A. 五年级数学上册归纳整理第一单元小数除法的知识点
小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a ,a 读作a的平方。 2a表示a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边=…… 方程右边=…… 所以,X=…是方程的解。 23、方程的解是一个数;
解方程式一个计算过程。
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。)
1、像0、1、2、3、4、5、6……这样的数是自然数。
2、像-3、-2、-1、0、1、2、3……这样的数是整数。3、整数与自然数的关系:整数包括自然数。
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。
5、找倍数:从1倍开始有序的找。
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数。
7、找因数:找一个数的因数,一对一对有序的找较好。
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身。
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数。
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。
13、既是2的倍数又是5的倍数的特征:个位是0的数。
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是唯一的质数中的偶数。
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类。
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、 分母:表示平均分的份数。分子:表示取出的份数。
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数。表示其中的一份的数,叫做这个分数的分数单位。
4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。
5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。
6、 带分数:由整数和真分数组成的分数叫做带分数。
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
13 互质:两个数的公因数只有1,这两个数叫做互质。
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质。
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数。
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分。计算结果通常用最简分数表示。
18、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数
做分数的分母较简便。
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比。
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变。
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份。
②把3平均分成4份,表示这样的1份。
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择
其中一种价格便宜的就行。
②租车问题: 用列表法解决问题。两个原则:多用单价低的,少空座。
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地。
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数。
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数。
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分。
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积。(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积。
2.不规则图形面积的估算:
(1)数格子的方法。
(2)把不规则图形看成近似的基本图形,估算出面积。
鸡兔同笼:
1, 列表法。
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小。
2,设计活动方案。
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值
1、直接写出得数。(每小题0.5分,共6分)
0.125+7/8= 1/3+1/4= 1-1/9= 5/12+5/24= 12.5X0.1= 1-8/9-1/9=
9.8÷0.01= 3.4+13= 1.08+1/2= 5/8+1/4= 4/5-0.2-0.4= 2/5+5/6+3/5=
2、计算,能简算的要简算。(每小题2分,共8分)
5-3/7-4/7 8/9+1/3+2/3 1/2+3/5-11/20 1/2+(1/3-1/5)
3、解方程。(每小题2分,共6分)
① X+1/5-4/35=27
② 3X-6.75=33/4 ③ X-(1-3/7)=1/4
4、列式计算。(每小题3分,共6分)
① 65减去多少个2.5后还剩17.5?
② 一个数的一半与20的和是120,求这个数。
5、图形观察、计算。(每小题3分,共6分)
???
五、解决问题。(每小题5分,共30分)
1、小明的妈妈去超市买牛奶,有下面这样三种瓶装的牛奶,你认为买哪种瓶装的最合算?为什么?
① 250ml/2.00元 ② 500ml/4.60元 ③ 1L/9.00元
2、在一块长45米,宽28米的长方形地上铺一层4厘米厚的沙土,如果用一辆每次只能运3.5方沙土的汽车来运这些沙土,这辆汽车至少要运多少次?
3、一段长方体木材,长1.2米,如果锯短2分米,它的体积就减少40立方分米。求原来这段木材的体积。
4、东东家有一些鸡蛋,5个5的数,6个6的数,12个12的数,都多4个,已知这些鸡蛋在100-130个之间。你知道东东家有多少个鸡蛋吗?
B. 小学数学重要知识点归纳:数学算术定义定理公式
小学数学重要知识点归纳:数学算术定义定理公式
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的'积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
C. 小学数学知识点整理,1~6年级汇总,收藏起来随时用!(上)
小学是打好数学基础的阶段,小学时期的数学也比较简单,学生相对容易学习。知识却是基础中的基础,只有深刻理解才能运用到试题中并且举一反三,但也很容易忘,这次为大家整理了1~6年级小学数学知识点,可以给孩子收藏起来随时查阅。
正整数:
用来表示物体个数的 1、2、3、4、5……叫做正整数。相邻的两个正数整数之间相差 1。
0: 0 是一个数,是一个自然数,也是一个整数,但不是正整数或负整数。
0 既可以表示“没有”,也可以作为某些数量的界限,如 0℃等。
0 是一个偶数。0 不能作除数,不能作分母,也不能作比的后项。
负整数: 像-l、-2、-3、-4、-5……这样的数就叫做负整数。相邻的两个负整数之间也是相差 1。
整数: 像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。
整数包括负整数、0 和正整数。
整数的个数是无限的。自然数是整数的一部分。
自然数: 用来表示物体个数的 0、l、2、3、4、5、6、7……叫做自然数。自然数包括 0 和正整数。
正数: 正数包括正整数、正分数、正小数、正百分数等。
负数: 负数包括负整数、负分数、负小数、负百分数等。负数可以表示相反意义的量。
数对: 用数对表示位置时,第一个数表示列,第二个数表示行。
数的读法和写法:
读、写者都要从高位到低位,每一级末尾的 0 都不读出来,其他数位连续有几个 0 都只读一个0。不管读和写都要进行分级。如 534007000602 读作:五千三百四十亿零七百万零六百零二。
分数: 表示把“单位 1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中一份的数叫做分数单位。例如: 7/12 的分数单位是 1/12 ,它有7个这样的分数单位。
真分数: 分子比分母小的分数叫真分数。真分数小于 1。
假分数: 分子大于或等于分母的分数叫做假分数。假分数大于或等于 1。
带分数: 一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。
分数的基本性质:
一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。
小数: 小数是分数的一种特殊形式。但是不能说小数就是分数。
循环小数: 一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
纯循环小数: 循环节从小数部分第一位开始的循环小数,叫做纯循环小数。
混循环小数: 循环节不是从小数部分的第一位开始循环的循环小数,叫混循环小数。
有限小数: 小数的小数部分的位数是有限的,这样的小数叫做有限小数。
无限小数: 小数的小数部分的位数是无限的,这样的小数叫做无限小数。循环小数都是无限小数。
减法: 被减数-减数=差。减法是加法的逆运算。
乘法: 求几个相同加数的和的简便运算,叫做乘法。因数×因数=积
除法: 被除数÷除数=商。除法是乘法的逆运算。
加、减法的运算定律:
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
减法的运算定律:a-b -c=a-(b+c)
乘、除法运算定律:
乘法的交换律:ab=ba
乘法的结合律:abc=a(bc)
乘法分配律:(a+b)c=ac+bc 或(a—b)c=ac—bc
除法的运算定律:a÷b÷c=a÷(b×c)
商不变的性质: 两个数相除,被除数和除数同时乘上或除以相同的数(0 除外),商的大小不变(余数的大小有变化)。
积不变性质: 一个因数扩大若干倍,另一个因数缩小相同的倍数,其积不变。
乘法的意义:
1、求几个相同加数的和是多少?例如:27×13,表示求 13 个 27 的和是多少?也可以表示求 27 的 13 倍是多少?
2、求一个数的几分之几是多少?例如:27×0.3 的意义:求 27 的十分之三是多少?
除法的意义:
1、把一个数平均分成若干份,每份是多少?例如:24÷3,表示把 24 平均分成 3 份,每份是多少?
2、一个数是另一个数的多少倍。例如:24÷3,表示 24 是 3 的多少倍?
3、一个数里有几个除数。例如 24÷3 表示 24 里面包含有几个 3。
4、已知一个数的几分之几是多少,求这个数。例如:24÷3 已知一个数的 3 倍是 24,
整除与除尽:
整除:被除数、除数、商都是整数(除数不为 0)。
除尽:整除都可以说是除尽,但除尽不一定是整除。例如:l÷5=0.2,叫除尽,不叫整除,因为商是小数。又如:10÷3=3.33…,既不叫整除,也不叫除尽,叫除不尽。
因数和倍数:
当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的因数。如 12÷3=4,就说 12 是 3 的倍数,3 是 12 的因数。这两个概念都是相对而存在,一个自然数是不存在是否是倍数或因数的。例如:“3 是因数”,就是一个错误说法。只能说 3 是 12 的因数,或 12的因数有3。又例如:“12 是倍数”,也是一个错误说法。只能说 12 是 3 的倍数,或 3 的倍数有 12。
奇数与偶数: 凡是能被 2 整除的数叫偶数,不能被 2 整除的数叫奇数。
质数(素数)与合数: 一个数的因数只有 1 和它本身两个因数的数叫做质数,也叫素数,如2。一个数的因数除了 1 和它的本身以外,还有其他的因数,这个数就叫合数,如 4。
100 以内的质数 :2 3 5 7 l1 13 17 19 23 29 3l 37 4l 43 47 53 5961 67 71 73 79 83 89 97
1 既不是质数,也不是合数。最小的质数是 2,最小的合数是 4。
公因数:
几个数公有的因数,叫做公因数。它的个数是有限的。既有最大的。也有最小的,最小的公因数是 1。
互质数:
两个数的公因数只有 1,而没有其他公因数的,这两个数就叫互质数。例如 8 和 9,11 和13,6 和 7。
任意两个质数都是互质数。但互质的两个数不一定都是质数。如 8 和 9 互质,但它们都是合数。
私信获取小学数学知识点完整版。 关注 并分享 ,更多的学习干货与教育知识,尽在玩学世界!
D. 小学数学重要知识点汇总
小学数学重点知识点有哪些?哪些是一定要掌握点?下面是我为大家整理的关于小学数学重要知识点汇总,希望对您有所帮助。欢迎大家阅读参考学习!
目录
小学生数学法则知识归类
小学数学口决定义归类
小学数学量的计算单位及进率归类
常用计算公式表
小学生数学法则知识归类(1)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(2)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(3)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(4)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(5)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(6)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(7)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(8)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(9)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(10)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(11)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读, 其它 数位有一个0或连续几个零都只读一个“零”。
(12)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(13)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(14)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(15)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(16)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(17)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(18)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(19)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(20)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(21)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(22)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(23)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(24)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(25)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(26)把小数化成百分数和把百分数化成小数的 方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(27)把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
小学数学口决定义归类
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和-另一个加数
4、减法各部分的关系:
减数=被减数-差 被减数=减数+差
5、乘法各部分之间的关系:
一个因数=积÷另一个因数
6、除法各部分之间的关系:
除数=被除数÷商 被除数=商×除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角是锐角。
(7)什么是钝角?
大于90°而小于180°的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.
8、垂直问题
(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形内角和是180°.
10、四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平等四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
13、加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、什么是被减数?什么是减数?什么叫差?
在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、加法各部分间的关系:
和=加数+加数 加数=和-另一加数
17、减法各部分间的关系:
差=被减数-减数 减数=被减数-差 被减数=减数+差
18、乘法
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、除法
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中,已知的一个因数叫除数。
(4)什么是商?
在除法中,求出的未知因数叫商。
20、乘法各部分的关系:
积=因数×因数 一个因数=积÷另一个因数
21、除法
(1)除法各部分间的关系:
商=被除数÷除数 除数=被除数÷商
(2)有余数的除法各部分间的关系:
被除数=商×除数+余数
22、什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、什么是单名数?
只带有一个单位名称的数叫单名数。
24、什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、什么是有限小数?
小数部分的位数是有限的小数叫有限小数。
28、什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、什么是方程?
含有未知数的等式叫方程。
34、什么是解方程?
求方程解的过程叫解方程。
35、什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。
36、什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、什么是偶数?
能被2整除的数叫偶数。
38、什么是奇数?
不能被2整除的数叫奇数。
39、什么样的数能被5整除?
个位上是0或5的数能被5整除。
40、什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、什么是公约数?什么叫最大公约数?
几个数公有的约数叫公约数。其中最大的一个叫最大公约数。
46、什么是互质数?
公约数只有1的两个数叫互质数。
47、什么是公倍数?什么是最小公倍数?
几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是 分数线 ?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、怎么比较分数大小?
(1)分母相同的两个分数,分子大的分数比较大。
(2)分子相同的两个分数,分母小的分子比较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整分数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、比
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、长方体和正方体
(1)什么是棱?
两个 面相 交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(或立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体体积?
物体所占空间的大小叫做物体的体积。
52、圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心、并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(8)什么是弧?
在圆上两点之间的部分叫弧。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、比例
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、圆柱
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
小学数学量的计算单位及进率归类
1、长度计量单位及进率:
千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米
1厘米=10毫米
2、面积计量单位及进率:
平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷
1平方千米=1000000平方米
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
3、体积容积计量单位及进率:
立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、质量单位及进率:
吨、千克、公斤、克
1吨=1000千克
1千克=1公斤
1千克=1000克
5、时间单位及进率:
世纪、年、月、日、小时、分、秒
1世纪=100年 1年=12月
1天=24小时 1小时=60分
1分=60秒
(31天的月份有1、3、5、7、8、10、12月份, 30天的月份有4、6、9、11月份, 平年2月28天,闰年2月29天)
常用计算公式表
1、长方形面积
=长×宽,计算公式S=ab
2、正方形面积
=边长×边长,计算公式S=a×a=a2
3、长方形周长
=(长+宽)×2,计算公式C=(a+b)×2
4、正方形周长
=边长×4,计算公式C=4a
5、平行四边形面积
=底×高,计算公式S=ah
6、三角形面积
=底×高÷2,计算公式S=a×h÷2
7、梯形面积
=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2
8、长方体体积
=长×宽×高,计算公式V=abh
9、圆的面积
=圆周率×半径平方,计算公式V=πr2
10、正方体体积
=棱长×棱长×棱长,计算公式V=a3
11、长方体和正方体的体积
都可以写成底面积×高,计算公式V=sh
12、圆柱的体积
=底面积×高,计算公式V=sh
相关 文章 :
1. 小学数学知识点:和差、和倍与差倍问题详解
2. 做小学四年级数学上册知识点总结
3. 小学数学必备概念知识点顺口溜
4. 做小学四年级数学上册知识点总结
5. 小学三年级数学学习内容重点知识汇总
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();E. 小学四年级数学除数是两位数的除法的知识点
小学四年级数学除数是两位数的除法的知识点1
一、口算除法
例1:使学生在理解的基础上,掌握用整十数除商是一位数的口算方法。培养学生类推迁移的能力和抽象概括的能力,通过观察,引导学生发现规律,发展学生的思维。结论:口算整十数除商是一位数的口算,可从除法意义上想得数,也可用乘法去想,算后要验算一下,必免出现12030=40的情况,验算时可以用乘法来验算:3040=1200
除数是两位数的除法,先看被除数前两位,如果被除数前两位比除数小,就看被除数的前三位,看到哪位商就写在哪位。
二、笔算除法
例1:学生掌握除数是整十数除法方法,让学生学会除法竖式的书写格式。使学生经历笔算除法计算的全过程,帮助学生理解算理。
除数是整十数的除法,笔算方法是:
先看被除数的前两位,不够除看前三位,除到哪一位商就写在哪一位上面。
例2:使学生学会四舍五入的试商方法,正确的计算除数是两位数的除法,知道在什么情况下需要调商,初步掌握调商的方法,培养学生的迁移能力和抽象概括能力,使学生经历笔算除法试商的全过程,掌握试商的方法。
小结:用四舍五入的方法,把除数看作整十数来试商,初商容易大,大了要调小(小了要调大)。
例3:让学生学会把除数、被除数看作是125、25的特殊数进行试商的方法,使学生经历笔算除法试商的全过程,掌握灵活试商的技巧,提高试商速度。如例题中的除数26:可以把26看作25,用口算试商,5个25是125,接近140,所以商5。把24、25、26都看作25来试商。
例4:学习商是两位数的除法,总结除数是两位数的除法计算方法,巩固除法的估算及验算方法。使学生经历笔算除法计算的全过程,掌握两位数除法的笔算方法:从被除数的高位数起,先看被除数的前两位;如果前两位比除数小,就要看前三位;除到被除数的哪一位,商就写在那一位的上面;余下的数必须比除数小。
小学四年级数学除数是两位数的除法的知识点2
一、口算除法
1、口算:
A、根据乘除法的关系用乘法算除法。比如60÷30=( )就可以想(2)×30=60
B、还可以根据表内除法计算。比如60÷30就是指60里面有几个30,这也是除法的真正含义。看作6个十÷3个十=2。
2、估算:把算式中不是整十的数用“四舍五入”法估算成整十数,再进行口算。如478÷81
可以将478看成480,将81看成80,因为480÷80=6,所以478÷81≈6
二、笔算除法
1、除数是两位数的除法的计算方法:
(1)从被除数的(高)位除起,先用除数试除被除数的前(两)位数,如果它比除数小,再试除前(三)位数。
(2)除到被除数的哪一位,就在那一位上面写(商)。
(3)求出每一位商,余下的数必须比除数(小)。
记忆:三位数除以两位数,先看被除数前两位;两位不够看三位,除到哪位商那位;不够商1用0占,每次除后要比较,余数要比除数小,最后验算不能少。
2、商的变化规律
(1)除数不变,被除数乘或除以几,商也乘或除以几。
(2)被除数不变,除数乘或除以几(0除外),商反而除以或乘几。
(3)被除数和除数都乘或除以一个相同的数(0除外),商不变。
3、除法中的数量关系:被除数÷除数=商……余数
被除数=除数×商+余数 除数=(被除数-余数)÷商
商=(被除数-余数)÷除数 余数=被除数-除数×商
4、 判断商是几位数的方法:
三位数除以两位数,商可能是一位数,也可能是两位数。
(当被除数的前两位小于除数时商是一位数;当被除数的前两位大于或等于除数时,商是两位数。)
5、a÷(b×c)= a÷b÷c= a÷c÷b即:一个数除以两个数的积等于这个数分别除以这两个数。
6、灵活试商:
(1)同头无除商9、8。被除数和除数最高位上的数(相同),并且被除数的前两位比除数(小),商是(9或8)。
(2)被除数的前两位是除数的(一半),商都是(5)。
小学四年级数学除数是两位数的除法的知识点3
乒乓球拍足球篮球排球羽毛球拍
62元/副25元/个44元/个37元/个18元/副
一年级二年级三年级
320元375元440元
下面的是每年级老师带的钱数。
一年级能买多少个足球?还剩多少元?
320÷25=12(个)……20(元)答:一年级可以买12个篮球,还剩20元。
(1)54÷78的商是(一)位。
(2)40÷32的商是(两)位。
(3)751÷8,商是(一)位数
判断商是几位数,可以先看被除数前两位数,如被除数前两位与除数相同,就看前三位来判断。
①40÷2=20
80÷(4)=20
(240)÷12=20
为什么上面的商都一样?
因为被除数扩大若干倍,除数缩小相同的倍数是,商不变。这就是商不变规律起的作用。公式:被除数扩大(缩小)×除数扩大(缩小)相同倍数=不变的商
小学四年级数学除数是两位数的除法的知识点4
1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的`0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;
⑵进一法;
⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
小学四年级数学除数是两位数的除法的知识点5
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.60.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
小学四年级数学除数是两位数的除法的知识点6
1、只要是平均分就用(除法)计算。
2、除数是一位数的竖式除法法则:
(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。
(2)除到被除数的哪一位,就把商写在那一位上。
(3)每求出一位商,余下的数必须比除数小。
顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。
3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5 = 6)
4、笔算除法:
(1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1的被除数=商×除数+的余数;最小的被除数=商×除数+1;
(2)除法验算:→用乘法
没有余数的除法有余数的除法
被除数÷除数=商被除数÷除数=商??余数
商×除数=被除数商×除数+余数=被除数
被除数÷商=除数(被除数-余数)÷商=除数
0除以任何不是0的数(0不能为除数)都等于0;
0乘以任何数都得0; 0加任何数都得任何数本身,任何数减0都得任何数本身。
5、笔算除法顺序:确定商的位数,试商,检查,验算。
6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)
7、多位数除以一位数(判断商是几位数):
用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。
F. 四年级数学知识点总结大全
学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 四年级数学 的知识点,希望对大家有所帮助。
四年级上册数学《除数是两位数的除法》知识点
(一)口算除法
1、整十数除整十数或几百几十的数的口算 方法 。
(1)算除法,想乘法;比如60÷30=()就可以想(2)×30=60
(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。
2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。
(二)笔算除法
1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。
2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。
3、商一位数:
(1)两位数除以整十数,如:62÷30;
(2)三位数除以整十数,如:364÷70
(3)两位数除以两位数,如:90÷29(把29看做30来试商)
(4)三位数除以两位数,如:324÷81(把81看做80来试商)
(5)三位数除以两位数,如:104÷26(把26看做25来试商)
(6)同头无除商八.九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)
(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)
4、商两位数:(三位数除以两位数)
(1)前两位有余数,如:576÷18
(2)前两位没有余数,如:930÷31
5、判断商的位数的方法:
被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。
四年级上册数学《平行四边形和梯形》知识点
一、垂直与平行
1、认识平行和垂直
①同一平面内的两条直线的位置关系只有两种:相交和不相交。相交又有成直角的和不成直角的两种情况。
_“同一平面”是确定两条直线平行关系的前提,如果不在同一平面内,即便不相交,也不能称为互相平行。
②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
平行的表示方法:a//b,读作a平行于b。
生活中平行的例子:窗户相对的框,黑板相对的两条边,公路上的斑马线......
③垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
垂直的表示方法:ab
生活中垂直的例子:三角尺上的两条直角边互相垂直......
④三条直线的特殊关系:
a//b,b//c,那么a//c:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行
ab,bc,那么a//c:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。
2、垂线的画法和性质
①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。
②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线
③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
3、平行线的画法及运用
①平行线的画法:固定三角尺,沿一条直角边先画一条直线;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;再沿第一步中的直角边画出另一条直线。
②检验两条直线是否平行的方法:把三角尺的一条直角边与其中的一条直线重合;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;如果第一步的三角尺的直角边与另一条直线完全重合,这两条直线就互相平行,如果不完全重合,这两条直线就不平行。
③两条平行线之间的距离处处相等。
④怎样画长方形:
画垂线的方法:按画出长3厘米的线段,做长方形的长;从画出的线段两端画两条与这条线段垂直的线段,使这两条线段长2厘米;把两条2厘米长的线段点连接起来。
画平行线的方法:画出长3厘米的线段,做长方形的长;把三角尺的一条直角边与这条线段重合,用直尺紧靠三角尺的另一条边,固定直尺,然后平移三角尺使移动的距离达到宽所指定的长度,沿第一步中的直角边画出长所指定的长度;把两条线段相对应的端点连接起来。
四年级 数学 学习方法 技巧
一、创设探索性情境,激发学习兴趣
理论曾提出过“三主”的观点:即课堂教学应以学生的发展为主线,以学生探索性的学为主体,以教师创造性的教为主导。所以,在课堂教学中,教师应创设一个探索性的学习情境,引导学生从多种角度,各个侧面不同方向去思考问题,以激发学生的学习兴趣,变“要我学”为“我要学”。
二、创设竞争性情境,引发学习兴趣
教育 家夸美纽斯曾说“应该用一切可能的方式把孩子们的求知与求学的欲望激发起来”。我们既然处在一个大的竞争环境中,不妨也在我们的小课堂中设置一个竞争的情境,教师在课堂上引入竞争机制,教学中做到“低起点,突重点,散难点,重过程,慢半拍,多鼓励。”为学生创造展示自我,表现自我的机会,促进所有学生比、学、赶、超。例如,在一次数学教研活动中,一位教师就根据教学内容并针对小学生心理特点设计了这样一种情境。讲授“8的认识”,在做课堂练习时,教师拿出两组0至8的数字卡片,指定一名男生和一名女生各代表男队,女队进行比赛。虽然此刻教师还没宣布比赛的规则和要求,可是全体同学已进入了教师所设置的情境之中,暗中为自己的队加油,全体学生的学习兴趣一下子被引发出来了。
三、创设游戏性情境,提高学习兴趣
根据数学学科特点和小学生好动、好新、好奇、好胜的思维特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红旗,多得为优胜。学生在游戏中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。
四、创设 故事 性情境,唤起学习兴趣
“教学的艺术不在于传授本领而在于激励、唤醒和鼓舞”。我们认为这正是教学的本质所在。我们在数学教学中适当地给学生营造一个故事情境,不仅可以吸引学生的注意力,并会使学生在不知不觉中获得知识。例如,在教学“比的应用”一节内容时,在练习当中我为同学们讲了一个故事: 中秋节 ,江西巡抚派人向干隆皇帝送来贡品——芋头,共3筐,每筐都装大小均匀的芋头180个,干隆皇帝很高兴,决定把其中的一筐赏赐给文武大臣和后宫主管,并要求按人均分配。军机大臣和珅了马上讨好,忙出班跪倒“启奏陛下,臣认为此一筐芋头共180个,先分别赐予文武大臣90个,后宫主管90个,然后再自行分配”。还没等和珅说完宰相刘墉出班跪倒“启奏万岁,刚才和大人所说不妥。这在朝的文官武将现有56位,分90个芋头,每人不足两个,而后宫主管34人,分90个芋头,每人不足三个,这怎么能符合皇上的人均数一样多”。皇上听后点点头“刘爱卿说的有理,那依卿之见如何分好?”此时,学生都被故事内容所吸引,然后让学生替刘墉说出方法,这个故事把数学知识寓于故事情节之中,从而唤起学生学习兴趣。
五、创设操作性情境,调动学习兴趣
根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创造精神。例如,在讲“轴对称图形”内容时,教师提前让学生准备长方形、正方形、圆、平行四边形和几种三角形的纸片。让学生试做每个图形的对折,使图形对折后能完全重合。学生通过操作后发现有些图形能完全重合有些图形不能完全重合。学生通过亲自动手操作,自己发现问题、解决问题,而且有力地调动了学生的学习兴趣。
四年级数学知识点 总结 大全相关 文章 :
★ 四年级数学知识点归纳整理
★ 做小学四年级数学上册知识点总结
★ 四年级数学知识点总结归纳
★ 四年级数学知识点总结整理
★ 四年级数学知识点整理总结
★ 四年级数学上册知识点汇总
★ 四年级数学知识点归纳总结
★ 四年级数学知识点总结人教版
★ 四年级数学知识点整理
★ 人教版四年级数学知识点总结
G. 小学数学分数除法知识点
分数除法
1、分数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
如:2/5÷1/3表示:已知两个因数的积是2/5,其中一个因数是1/3,求另一个因数是多少。
2、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3、分数除法中商与被除数的关系:
(1)一个数(0除外)除以大于1的分数,商小于被除数。
(2)一个数(0除外)除以等于1的分数,商等于被除数。
(3)一个数(0除外)除以小于1的分数(或真分数),商大于被除数。
4、分数应用题的解答步骤:
(1)读题,找准单位“1”;(2)弄清数量关系;
(3)根据已知条件和问题列出算式或方程;(4)解答。
5、比:两个数相除又叫做两个数的比。比的前项除以后项所得的商叫做比值。比的后项不能为0.
6、比的基本性质:比的'前项和后项同时乘或除以相同的数(0除外),比值不变。根据比的基本性质,可以把比化成最简单的整数比。
7、化简比和求比值的区别:
(1)依据和方法不同:求比值是用除法(前项除以后项所得的商是比值);化简比的依据是比的基本性质,前项和后项同时乘或除以相同的数(0除外)来化简。
(2)结果不同:求比值得到的是一个数(商),可以是整数、小数或分数;化简比得到的仍是一个比。
H. 二年级数学下册知识点归纳
学习的成功与失败原因是多方面的,要首先从自己身上找原因,才能受到鼓舞,找出努力的方向。每一门科目都有自己的 学习 方法 ,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 二年级数学 的知识点,希望对大家有所帮助。
二年级数学知识点
加法口诀表:
1+1=2
1+2=32+2=4
1+3=42+3=53+3=6
1+4=52+4=63+4=74+4=8
1+5=62+5=73+5=84+5=95+5=10
1+6=72+6=83+6=94+6=105+6=116+6=12
1+7=82+7=93+7=104+7=115+7=126+7=13 7+7=14
1+8=92+8=103+8=114+8=125+8=136+8=14 7+8=158+8=16
1+9=102+9=113+9=124+9=135+9=146+9=15 7+ 9=16 8+9=179+9=18
减法口诀表:
1-1=0
2-1=12-2=0
3-1=23-2=13-3=0
4-1=34-2=24-3=14-4=0
5-1=45-2=35-3=25-4=15-5=0
6-1=56-2=46-3=36-4=26-5=16-6=0
7-1=67-2=57-3=47-4=37-5=27-6=17-7=0
8-1=78-2=68-3=58-4=48-5=38-6=28-7=1 8-8=0
9-1=89-2=79-3=69-4=59-5=49-6=39-7=2 9-8=19-9=0
10-1=910-2=810-3=7 10-4=610-5=510-6=410-7=3 10-8=2 10-9=1 10-10=0
小学二年级数学知识点归纳
1、表内除法的知识点:
(1)理解平均分的意义。会根据表内乘法,计算简单的除法。
(2)会用乘法口诀求商。
(3)根据乘除法的意义解决一些简单的乘除法应用题。
(4)被除数÷除数=商被除数÷商=除数除数×商=被除数
2、除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
3、除法的性质
一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)
4、除法公式
(1)被除数÷除数=商
(2)被除数÷商=除数
(3)除数×商=被除数
5、被除数
除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数
二年级 数学学习方法 技巧
培养下面两个好的数学学习习惯。
一、认真完成家庭作业的习惯
根据德国心理学家艾宾浩斯“遗忘曲线”的原理,人有在学习新知识后及时练习便不容易忘掉,如果不及时练习,就很容易遗忘的记忆规律。因此,巩固当天所学,认真完成家庭作业很有必要。对于这点,我要求学生作到:做作业前,先看课本回顾一下当天所学的知识,然后再做作业,还要做到“三到一检查一签字”。“三到”:眼到、心到、手到,眼睛看清题目,心里想着计算,手要把答案写得正确、美观;
“一检查一签字”:做完作业后,仔细检查有没有出错,有错要及时订正,最后再让家长签字。老师及时批改后的错题,记录在《错题集》上,并在作业本上订正。
二、快速、正确口算的习惯
数学上低年级的口算是今后计算的基础,要养成快速、正确口算的习惯,还要在掌握一定的口算方法的基础上多练习。二年级上期重点练习100以内的加、减法和表内乘法以及乘加、乘减的计算,100以内的加减法难点的是进位加法和退位减法,这需要老师在具体的计算方法上进行分类指导,而表内乘法以及乘加、乘减的计算就需要学生熟记乘法口诀,教学时,老师要引导学生采用有效的具体的 记忆方法 有针对性地多记、多练、熟记。课上课下也可以用.牌游戏的形式练习连加、连减或乘法,经常练习,熟能生巧,口算速度自然就提高了。
也可以借助一些电脑软件或者app,程序自动出题,自动批改,孩子们还可以PK口算成绩,充分调动了孩子们的学习积极性。
养成好习惯,关键在头三天,决定在一个月。要想使好习惯持之以恒,刚开学的一个月很关键。作为二年级的数学老师,开学后我要时时处处提醒自己以身作则,改掉以往易冲动、处理问题简单、粗暴的坏毛病,时时处处提醒自己按上面的养成 教育 的要点去悉心培养学生的好的数学学习习惯。
因为二年级学生的年龄关系,有时习惯容易反复,所以还要和家长多沟通,教给家长具体的家庭培养方法,让家长配合老师共同抓,反复抓,抓反复,才能使习惯成自然。
二年级数学下册知识点归纳相关 文章 :
★ 人教版二年级数学下册的知识点
★ 二年级数学下册知识点知识归纳(2)
★ 二年级下册数学书上的知识点
★ 二年级数学基础知识点
★ 小学二年级数学知识点整理
★ 二年级数学下册单位知识点
★ 二年级数学下册期末复习题总结
★ 苏教版二年级数学下册知识点复习
★ 二年级数学知识点
★ 二年级部编版数学的知识点
I. 小学六年级数学上册分数除法知识点
小学是我们整个学业生涯的基础,所以大家一定要培养良好的学习习惯,数学网为大家特别提供了六年级数学上册分数除法知识点。
1、分数除法的意义:
乘法: 因数 × 因数 = 积
除法: 积 ÷ 一个因数 = 另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题
1,解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×1/3=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/3
2、看分率前有没有比多或比少的问题;
分率前是“多或少”的关系式:
(比少):具体量÷ (1-分率)= 单位“1”的`量;
例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)
(比多):具体量 ÷ (1+分率)= 单位“1”的量
例如:一种商品现在是80元,比原价增加了1/7,原价多少?
列式是:80÷(1+1/7)
3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5
说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题: 把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)
例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(1/5+1/10+1/3)
J. 六年级数学上册知识点整理归纳:第三单元
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面为大家带来了人教版六年级数学上册知识点整理归纳:第三单元,欢迎大家参考!
一、分数除法的意义和分数除以整数
知识点一:分数除法的意义
整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法
把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:
(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
二、一个数除以分数
知识点一:一个数除以分数的计算方法
一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系
一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0。
三、分数除法的混合运算
知识点一:分数除加、除减的运算顺序
除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法
分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
知识点三:不含括号的分数混合运算的运算顺序
在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
知识点四:含有括号的分数混和运算的运算顺序
在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
知识点五:整数的.运算定律在分数混和运算中的运用
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。被除数分子乘除数分母,被除数分母乘除数分子。
小学数学小数除法知识点
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:
取近似数的方法有三种,①四舍五入法;②进一法;③去尾法。
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.3636……1.587587……
另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
小学数学单位间进率知识点
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1吨=1000千克1千克=1000克=1公斤=1市斤
1公顷=10000平方米1亩=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米