学知识解决生活中的问题
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。
有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的.知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处,可以解决生活中的许多问题.