❶ 初三数学知识点归纳大全
初三数学平行四边形的性质知识点归纳
知识点总结
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
我推荐阅读:初中复读如何提高数学成绩?几招教你数学过百
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
初三数学垂直平分线的性质知识点归纳垂直平分线
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
垂直平分线的性质
1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
4.线段垂直平分线上的点和这条线段两个端点的距离相等 。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5.三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相 等。(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。)
垂直平分线的逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法
初三数学一次函数的图像知识点归纳一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
以上就是我为大家整理的初三数学知识点归纳,希望能帮助到大家,更多中考信息可以继续关注本站!
❷ 谁能帮忙再总结一下初中数学平行四边形知识点哦,谢谢了哦!!还是得详细,呵呵!
呵呵,回答过你的平行线知识点总结,再给你总结一次吧!
平行四边形知识点摘要(3~10分)
1、平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。
(2)平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。
(3)平行四边形的对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
❸ 初三上册数学知识点总结
读书,始读,未知有疑;其次,则渐渐有疑;中则节节是疑。过了这一番,疑渐渐释,以至融会贯通,都无所疑,方始是学。下面给大家分享一些初三上册数学知识点,希望对大家有所帮助。
初三上册数学知识点1
特殊平行四边形
1、菱形的性质与判定
①菱形的定义:
一组邻边相等的平行四边形叫做菱形。
②菱形的性质:
具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
③菱形的判别 方法 :
一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2、矩形的性质与判定
①矩形的定义:
有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
②矩形的性质:
具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
③矩形的判定:
有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定
①正方形的定义:
一组邻边相等的矩形叫做正方形。
②正方形的性质:
正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
③正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行边形四者之间的关系
⑤梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
两条腰相等的梯形叫做等腰梯形。
一条腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性质:
等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
三角形的中位线平行于第三边,并且等于第三边的一半。
夹在两条平行线间的平行线段相等。
在直角三角形中,斜边上的中线等于斜边的一半
初三上册数学知识点2
一元二次方程
1、认识一元二次方程
只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0
(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程
①配方法 <即将其变为(x+m)2=0的形式>
配方法解一元二次方程的基本步骤:
把方程化成一元二次方程的一般形式;
将二次项系数化成1;
把常数项移到方程的右边;
两边加上一次项系数的一半的平方;
把方程转化成的形式;
两边开方求其根。
3、用公式法求解一元二次方程
②公式法 (注意在找abc时须先把方程化为一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
5、一元二次方程的根与系数的关系
①根与系数的关系:
当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:
③一元二次方程的根与系数的关系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:
已知方程的两根x1、x2,可以构造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、应用一元二次方程
①在利用方程来解应用题时,主要分为两个步骤:
设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);
寻找等量关系(一般地,题目中会含有一表述等量关系的 句子 ,只须找到此句话即可根据其列出方程)。
②处理问题的过程可以进一步概括为
初三上册数学知识点3
图形的相似
1、成比例线段
①线段的比
如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成
四条线段a、b、c、d中,如果a与b的比等于c与d的比,即
那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
②注意点:
a:b=k,说明a是b的k倍
由于线段 a、b的长度都是正数,所以k是正数
比与所选线段的长度单位无关,求出时两条线段的长度单位要一致
除了a=b之外,a:b≠b:a
比例的基本性质:若
则ad=bc; 若ad=bc, 则
2、平行线分线段成比例
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则
3. 黄金分割
如图1,点C把线段AB分成两条线段AC和BC,如果
那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
黄金分割点是最优美、最令人赏心悦目的点.
4.相似多边形
① 含义:
一般地,形状相同的图形称为相似图形.
对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.
②注意点:
在相似多边形中,最为简单的就是相似三角形.
对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
全等三角形是相似三角的特例,这时相似比等于1.
注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
相似三角形周长的比等于相似比.
相似三角形面积的比等于相似比的平方.
相似多边形的周长等于相似比;面积比等于相似比的平方.
5、探索三角形相似的条件
①相似三角形的判定方法:
②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
③相似三角形的判定定理的证明
④利用相似三角形测高
⑤相似三角形的性质
⑥图形的位似
初三上册数学知识点 总结 相关 文章 :
★ 九年级数学上册重要知识点总结
★ 初三数学知识点考点归纳总结
★ 九年级上册数学知识点归纳整理
★ 初三数学知识点归纳总结
★ 初三数学知识点总结
★ 初三上册数学知识点盘点与数学学习方法
★ 初三数学重要公式知识大全
★ 初三九年级上册数学知识点
★ 初中数学必备知识点总结初三数学上册一二章知识点
★ 人教版九年级数学知识点归纳
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❹ 九年级上册数学第一章知识点
证明(二)就是证明三角形全等,角平分线性质,线段中垂线性质以及勾股定理及逆定理注明:这是北师大版的
❺ 初三九年级上册数学的知识点归纳
初三九年级上册数学的知识点归纳1
九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:
第21章 二次根式
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。
二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
第22章 一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
第23章 旋转
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。
23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
23.3课题学习 图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。
第24章 圆
圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。
24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。
24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。
24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。
24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。
第25 章 概率初步
将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。
25.1概率一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。
25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。
25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。
25.4课题学习 键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。
初三九年级上册数学的知识点归纳2
一、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:
a.圆心角和圆周角在同一个圆或等圆中;(相关知识点 如何证明四点共圆 )
b.它们对着同一条弧或者对的两条弧是等弧
c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.
②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.
二、圆周角定理的推论
推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等
推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径
推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形
三、推论解释说明
圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.
②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”
③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件
④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.
初三九年级上册数学的知识点归纳3
知识点一: 二次根式的概念
形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),
(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围
1. 二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性
a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a) 的性质
(a)2=a(a0)
文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则
a=(a)2,如:2=(2)2,1/2=(1/2)2.
知识点五:二次根式的性质
a2=|a|
文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:
1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a (a若a是负数,则等于a的相反数-a,即a2=|a|=-a (a﹤0);
2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;
3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。
知识点六:(a)2与a2的异同点
1、不同点:(a)2与a2表示的意义是不同的,(a)2表示一个非负数a的算术平方根的平方,而a2表示一个实数a的平方的算术平方根;在(a)2中,而a2中a可以是正实数,0,负实数。但(a)2与a2都是非负数,即(a)20,a20。因而它的运算的结果是有差别的,(a)2=a(a0) ,而a2=|a|。
2、相同点:当被开方数都是非负数,即a0时,(a)2=a﹤0时,(a)2无意义,而a2=|a|=-a.
初三九年级上册数学的知识点归纳4
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的.恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
初三九年级上册数学的知识点归纳5
一、等腰三角形
1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形
等边三角形
1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
二、直角三角形全等
1、直角三角形全等的判定有5种:
(1)、两角及其夹边对应相等的两个三角形全等;(asa)
(2)、两边及其夹角对应相等的两个三角形全等;(sas)
(3)、三边对应相等的两个三角形全等;(sss)
(4)、两角及其中一角的对边对应相等的两个三角形全等;(aas)
(5)、斜边及一条直角边对应相等的两个三角形全等;(hl)
2、在直角三角形中,如有一个内角等于30,那么它所对的直角边等于斜边的一半
3、在直角三角形中,斜边上的中线等于斜边的一半
4垂直平分线:垂直于一条线段并且平分这条线段的直线。
性质:线段垂直平分线上的点到这一条线段两个端点距离相等。
判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。
6、角平分线上的点到角两边的距离相等。
7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
8、角平分线是到角的两边距离相等的所有点的集合。
9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
10、三角形三条中线交于一点,交点为三角形的重心。
11、三角形三条高线交于一点,交点为三角形的垂心。
三、平行四边的定义
1、定义:两线对边分别平行的四边形叫做平行四边形,
2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。
3、判定:(1)一组对边平行且相等的四边形是平行四边形。
(2)两条对角线互相平分的四边形是平行四边形。
(3)两组对边分别相等的四边形是平行四边形。
(4)两组对角分别相等的四边形是平行四边形。
(5)一组对边平行,一组对角相等的四边形是平行四边形。
(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。
两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。
(2)一组对边相等,一组对角相等的四边形是平行四边形。
四、矩形
1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。
(4)矩形是轴对称图形,有两条对称轴。
3、判定:(1)有三个角是直角的四边形是矩形。
(2)对角线相等的平行四边形是矩形。
五、菱形
1、定义:一组邻边相等的平行四边形叫做菱形。
2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。
3、判定:(1)四条边都相等的四边形是菱形。
(2)对角线互相垂直的平行四边形是菱形。
(3)一条对角线平分一组对角的平行四边形是菱形。
六、正方形
1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。
2、性质:正方形具有平行四边形、矩形、菱形的一切性质。
3、判定:(1)有一个内角是直角的菱形是正方形;
(2)有一组邻边相等的矩形是正方形;
(3)对角线相等的菱形是正方形;
(4)对角线互相垂直的矩形是正方形。
七、梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
八、等腰梯形
1、定义:两条腰相等的梯形叫做等腰梯形。
2、性质:等腰梯形同一底上的两个内角相等,对角线相等。
3、同一底上的两个内角相等的梯形是等腰梯形。
九、三角形的中位线
定义:连接三角形两边中点的线段。
性质:平行于第三边,并且等于第三边的一半。
十、梯形的中位线
定义:连接梯形两腰中点的线段。
性质:平行于两底,并且等于两底和的一半。
❻ 九年级上册数学知识点
北师大版本九年级上册知识点:
第一章特殊平行四边形
第二章一元二次方程
第三章概率的进一步认识
第四章图形的相似
第五章投影与视图
1.投影
2.视图
第六章反比例函数
1.反比例函数
2.反比例函数的图象与性质
华师大版本九年级上知识点:
第二十一章二次根式
第二十二章一元二次方程
第二十三章图形的相似
第二十四章解直角三角形
第二十五章随机事件的概率
25.1在重复试验中观察不确定现象
25.2随机事件的概率
人教版九年级上知识点:
第21章一元二次方程
1一元二次方程
2降次──解一元二次方程
3实际问题与一元二次方程
第22章二次函数
1二次函数的图象和性质
2二次函数与一元二次方程
3实际问题与二次函数
第23章旋转
1图形的旋转
2中心对称
第24章圆
1圆的有关性质
2与圆有关的位置关系
3正多边形和圆
4弧长和扇形面积
第25章概率初步
如果对你有很帮助,可以来个好评哈!~~~~~~~~~~~~~~~~
❼ 九年级数学上册平行四边形第一节重难点
特殊四边形要点整理
一、平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质:
平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分.
判定:
两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
两组对角分别相等的四边形是平行四边形的
一组对边平行且相等的四边形是平行四边形.
对角线互相平分的四边形是平行四边形.
二、矩形:
定义:有一个角是直角的平行四边形叫做矩形.
1.矩形的性质
(1)具有平行四边形的所有性质.
(2) 特有性质:四个角都是直角,对角线相等.矩形是轴对称图形.
2. 矩形的判定
(1) 定义:有一个角是直角的平行四边形叫做矩形.
(2)定理1:有三个角是直角的四边形是矩形.
(3)定理2:对角线相等的平行四边形是矩形.
三、菱形
1. 定义:
有一组邻边相等的平行四边形叫做菱形.
2.菱形的性质
(1)具有平行四边形的一切性质.
(2)菱形的四条边都相等.
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角.
(4)菱形是轴对称图形.
(5)菱形面积=底×高=对角线乘积的一半.
3.菱形的判定
(1)定义:有一组邻边相等的平行四边形叫做菱形.
(2)定理1:四边都相等的四边形是菱形.
(3)定理2:对角线互相垂直的平行四边形是菱形.
四、正方形
1. 定义:
正方形的定义我们可以分成两部分来理解:
(1) 有一个角是直角的菱形叫做正方形.
(2) 有一组邻边相等的矩形叫做正方形.
2.正方形性质
正方形具有四边形、平行四边形、矩形、菱形的一切性质.
(1)边——四边相等,邻边垂直.
(2)角——四角都是直角.
(3)对角线——①相等②互相垂直平分③每条对角线平分一组对角.
(4)是轴对称图形,有4条对称轴.
3、 正方形的判定方法:
(1)判定一个四边形为正方形主要根据定义,途径有两条:
①先证它是矩形,再证有一组邻边相等或对角线垂直.
②先证它是菱形,再证它有一个角为直角或对角线相等.
五、正方形与矩形、菱形、平行四边形的关系:
矩形、菱形、正方形都是特殊的平行四边形,其中正方形既是特殊的矩形,又是特殊的菱形.矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图.
六、中点四边形与原四边形的关系:
依次连接对角线相等的四边形各边中点所得四边形是菱形;
依次连接对角线互相垂直的四边形各边中点所得四边形是矩形;
依次连接对角线相等且垂直的四边形各边中点所得四边形是正方形;
七、等腰梯形
1、等腰梯形的性质:等腰梯形两腰相等;等腰梯形同一底上的两个角相等;等腰梯形对角线相等。
2、等腰梯形判定:
两腰相等的梯形是等腰梯形; 同一底上两个角相等的梯形是等腰梯形。
希望对你有帮助
❽ 初三数学上册知识点
初三数学上册知识点1
三角形的外心定义:
外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
三角形的外心的性质:
1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;
2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;
3、锐角三角形的外心在三角形内;
钝角三角形的外心在三角形外;
直角三角形的外心与斜边的中点重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三数学上册知识点2
不等式的概念
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法。
不等式基本性质
1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以或除以同一个正数,不等号的方向不变。
3、不等式两边都乘以或除以同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。
一元一次不等式组
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法
1分别求出不等式组中各个不等式的解集。
2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。
7、不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
初三数学上册知识点3
矩形知识点
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)具有平行四边形的一切性质
(2)矩形的四个角都是直角
(3)矩形的对角线相等
(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积:S矩形=长×宽=ab
正方形知识点
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最后证明它是矩形(或菱形)。
圆知识点
圆的面积s=π×r×r
其中,π是周围率,约等于3.14
r是圆的半径。
圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。
椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式
椭圆面积公式:S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
对数公式
对数公式是数学中的'一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
数学学习技巧
1.求教与自学相结合
在学习过程中,即要争取教师的指导和帮助,但是又不能过分依赖教师, 必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2.学习与思考相结合
在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践
在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4.博观约取,由博返约
课本是获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。
5.既有模仿,又有创新
模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习增强记忆
课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
7.总结学习经验,评价学习效果
学习中的总结和评价有利于知识体系的建立、解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
初三数学上册知识点4
(三角形中位线的定理)
三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
(平行四边形的性质)
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分。
(矩形的性质)
①矩形具有平行四边形的一切性质;
②矩形的四个角都是直角;
③矩形的对角线相等。
正方形的判定与性质
1、判定方法:
1邻边相等的矩形;
2邻边垂直的菱形;
3对角线垂直的矩形;
4对角线相等的菱形;
2、性质:
1边:四边相等,对边平行;
2角:四个角都相等都是直角,邻角互补;
3对角线互相平分、垂直、相等,且每长对角线平分一组内角。
等腰三角形的判定定理
(等腰三角形的判定方法)
1、有两条边相等的三角形是等腰三角形。
2、判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
标准差与方差
极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值—最小值。
计算器——求标准差与方差的一般步骤:
1、打开计算器,按“ON”键,按“MODE”“2”进入统计SD状态。
2、在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。
3、输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。
4、当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;
5、标准差的平方就是方差。
初三数学上册知识点5
1、必然事件、不可能事件、随机事件的区别
2、概率
一般地,在大量重复试验中,如果事件A发生的频率
会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)=p.
注意:(1)概率是随机事件发生的可能性的大小的数量反映。
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
初三数学上册知识点6
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
初三数学上册知识点7
1.数的分类及概念 数系表:
说明:分类的原则:1)相称(不重、不漏) 2)有标准
2.非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数: ①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4.相反数: ①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
初三数学上册知识点8
1、 必然事件、不可能事件、随机事件的区别
2、概率
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意:(1)概率是随机事件发生的可能性的大小的数量反映.
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
初三数学上册知识点9
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
初三数学上册知识点10
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
初三数学上册知识点11
知识点一: 二次根式的概念
形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),
(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围
1. 二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性
a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a) 的性质
(a)2=a(a0)
文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则
a=(a)2,如:2=(2)2,1/2=(1/2)2.
知识点五:二次根式的性质
a2=|a|
文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:
1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a (a若a是负数,则等于a的相反数-a,即a2=|a|=-a (a﹤0);
2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;
3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。
知识点六:(a)2与a2的异同点
1、不同点:(a)2与a2表示的意义是不同的,(a)2表示一个非负数a的算术平方根的平方,而a2表示一个实数a的平方的算术平方根;在(a)2中,而a2中a可以是正实数,0,负实数。但(a)2与a2都是非负数,即(a)20,a20。因而它的运算的结果是有差别的,(a)2=a(a0) ,而a2=|a|。
2、相同点:当被开方数都是非负数,即a0时,(a)2=a﹤0时,(a)2无意义,而a2=|a|=-a.
初三数学上册知识点12
1、 二次函数的一般形式:y=ax2+bx+c。(a0)
2、 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点。
3、 y=ax2 (a0)的特性:当y=ax2+bx+c (a0)中的b=0且c=0时二次函数为y=ax2 (a这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);
4、求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式———————待定系数法。
5、二次函数的顶点式: y=a(x—h)2+k (a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y最值= k。
初三数学上册知识点13
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
初三数学上册知识点14
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
初三数学上册知识点15
1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次项,( )叫做一次项,( )叫做常数项;( )叫做二次项的系数,( )叫做一次项的系数.
2.易错知识辨析:
(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 .
(2)用公式法和因式分解的方法解方程时要先化成一般形式.
(3)用配方法时二次项系数要化1.
(4)用直接开平方的方法时要记得取正、负.
❾ 九年级上学期数学知识点
九年级上学期数学期末复习计划
本次期末考试一共考查九上全书和九下一二章的内容,这些内容是:证明(二)、证明(三)、一元二次方程,视图与投影,反比例函数,频数与频率,三角函数,二次函数。
我的复习计划大致分三轮:
第一轮:将各章内容分类划分,细化各章知识点,采取学生先自主复习,作出复习手抄报,让学生总结各章重点及难点,以及本章中的重点例题和练习题,再利用上课时间对学生的总结全面细化,弥补其不足之处,提高复习效率,达到学生看见题目能够自己分析出考查哪章节知识点的目的。主要将各章内容分成以下几部分:
第一部分:三角函数;
第二部分:二次函数,反比例函数,一元二次方程;
第三部分:频数与频率
第四部分:证明(二),证明(三),视图与投影
其中一、二部分为重点,三四部分在习题中同时展开复习,大致需要一个星期时间。
第二轮:通过这次考试的题型有针对性地复习,利用教研活动各校所出模拟试题,整理分类,分为以下专题展开:
一、填空选择专题,全面考察各章细小知识点;
二、几何及三角函数专题;
三、二次函数及动点专题。
由于这些类型的题目是学生感到有难度,且在考试中最易丢分的题目,因此特别针对这些内容作专题训练,以强化学生的问题分析能力。大致四天左右时间。
第三轮:综合检测,选取三至四份质量比较高的综合试题,对学生进行实战练习,全面考查复习成果,讲评中注意精讲,尽量让学生自己解决问题。
❿ 平行四边形的知识点
平行四边形的知识点如下:
平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
性质:
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”。 )
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”。 )
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”。)
(4)夹在两条平行线间的平行四边形的高相等。(简述为“平行线间的高距离处处相等”。)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”。 )