当前位置:首页 » 基础知识 » 数学知识分段表
扩展阅读
儿童德勒斯枕应该怎么办 2024-11-15 00:18:44
数据库语言以什么为基础 2024-11-15 00:01:42

数学知识分段表

发布时间: 2022-12-15 01:13:27

1. 七年级数学上册知识点汇总

一个没有几分诗人气的数学家永远成不了一个完全的数学家.下面给大家带来一些关于 七年级数学 上册知识点汇总,希望对大家有所帮助。

1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).

2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.

3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加

号的和的形式.

4、加减混合运算的 方法 和步骤

(1)将减法统一成加法,并写成省略加号的和的形式;

(2)运用加法的交换律和结合律,简化运算.

5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.

6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.

7、倒数:乘积是1的两个数互为倒数.

8、有理数的除法法则

(1)除以一个数等于乘以这个数的倒数;

(2)两数相除,同号得正,异号得负,并把绝对值相除;

(3)0除以任何一个不等于零的数,都得0.

9、乘方的有关概念

(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n 次方(或a的n次幂).

(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.

10、科学计数法

把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.

11、有理数的混合运算顺序

(1)先算乘方,再算乘除,最后算加减;

(2)同级运算,按照从左至右的顺序依次进行;

(3)如果有括号,就先算小括号,再算中括号,然后算大括号.

12、近似数:与实际很接近的数.

13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个

近似数精确到那一位.

14、计算器的组成:计算器的面板由 显示器 和按键组成.

第3章整式的加减

1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普

遍意义.

2、用字母表示数后,字母的取值要根据实际情景来确定.

3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.

4、单独一个数或单独一个字母也是代数式.

5、列代数式的实质就是把文字语言转化为符号语言.

6、列代数式的一般方法有:

(1)抓住关键词,由关键词确定相应的运算符号;

(2)理清运算顺序,一般是先读的先算,必要时添上括号;

(3)较复杂的数量关系,可分段处理;

(4)根据实际问题中的基本数量关系或公式列代数式.

7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.

8、求代数式的值的步骤:先代入,再求值.

9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.

10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.

11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母

的项叫做常数项.

12、在多项式里,最高次项的次数就是这个多项式的次数.

13、单项式和多项式统称为整式.

14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个

字母的降幂排列.

15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个

字母的升幂排列.

16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.

17、把多项式中的同类项合并成一项,叫做合并同类项.

18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.

19、去括号法则:

(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;

(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;

20、添括号法则:

(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;

(2)所添括号前面是“—”号,括到括号里的各项改变正负号;

21、整式加减的一般步骤:先去括号,再合并同类项.

第4章生活中的立体图形

1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分

为圆锥和棱锥

2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的

图,即视图.

3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称

为侧视图,依观看的方向不同,有左视图和右视图.

4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据

俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.

5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.

6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.

7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.

8、在多边形中,最基本的图形是三角形.

9、两点之间线段最短.

10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.

11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.

12、把一条线段分成两条相等线段的点,叫做这条线段的中点.

13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转

而成的图形.

14、角的表示方法

(1)当顶点处只有一个角时,用一个大写字母表示;

(2)用三个大写字母表示,注意顶点字母必须写在中间;

(3)用希腊字母或阿拉伯数字表示.

15、角的大小比较:

(1)“形的比较”——叠合法;

(2)“数的比较”——度量法.

16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的

角平分线.

17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),

就说这两个角互为补角.

18、同角(或等角)的余角相等;同角(或等角)的补角相等.

第5章相交线与平行线

1、对顶角相等.

2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.

3、直线外一点与直线上各点连接的所有线段中,垂线段最短.

4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位

于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.

5、在同一平面内不相交的两条直线叫做平行线.

6、经过直线外一点,有1条直线与这条直线平行.

7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

8、平行线的判定方法

(1)同位角相等,两直线平行;

(2)内错角相等,两直线平行;

(3)同旁内角互补,两直线平行;

(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;

(5)在同一平面内,垂直于同一条直线的两条直线互相平行.

9、平行线的性质

(1)两直线平行,同位角相等;

(2)两直线平行,内错角相等;

(3)两直线平行,同旁内角互补.

第1章走进数学世界

1、数学伴我们成长,测量、称重、计算等都与数学有关.

2、数学与现实生活密切联系,人类离不开数学.

3、人人都能学好数学.

第2章有理数

1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表

示具有相反意义的量.

2、正数和负数

(1)正数都大于零;

(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;

(3)0既不是正数也不是负数,它是正数和负数的分界点.

3、有理数

(4)有理数:正数和分数统称为有理数;

(5)整数包括正整数、0、负整数;

(6)分数包括正分数、负分数.

4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.

5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.

6、有理数的大小比较

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

7、相反数的意义

(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;

(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.

8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.

9、绝对值的意义

(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;

(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.

10、绝对值的非负性:对于任何有理数a,都有|a|≥0.

11、两个负数的大小比较法则:两个负数,绝对值大的反而小.

12、有理数大小的比较方法

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

两个正数,绝对值大的数大;两个负数绝对值大的数反而小.

13、有理数的加法法则

(1)同号两数相加,取加数的符号,并把绝对值相加;

(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;

(3)互为相反数的两个数相加得0;

(4)一个数同0相加仍得这个数.

14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.

15、有理数的加法运算律

(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)

(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)

16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.

七年级数学上册知识点汇总相关 文章 :

★ 初一数学上册知识点归纳

★ 初一上册数学知识点归纳整理

★ 初一数学上册重点知识整理

★ 初一数学上册基本概念汇总与学习方法

★ 七年级上册数学知识点总结三篇

★ 七年级数学知识点整理大全

★ 初中七年级数学知识点归纳整理

★ 初一数学有理数知识点

★ 七年级上册数学全册概念总结复习

★ 初一年级上册数学的21个热门知识点

2. 高二数学知识点全总结

高二数学 知识点你学会了吗?现在数学是比较难学的,尤其是高二的知识点也是比较多的。一起来看看高二数学知识点全 总结 ,欢迎查阅!

高二数学知识点归纳:复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

复合函数常见题型

(?)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(?)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(?)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。

高二数学知识点归纳:直线、平面、简单几何体

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x轴的线段长不变,平行于y轴的线段长减半.

(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要 方法 ):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

高二数学知识点归纳:函数

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

(4)检查f(x)的符号并由表格判断极值。

3.求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

4.解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5.导数在实际生活中的应用:

实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。

高二数学知识点全总结相关 文章 :

★ 高二数学知识点总结

★ 高二数学知识点归纳小总结

★ 高二数学知识点归纳总结

★ 高二数学考点知识点总结复习大纲

★ 高二数学知识点2020总结

★ 高二数学知识点总结归纳

★ 高二数学知识点复习总结

★ 高二数学知识点新总结2020

★ 高二数学知识点总结人教版

★ 高二数学知识点总结详细

3. 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

4. 五四制初中数学教材知识框架总结

初一、初二知识点
有理数
1.1 正数和负数 π是无理数
1.5.1
有理数的乘方
运算顺序:
1)先乘方,再乘除,最后加减
2)同级运算,从左到右进行
3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。



求n个相同的因数的积的运算叫做乘方。
一般地,在 a^n 中,a 取任意有理数,
n 取正整数。
幂的符号法则:
正数的任何次幂都是正数;
负数的奇次幂是负数;
负数的偶次幂是正数;
零的任何次幂都是零。
注意:当底数是负数或分数时,书写时要把整个负数或分数用括号括起来。
知识扩展:

1.5.2 科学记数法
一个大于10的数可以表示成a×10n的形式,即有其中1≤a<10,n是比A的整数部分的位数少1的正整数。这种记数方法叫做科学记数法。
1.5.3 近似数和有效数字
一般的,一个近似数四舍五入到哪一位,就说这个数精确到哪一位;这时从左边第一个不是0的数字起,到末尾数字止,所有的数字都叫这个数的有效数字。
对于科学记数法表示的数,规定它的有效数字就是a中的有效数字。

第二章
一元一次方程
2.1.2 等式的性质
用等号表示相等关系的式子叫做等式。我们用a=b表示一般的等式。
等式性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
等式的补充性质:对称性和传递性
如果a=b,那么b=a;
如果a=b,b=c,那么a=c。
方程:含有未知数的等式。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
将这个数分别带入原方程的左右两边,看这个值能否使方程的两边相等。
一、一元一次方程、等式的概念
二、一元一次方程的解法:
去分母、去括号、移项、合并同类项和系数化一
合并同类项复习
一、 书写要求
数字与数字相乘,用乘号;数字与字母或字母与字母相乘,乘号省略不写
数字与字母或括号相乘时,数字在前
除号写成分数线,分数线有括号作用
带分数应化成假分数
代数式是和或差的形式,并且有单位,代数式应加括号
二、 列代数式
1、 除以a^2+b 的商是5x的数
2、 减少20%后是a的数
3、 三个连续奇数,中间的一个是2n+3,表示这三个数的立方和。
三、 同类项:所含字母相同,相同字母的指数也相同的项。
所有常数项都是同类项。
合并同类项:同类项的系数相加,结果作为系数,字母和字母的指数不变。
4、若4a^(m^2-1)b^2/5与3a^3b^(n-m)能够合并,则m=±2,n=4或0
四、添、去括号
五、化简求值
工程问题:工作总量=工作效率×工作时间
现实生活问题
1、利润问题
(1+提价或降价的百分数) 原价=现价;
利润=售价-进价

2、储蓄问题
本息和=本金+利息
利息=本金 利率 期数(每个期数内的利息与本金的比叫做利率)
从1999年我国开始对利息征收20%的个人所得税,
实得利息=(1-20%) 利息
3、球赛积分问题
4、纳税问题
5、交通问题
6、最优方案问题

3.1.2点、线、面、体
通过两点的直线只有一条
两点之间线段最短
等角的补角等,等角的余角等
过一点有且只有一条直线与已知直线垂直。
垂线段最短
注意问题:
1、 在表示直线、射线、线段时,一定要先写出文字。
2、 注意延伸与延长的区别,延长与反向延长的区别,延长线要用虚线
3、 注意定义的准确性。本章重要定义:两点距离、角、中点、角平分线
4、 注意相似图形的区别:直线与平角,射线与周角
5、 注意点、线、角的表示法,区分大小写及字母顺序
6、 作图要用铅笔尺子。尺规作图要保留痕迹,并写结论。
7、 论述题要写推理步骤:题目中的已知作为因为,由已知推理得到的作为所以。
8、 注意区分中点,角平分线三种形式的选取。
9、 注意分类讨论。依靠图形把情况想全面。
10、图形的折叠与展开可动手实践。
一 平行线的性质定理:
• 两直线平行,同位角相等。
• 两直线平行,内错角相等 。
• 两直线平行,同旁内角互补 。
同位角相等
内错角相等 两直线平行
同旁内角互补
同位角相等
两直线平行 内错角相等
同旁内角互补

如果一个角的两边分别平行于另一角的两边,则这两个角相等或互补

第九章 不等式与不等式组
移项要变号
1、 用不等号连接表示不等关系的式子叫不等式。
2、 不等式的基本性质:
性质1:不等式两边都加上(或减去)同一个数或式子,不等号方向不变。
性质2:不等式两边都乘(或除以)同一个正数,不等号方向不变。
性质3:不等式两边都乘(或除以)同一个负数,不等号方向改变。
互逆行:若a>b,则b<a
传递性:若a>b, b>c,则a>c
3、 使不等式成立的每一个未知数的值叫不等式的解。
不等式的所有解叫不等式的解集。解集是范围,解是具体的数。
4、 解集在数轴上的表示:两定
一定边界点:含于解集为实心点;不含于解集为空心点
二定方向:大于向右,小于向左
5、 一元一次不等式的解法:去分母、去括号、移项变号、合并同类项(化成ax>b或ax<b的形式)、系数化一(当系数是负数时,注意变号)
6、 几个一元一次不等式的解集的公共部分叫一元一次不等式组的解集。
解法:分别解,再求解集。
同大取大;同小取小;大小取中;矛盾无解
注意:解集用小于连接。例:-2<x<3
7、 应用题:
注意超过、不小于、不大于、至少、最多等关键字。
注意隐含条件。
注意设法:不写“至少”
一元一次不等式:
1、不等式的性质(尤其是性质三)
2、会解不等式(组),利用数轴找解集(不等式组要写解集再取整数解,数轴要有原点、箭头),应用题(注意关键字,是否带等号)。

第七章 三角形
一、用不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
二、三角形中的三条重要线段:
1、三角形的角平分线
2、三角形的中线
3、三角形的高线
要求掌握: 定义、书写格式、画法(钝角三角形)、交点结论
三、三角形三边关系定理及推论
两边差<第三边<两边和
三角形具有稳定性,而四边形没有
四、三角形的分类:按边分和按角分
五、三角形内角和
三角形的内角和等于180°。
定理证明、书写、例题(整体思想和方程思想)
在△ABC中,∵∠A+∠B+∠C=180°
六、三角形的外角
1、三角形的一边与另一边的延长线组成的角。
2、三角形的一个外角等于与它不相邻的两个内角的和。
3、三角形的一个外角大于与它不相邻的任何一个内角。
书写:∵∠ADB是△ADC的外角
∴∠ADB=∠C+∠DAC
∴∠C=∠ADB-∠DAC
七、多边形
1、对角线:
2、n边形的内角和等于(n-2)180°
3、多边形的外角和等于360°,与边数无关
4、各个角都相等,各条边都相等的多边形叫正多边形。
八、正多边形中,只有正三角形、正方形、正六边形可以用来镶嵌。
注意:画图用铅笔,要准确,标明字母,写结论
方位角、用三个字母表示角。
辅助线及延长线是虚线。
常用方法:分类讨论思想、方程思想
整体思想、见比设份数

三角形:
1、三角形三边关系定理,第三边的范围。
2、掌握三角形中三条重要线段的定义、推理形式、画法(铅笔、标字母、写结论)。
3、三角形内角和定理,严格推理形式。
4、三角形外角定理及推论,严格推理形式。
5、多边形的内角和及外角和定理,会构造方程。
6、镶嵌:任意三角形、四边形和正六边形可镶嵌。
7、会写四步以内几何推理。不用写理由。

第十章 实数
1、算术平方根:一个正数的平方等于a,即x2=a,那么正数x叫做a的算术平方根。
(算术平方根的取值范围)
(被开方数的取值范围,使式子有意义)
2、平方根:如果一个数的平方等于a,即x2=a,那么x叫做a的平方根。
3、正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
4、求一个数的平方根的运算叫开平方。平方与开平方互为逆运算。
5、立方根:如果一个数的立方等于a,即x3=a,那么x叫做a的立方根。
6、正数有一个正的立方根;负数有一个负的立方根;0的立方根是0。
7、求一个数的立方根的运算叫开立方。立方与开立方互为逆运算。
8、无限不循环小数叫无理数。
三类数:含 的式子;开不尽方根的数;类似循环实际不循环的小数
9、有理数和无理数统称实数。实数还可分为正数、0、负数 注意:分数都是有理数
10、实数与数轴上的点一一对应。
11、实数的绝对值、相反数、倒数的概念与有理数中相同。
12、实数的近似值 。会比较两数大小
会背1到20的平方,1到10的立方

第六章 平面直角坐标系
1、平面直角坐标系的概念:
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上方向为正方向;
两个坐标轴的交点为平面直角坐标系的原点。
2、点的坐标:有序实数对
(1)点p(a,b)到x轴的距离为︱b︱
点p(a,b)到y轴的距离为︱a︱
(2)x轴上的点纵坐标为0
在x轴上方的点纵坐标大于0
在x轴下方的点纵坐标小于0
(3)y轴上的点横坐标为0
在y轴右方的点横坐标大于0
在y轴左方的点横坐标小于0
(4)平行于x轴的直线上的点的纵坐标相同
平行于y轴的直线上的点的横坐标相同
(5)在第一三象限角平分线上的点的横、纵坐标相等
在第二四象限角平分线上的点的横、纵坐标相反
3、用坐标表示平移:
(1)在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x + a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y + b)(或(x,y - b)).
(2)在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向 左(或向右)平移a个单位长度;
在平面直角坐标系内,如果把一个图形各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
4、建立直角坐标系表示点的位置
5、坐标平面内的点与有序实数对一一对应。
注意:建立坐标系要完整。用铅笔画图,画图不整洁要扣分。

图形的这种移动叫平移变换,简称平移。
1、平移的两条基本特征;
2、图形的移动为平移变换的重要标志:
图形在移动的过程中,
自身的形状和大小没有发生变化
自身的方向始终没有发生变化
3、数学与实际生活息息相关。

第十一章 一次函数
1、 常量与变量;(非重点)
2、 函数概念;(非重点)
3、掌握自变量的取值范围:
使解析式有意义:分母不为0;二次根号下的式子有非负性
使实际问题有意义:注意边界点及是否要取整
4、 函数的三种表示方法:解析法、列表法、图像法
5、点在函数图像上(函数图像过这个点) 点的坐标满足函数解析式
6、正比例函数概念:y=kx (k是不为0的常数)
图像:过原点的一条直线
性质:k>0 直线过第一、三象限,y随x的增大而增大
k<0 直线过第二、四象限,y随x的增大而减小
7、一次函数概念:y=kx+b(k,b为常数,k不为0)
正比例函数是特殊的一次函数
图像:一条直线
性质:k>0 ,y随x的增大而增大
k<0 ,y随x的增大而减小
b>0 直线与y轴交于正半轴
b<0 直线与y轴交于负半轴
b=0 直线过原点即为正比例函数
k相同的直线可互相平移得到
(k,b与一次函数图像之间的关系见笔记)
注意:画一次函数图像时,只需找两点即可
步骤:列表、描点、连线
8、用函数分析方程和不等式;
会求函数值,会求两个函数的交点坐标,并会比较两个函数的大小关系(会识图);给出y(或x)的范围会求x(或y)的范围.
9、求函数解析式:用待定系数法求解析式;利用图形找点求解析式
10、会看分段函数图像
重点:变量与函数知识的掌握要突出讨论意识。
函数的概念、性质、应用都应该强调讨论;运用函数图象进行的讨论

《数据》复习
一.本章知识结构
本章共有三小节内容。
第1小节“几种常见的统计图表”主要在已经学过的条形图、折线图和扇形图等统计图的基础上,进一步认识这几种常见的统计图,并引进一种新的统计图——频数分布直方图;
第2小节“用图表描述数据”包含两层含义:根据问题选择适当的统计图来描述数据和学习制作统计图表的方法;
第3小节“课题学习”旨在让学生综合利用已学的统计知识和方法从事统计活动,经理收集、整理、描述和分析数据的基本过程。
二、.课程学习目标
1. 进一步认识条形图、折线图、扇形图,掌握它们各自的特点;
2. 会画扇形图,会用扇形图描述数据;
3. 理解频数的概念,了解频数分布的意义和作用;
4.根据需要对数据进行适当分组;会列频数分布直方图和频数折线图,并会用它们描述数据。
5.感受统计在生产生活中的作用,建立统计观念,培养实事求是的科学态度

 数据收集的过程一般包括:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果。
 表示数据的两种方法:
1、利用统计表
2、利用统计图:条形图、折线图、扇形图

全等三角形
一、课程学习目标
1、了解全等三角形的概念和性质,能够准确的辨认全等三角形的对应元素。
2、探索三角形全等的条件,能利用三角形全等进行证明。
3、会做角的平分线,了解角平分线的性质,会利用角平分线的性质进行证明。
二、知识内容小结
13.1 全等三角形
1、定义: 能够完全重合的两个三角形叫做全等三角形。
相关概念:对应顶点、对应边、对应角
2、全等三角形的性质:
全等三角形的对应边相等
全等三角形的对应角相等
结论:经过平移、翻折、旋转前后的图形全等。
13.2 三角形全等的条件
“边边边”(SSS):
三边对应相等的两个三角形全等
“边角边(SAS):
两边和它们的夹角对应相等的两个三角形全等。
“角边角”(ASA):
两角和它们的夹边对应相等的两个三角形全等。
“角角边”(AAS):
两个角和其中一个角的对边对应相等的两个三角形全等。
“斜边直角边”(HL):
在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等。
13.3 角平分线的性质
角平分线的尺规画法。
角平分线的性质:角的平分线上的点到角的两边的距离相等。
角平分线的判定:到角的两边距离相等的点在角的平分线上。
结论:三角形的三条角平分线相交于一点,该点到三角形三条边的距离相等。
三、复习建议
1、通过证明两个三角形全等从而得到边等、角等的关系是一种常用的方法。在初学证明两个三角形全等时,让学生养成良好的书写习惯是十分必要的。所以我们应要求学生把对应顶点字母写在对应位置上,书写格式一定要规范。
如:已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?

2、用“三找”模式证明三角形全等。
一找已知,最好在图中标注出来;
二找隐含,通过图形语言告诉的已知,如公共角是对应角,公共边是对应边,对顶角是对应角。
三找欠缺,根据题目中的已知条件证明欠缺条件。
3、及时帮助学生进行小结。将零散的知识概念进行整理,形成系统和网络是学生学习过程中很重要的一环,教师要有意识进行引导。如:已知两个三角形全等,除了书上给出的全等三角形的对应边相等;对应角相等以外,能够得到的常用结论有:全等三角形对应边上的中线、高相等;对应角的平分线相等;周长相等;面积相等。
再如判断三角形全等的方法有五个,如何选择这些方法呢?建议教师可以以表格形式给出如下小结:
已 知 可选用的方法
两边对应相等 SAS、SSS
两角对应相等 AAS、ASA
一边和一角对应相等 ASA、AAS、SAS
判断两个直角三角形全等,首先考虑使用HL,除此以外还可以考虑使用SAS、AAS、ASA
4、应重视所学内容在生活中的实际应用,培养学生学以致用的意识。
用三角形全等可以说明实际测量方法的道理,例如,测量池塘两端的距离,测量河两岸相对两点的距离,用卡钳测量工件的内槽宽,还安排了利用三角形全等测量旗杆高度的数学活动。
5、中考创新题。
一、补充条件型;
例:已知AB=AC,如果要判定△ADC≌△AEB,需添加条件__________

二、探索结论型;
例:如图,已知AB∥DE,AB=DE,AF=DC,请问途中有哪几对全等三角形?并任选一对给与证明。

三、编拟命题型
例: 在△AFD和△CEB中,点A,E,F,C在同一条直线上,有下面四个论断:
(1) AD=CB(2)AE=CF(3)∠B=∠D(4)AD∥BC
请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程。
已知:_______________________________________________________
求证:______________________
证明:
四、易错问题及应注意的问题
1、判定两个直角三角形全等时,学生易将HL与SAS弄混。
有不少学生在判断两个直角三角形全等时,只要找到两条边对应相等就认为是HL定理。所以提醒学生注意,分清所找的边是关键。如果找到的是两条直角边对应相等,使用的定理是SAS,一条斜边和一条直角边对应相等,使用的定理才是HL。
2、注意引导学生关注典型反例。
如:有两边和其中一边上的高线对应相等的两个三角形全等。
有两边和第三边上的高线对应相等的两个三角形全等。
这两个命题均为假命题,但学生及易犯错,原因是学生易忽略钝角三角形高在三角形外的情况。
再如: AAA, SSA不成立的反例图:

DE∥BC AD=AC
3、注意角平分线性质性质和判定定理的使用条件,记住典型图形,线段CD或BD为常添辅助线。

4、有多个垂直关系时,常用等角的余角等证明角等。

有一条对称轴——直线
图形沿轴对折(翻转180°)
翻转后和另一个图形重合

整式
幂的乘方
运算顺序:
1)先乘方,再乘除,最后加减
2)同级运算,从左到右进行
3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。



求n个相同的因数的积的运算叫做乘方。
一般地,在 中,a 取任意有理数,
n 取正整数。
幂的符号法则:
正数的任何次幂都是正数;
负数的奇次幂是负数;
负数的偶次幂是正数;
零的任何次幂都是零。
注意:当底数是负数或分数时,书写时要把整个负数或分数用括号括起来。
知识扩展:

分式
分清“且”“或”
约分:约去公因式
分子分母为乘积形式才可约分
分式方程要检验
去分母别漏乘常数项
移项要变号
不能假检验
分式方程应用题要双验

勾股定理
1、勾股定理 注意:前提在直角三角形中
会利用定理进行边的计算 a2+b2 =c2
2、勾股定理的证法 书或课件或新学案43页
3、勾股逆定理 注意:哪个角是直角(最大边所对角)
会用逆定理判定直角三角形
4、会写逆命题:题设与结论与原命题相反
5、常用勾股数:
3k,4k,5k; 5k,12k,13k;
7,24,25; 8,15,17; 9,40,41
6、常用辅助线:构造直角三角形
7、注意勾股定理及逆定理的书写格式
8、 已知直角三角形两边求第三边
(分类讨论)
已知两直角边求斜边上的高
(双垂直图形,等积式)
9、含30º角的直角三角形三边比为 1:2:
等腰直角三角形三边比为 1:1:
10、勾股定理常作为列方程的隐含条件

四边形复习

项目
四边形 对边 角 对角线 对称性
平行四边形
矩形
菱形
正方形
等腰梯形

四边形 条件
平行
四边形 1、定义:两组对边分别平行
2、两组对边分别相等
3、一组对边平行且相等
4、两组对角分别相等
5、对角线互相平分

矩形 1、定义:有一个角是直角的平行四边形
2、三个角是直角的四边形
3、对角线相等的平行四边形

菱形 1、定义:一组邻边相等的平行四边形
2、四条边都相等的四边形
3、对角线互相垂直的平行四边形

正方形 1、定义:一组邻边相等且有一个角是直角的平行四边形
2、有一组邻边相等的矩形
3、有一个角是直角的菱形

等腰梯形 1、两腰相等的梯形 2 、在同一底上的两角相等的梯形 3、对角线相等的梯形(结论)

顺次连接四边形各边中点所得图形为平行四边形
顺次连接对角线相等的四边形各边中点所得图形为菱形
顺次连接对角线互相垂直的四边形各边中点所得图形为矩形
顺次连接对角线相等且垂直的四边形各边中点所得图形为正方形
1、连接对角线
2、构造平行四边形
3、轴对称图形,对称轴上任一点与对称点的连线相等。
4、直角三角形中,有斜边中点,常作斜边中线
5、梯形:做高、平移腰、平移对角线(对角线垂直时)
辅助线要写在证明第一行,用虚线,交代新添字母位置
本章常用定理
等腰三角形三线合一 中垂线定理

反比例函数复习
1、 定义: (k是不为0的常数)
y是x的反比例函数 y与x成反比例 y=kx-1
2、 自变量x≠0 函数y≠0
3、 反比例函数图像是双曲线
4、 当k>0时,图像在第一、三象限,在每一个象限内,y随x的增大而减小;
当k<0时,图像在第二、四象限,在每一个象限内,y随x的增大而增大.
注意:增减性取决于k,与x无关。

K<0
5、 两条双曲线既是中心对称图形(关于原点对称),又是轴对称图形(对称轴是y=x和y=-x)。
两分支无限接近坐标轴,但不与坐标轴相交。
|k|越大,图像离坐标原点越远。
6、 反比例函数 与正比例函数y=k2x
当k1k2同号时,两交点关于原点对成;异号时无交点。
7、实际问题中,自变量取值通常为正,图像通常在第一象限。
8、必会题型:
1) 待定系数法求函数解析式
提醒:设两个函数解析式要区分k
2) 面积问题 S矩形=|k| S三角形= |k|
3) 比较函数值

4)会比较一次函数与反比例函数大小
5)会求一次函数与反比例函数交点坐标
本章约占10分,有一道6分解答题,为一次函数与反比例函数综合题
4)

根据图象写出使反比例函数的值大(小)于一次函数的值的x的取值范围。

中位数定义:
一组数据按大小顺序排列,位于最中间的一个数据

叫做这组数据的中位数

1.求中位数要将一组数据按大小顺序,顾名思义,中位数就是位置
处于最中间的一个数(或最中间的两个数的平均数),排序
时,从小到大或从大到小都可以.
2.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.众数有可能不唯一,注意不要遗漏.
鞋店老板一般最关心众数
公司老板一般以中位数为销售标准
裁判一般以平均数为选手最终得分

3.中位数只需很少的计算,不受极端值的影
响,这在有些情况下是一个优点.

一元二次方程

注意:
1、判断是否为一元二次方程要先化为一般形式再判断。未知数出现在分母或根号中的方程不是一元二次方程。
2、ax2+bx+c=0是否为一元二次方程只与a有关,与b,c无关。
3、各项系数及常数项相对于一般形式而言,而且注意前面符号。
形如 x2=k或a(x-m)2=k的方程可利用开平方法求解。
注意a和k对方程解的影响

一元二次方程根的判别式

应用:不解方程判断根的情况;给出根的情况,求待定系数的值或范围。

注意:1、与几何知识的综合运用
2、注意方程中的字母
这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求

在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形变换叫做图形的旋转.这个定点叫旋转中心.旋转的角度称为旋转角
图形的旋转不改变图形的形状、大小,只改变图形的位置.

旋转中心在对应点连线的垂直平分线上。
性质1 关于中心对称的两个图形是全等形。
性质2 关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。
如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于这一点成中心对称。

5. 高中数学必考知识点归纳

高考数学必考知识点有哪些,高中数学重点知识有哪些,需要我们掌握?下面是我为大家整理的关于高中数学必考知识点归纳,希望对您有所帮助。

高中数学知识点 总结

1.必修课程由5个模块组成:

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2: 3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.高考数学必考重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数,圆锥曲线

高考相关考点:

1. 集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2. 函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3. 数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

4. 三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5. 平面向量:初等运算、坐标运算、数量积及其应用

6. 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

7. 直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8. 圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9. 直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10. 排列、组合和概率:排列、组合应用题、二项式定理及其应用

11. 概率与统计:概率、分布列、期望、方差、抽样、正态分布

12. 导数:导数的概念、求导、导数的应用

13. 复数:复数的概念与运算

高中数学易错知识点整理

一.集合与函数

1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于__对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.

10.你熟练地掌握了函数单调性的证明 方法 吗?定义法(取值,作差,判正负)和导数法

11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

二.不等式

18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.

19.绝对值不等式的解法及其几何意义是什么?

20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.

23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.

三.数列

24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

四.三角函数

29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)

33.反正弦、反余弦、反正切函数的取值范围分别是

34.你还记得某些特殊角的三角函数值吗?

35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

36.函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.

(3)点的平移公式:点按向量平移到点,则.

37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

38.形如的周期都是,但的周期为。

39.正弦定理时易忘比值还等于2R.

五.平面向量

40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

41.数量积与两个实数乘积的区别:

在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.

已知实数,且,则a=c,但在向量的数量积中没有.

在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.

42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

六.解析几何

43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

45.直线的倾斜角、到的角、与的夹角的取值范围依次是。

46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

47.对不重合的两条直线

(建议在解题时,讨论后利用斜率和截距)

48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)

50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?

52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?

53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)

54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).

55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?

七.立体几何

56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.

60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.

61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

63.两条异面直线所成的角的范围:0°<α≤90° >

直线与平面所成的角的范围:0o≤α≤90°

二面角的平面角的取值范围:0°≤α≤180°

64.你知道异面直线上两点间的距离公式如何运用吗?

65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)

68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?

八.排列、组合和概率

69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.

70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混.二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.

71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式.)

72.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;

事件A发生k次的概率:.其中k=0,1,2,3,…,n,且0

<1,p+q=1.< p="">

73.求分布列的解答题你能把步骤写全吗?

74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)

75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

相关 文章 :

1. 高中数学重要知识点巧记口诀

2. 高中数学学习方法:知识点总结最全版

3. 高一数学必背公式及知识汇总

4. 高一数学重点知识点公式总结

5. 高中数学重点知识结构总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

6. 高中数学知识点总结及公式大全 高中文科数学必背公式总结及知识点汇总

1、常用数学公式表

(1)乘法与因式分解

a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

(2)三角不等式

|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。

(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。

(4)根与系数的关系:X1+X2=-b/aX1*X2=c/a,注:韦达定理。

(5)判别式

1)b2-4a=0,注:方程有相等的两实根。

2)b2-4ac>0,注:方程有一个实根。

3)b2-4ac<0,注:方程有共轭复数根。

2、三角函数公式

(1)两角和公式

sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。

(2)倍角公式

tan2A=2tanA/(1-tan2A);ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

(3)半角公式

sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2);cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2);tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA));ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA))。

(4)和差化积公式

2sinAcosB=sin(A+B)+sin(A-B);2cosAsinB=sin(A+B)-sin(A-B);2cosAcosB=cos(A+B)-sin(A-B);-2sinAsinB=cos(A+B)-cos(A-B);sinA+sinB=2sin((A+B)/2)cos((A-B)/2;cosA+cosB=2cos((A+B)/2)sin((A-B)/2);tanA+tanB=sin(A+B)/cosAcosB;tanA-tanB=sin(A-B)/cosAcosB;ctgA+ctgBsin(A+B)/sinAsinB;-ctgA+ctgBsin(A+B)/sinAsinB

(5)某些数列前n项和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+;n(n+1)=n(n+1)(n+2)/3。

(6)正弦定理:a/sinA=b/sinB=c/sinC=2R,注:其中R表示三角形的外接圆半径。

(7)余弦定理:b2=a2+c2-2accosB,注:角B是边a和边c的夹角。

3、高中文科数学知识点口诀记忆

(1)《集合》

1)集合概念不定义,属性相同来相聚;内有子交并补集,运算结果是集合。

2)集合元素三特征,互异无序确定性;集合元素尽相同,两个集合才相等。

3)书写规范符号化,表示列举描述法;描述法中花括号,对象xy须看清。

4)数集点集须留意,点集本是实数对;元素集合讲属于,集合之间谈包含。

5)0和空集不相同,正确区分才成功;运算如果有难处,文氏数轴来相助。

(2)《常用逻辑用语》

1)真假能判是命题,条件结论很清晰;命题形式有四种,分成两双同真假。

2)若p则q真命题,p和q充分条件;q是p必要条件,原逆皆真称充要。

3)判断条件有三法,举出反例定义法;;由小推大集合法,逆否命题等价法。

4)逻辑连词或且非,或命题一真即真;且命题一假即假,非命题真假相反。

5)且命题的否定式,否定式的或命题;或命题的否定式,否定式的且命题。

6)量词一般有两个,全称量词所有的;存在量词有一个,全称特称两命题。

6)全称命题否定式,特称命题肯定式;含有量词否定式,改写量词否结论。

(3)《函数概念》

1)函数结构三要素,值域法则定义域;函数形式有三法,列表图像解析法。

2)特殊函数有三种,分段组合和复合;定义域的要求多,分式分母不为0。

3)偶次方根须非负,0的次方要为正;底数非1为正数,零和负数无对数。

4)正切函数脚不直,数列序号正整数;多个函数求交集,实际意义须满足。

5)函数值域的求法,配方图像定义法;部分整体观察法,换元代入单调法。

6)分离常数判别式,均值定理不等法;怎样去求解析式,题目常考两性式。

7)抽象函数解析式,代入换元配凑法,方程思想消元法;指定类型解析式,

8)运用待定系数法。性质奇偶用单调,观察图像最美妙;若要详细证明它,

9)还须将那定义抓。组合函数单调性,判断它们有法则,增加上增等于增,

10)增减去减等于增,减加上减等于减,减减去增等于减。复合函数单调性,

11)同增异减巧判断。复合函数奇偶性,偶加减偶等于偶,奇加减奇等于奇。

12)偶加减奇非奇偶,偶乘除偶等于偶,奇乘除奇等于偶,奇乘除偶等于奇。

13)周期对称两种性,观察结构最可行;内同表示周期性,内反表示对称性。

14)中心对称轴对称,函数还具周期性;函数零点方程根,图像交点横坐标;

15)函数零点有几个,画出图像看交点;两个端点都代入,相乘为负有零点。

4、文科数学必背知识点归纳与总结

(1)集合有关概念

1)集合的中元素的三个特性:

2)元素的确定性:互异性、无序性

3)集合的表示方法:列举法与描述法。

4)注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集,N*或N+整数集Z有理数集Q实数集R。

(2)集合间的基本关系

1)“包含”关系—子集,注意:BA有两种可能。A是B的一部分;A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A。

2)不含任何元素的集合叫做空集,记为Φ;规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集。

7. 高中必修一数学知识归纳

高中高一数学必修1各章知识点总结

第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AíB, BíC ,那么 AíC

④ 如果AíB 同时 BíA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x | x?S且 x?A}

S

CsA

A

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)

如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

函数
单调性

u=g(x)





y=f(u)





y=f[g(x)]





注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数最大(小)值(定义见课本p36页)

1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).

当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。

注意:当 是奇数时, ,当 是偶数时,
2.分数指数幂

正数的分数指数幂的意义,规定:


0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1) · ;

(2) ;

(3) .

(二)指数函数及其性质

1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1
0<a<1

图象特征
函数性质

向x、y轴正负方向无限延伸
函数的定义域为R

图象关于原点和y轴不对称
非奇非偶函数

函数图象都在x轴上方
函数的值域为R+

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升
自左向右看,

图象逐渐下降
增函数
减函数

在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡
图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
(4)当 时,若 ,则 ;

二、对数函数

(一)对数

1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

说明:1 注意底数的限制 ,且 ;

2 ;

3 注意对数的书写格式.

两个重要对数:

1 常用对数:以10为底的对数 ;

2 自然对数:以无理数 为底的对数的对数 .

对数式与指数式的互化

对数式 指数式

对数底数 ← → 幂底数

对数 ← → 指数

真数 ← → 幂

(二)对数的运算性质

如果 ,且 , , ,那么:

1 · + ;

2 - ;

3 .

注意:换底公式

( ,且 ; ,且 ; ).

利用换底公式推导下面的结论(1) ;(2) .

(二)对数函数

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如: , 都不是对数函数,而只能称其为对数型函数.

2 对数函数对底数的限制: ,且 .

2、对数函数的性质:

a>1
0<a<1

图象特征
函数性质

函数图象都在y轴右侧
函数的定义域为(0,+∞)

图象关于原点和y轴不对称
非奇非偶函数

向y轴正负方向无限延伸
函数的值域为R

函数图象都过定点(1,0)

自左向右看,

图象逐渐上升
自左向右看,

图象逐渐下降
增函数
减函数

第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第三章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:

方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

3、函数零点的求法:

求函数 的零点:

1 (代数法)求方程 的实数根;

2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
赞同0|评论

8. 高中数学知识点重点总结大全

总结 是指社会团体、企业单位和个人对某一阶段的学习、它可以给我们下一阶段的学习和工作生活做指导,因此十分有必须要写一份总结哦。下面是我给大家带来的高中数学知识点重点总结大全,以供大家参考!

高中数学知识点重点总结大全

集合的有关概念

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示 方法 :常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N

子集、交集、并集、补集、空集、全集等概念

1)子集:若对_∈A都有_∈B,则AB(或AB);

2)真子集:AB且存在_0∈B但_0A;记为AB(或,且)

3)交集:A∩B={_|_∈A且_∈B}

4)并集:A∪B={_|_∈A或_∈B}

5)补集:CUA={_|_A但_∈U}

注意:A,若A≠?,则?A;

若且,则A=B(等集)

集合与元素

掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

子集的几个等价关系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

交、并集运算的性质

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

有限子集的个数:

设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

练习题:

已知集合M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},则M,N,P满足关系()

A)M=NPB)MN=PC)MNPD)NPM

分析一:从判断元素的共性与区别入手。

解答一:对于集合M:{_|_=,m∈Z};对于集合N:{_|_=,n∈Z}

对于集合P:{_|_=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

人教版 高一数学 知识点整理

考点一、映射的概念

1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素_,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一

考点二、函数的概念

1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数_,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(_),_A.其中_叫自变量,_的取值范围A叫函数的定义域;与_的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。

2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。

3.区间的概念:设a,bR,且a

①(a,b)={_a

⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__

考点三、函数的表示方法

1.函数的三种表示方法列表法图象法解析法

2.分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:①分段函数是一个函数,不要误认为是几个函数。②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况

①若f(_)是整式,则函数的定义域是实数集R;

②若f(_)是分式,则函数的定义域是使分母不等于0的实数集;

③若f(_)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;

④若f(_)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(_)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

⑦若f(_)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

高一数学知识点归纳大全

圆的方程定义:

圆的标准方程(_—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

①dR,直线和圆相离、

2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足。

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

高中数学知识点重点总结大全相关 文章 :

★ 高中数学知识点总结及公式大全

★ 高中数学知识点全总结最全版

★ 高中数学知识点全总结

★ 高中数学知识点大全

★ 高一数学知识点汇总大全

★ 高中数学知识要点总结范文

★ 高中数学知识点总结归纳最新

★ 高中数学知识点总结

★ 高一数学知识点总结归纳

★ 高一数学知识点全面总结

9. 小学各年级数学知识点总结

贪玩是孩子的天性,大多数孩子缺少自我控制能力,所以需要家长们平时多督促孩子认真完成家庭作业,培养他们良好的作业习惯,写字姿势。家长督促他们写作业,及时检查他们的作业,发现没学会的知识要及时给他们讲解,每天的作业认真完成是学习的基本保障。下面是我为大家整理的关于小学各年级数学知识点 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!

一年级的知识点及重难点

(一)数与计算

(1)20以内数的认识。加法和减法。

数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合运算。

(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。

两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

(二)量与计量钟面的认识(整时)。人民币的认识和简单计算。

(三)几何初步知识

长方体、正方体、圆柱和球的直观认识。

长方形、正方形、三角形和圆的直观认识。

(四)应用题

比较容易的加法、减法一步计算的应用题。 多和少的应用题(抓有效信息的能力)

(五)实践活动

选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

一年级 数学 学习 方法

1、要培养学生的学习习惯。学习习惯的一方面就是作业的按时完成,作业格式训练也是学习习惯培养的一个方面。要利用数学练习本让学生练习写数和写算式

2、重视孩子计算能力的培养

口算20以内的加减法是十分重要的基础知识,孩子必须学好,并能够达到熟练计算的程度。由于孩子的基础不同,不同孩子的计算熟练程度和速度也就存在一定差异,要缩小这一差异,仅靠每天一节数学课练习是不客观的,所以要经常性的练习。一年级要多让孩子借助小棒等学具摆一摆、说一说计算思路。

3、依据生活理解数学,让孩子在游戏中成长

有些数学知识较抽象,容易混淆,我们要注意给孩子创造生活情境,让孩子在实际体验中理解知识。如“左右”的认识,分辨左右是孩子本学期学习的一个难点,在生活中强化孩子对左右手的认识,引导孩子借此来分辨物体间的左右关系。同时还要注意一个参照物的问题,如两人面对面时,如何判别对面之人的左右边。

4、重视数学语言发展,让学生养成积极思维的习惯。 在生活中要多为孩子创设说数学的机会,数学是“思维的 体操 ”,如果不积极动脑思考就不可能学好数学。如在学习“10的分与合”时,在复习铺垫的基础上,提问:“10可以分成几和几呢?”引导学生一边涂珠算一边思考,从而自己得出结论。多问几个“为什么”比直接告诉学生“是这样的”要好得多。,学生在相互之间的思维撞击中学会了知识,获得了积极的成功体验。

总之,一年级学生由于特殊的年龄特征,所以要重视培养学生良好书写、思维的学习习惯。

二年级的知识点和重难点

(一)数与计算

(1)两位数加、减两位数。 ? 两位数加、减两位数。加、减法竖式。两步计算的加减式题。

(2)表内乘法和表内除法。 ? 乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。

(3)万以内数的读法和写法。 ? 数数。百位、千位、万位。数的读法、写法和大小比较。

(4)加法和减法。 ?加法,减法。连加法。加法验算,用加法验算减法。

(5)混合运算。 ? 先乘除后加减。两步计算式题。小括号。

(二)量与计量

时、分、秒的认识。

米、分米、厘米的认识和简单计算。

千克(公斤)的认识

(三)几何初步知识

直线和线段的初步认识。 ? 角的初步认识。直角。

(四)应用题

加法和减法一步计算的应用题。 ? 乘法和除法一步计算的应用题。 ?比较容易的两步计算的应用题。

(五)实践活动

与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。

二年级数学 学习方法

小学生是以具体形象思维为主,根据二年级学生的特点,应该:

第一:要适度应用学具,例如:在教学乘法的初步认识时,用摆小棒的方法,应按照从一般到特殊的规律,先摆出两堆不同数目的小棒,再摆出两份数目相同的,让学生觉得加法的累赘,再介绍乘法,学生就很容易理解乘法的意义,并且乐意学乘法了。

第二:利用 生活知识 教学。

例如:小红做了18朵纸花,送给同学们12朵,还剩下多少朵。这是两位数减两位数,如果在生活中做一做,学生就明白意思了,所以说,有一些应用题,能从实际生活出发,先用学生的生活 经验 来解答,再用数学知识来解答,就可以使学生理解题意。

第三:利用社会环境提高数学实际应用能力。例如:在学习统计时,可以带学生到商城或社会中,利用新学的统计知识,通过观察、计量、比较,从而收集到有用的信息和知识。

第四:为学生创造机会,使学生去思、去想、去问。比如,二年级教材学习了“角的认识”,对于什么叫角,角各部分名称,“角的大小与边的长短无关”这些内容,学生已经知道了

“还有什么问题吗?”学生答道“没问题”。真的没问题了吗?“那我来问个问题”我提出了一个问题:“角的大小为什么与边的长短无关呢?”经过讨论,大家明白了,角的边是射线,射线是没有长短的,所以,角的大小与边的长短无关。角的大小决定于两条边张开的程度。教师从学生的角度示范提问题,久而久之,也就让学生有了提问题的意识,在引导学生提问题的同时,也培养了学生积极思考问题和解决问题的能力。

三年级知识点和重难点

(一)数与计算

(1)一位数的乘、除法。一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。

(2)两位数的乘、除法。一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。

(3)四则混合运算。两步计算的式题。小括号的使用。

(4)分数的初步认识。分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。

(二)量与计量千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。

(三)几何初步知识长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。

(四)应用题常见的数量关系。解答两步计算的应用题。

(五)实践活动联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。

三年级数学 学习方法

小学三年级学生学习数学的三种数学能力中,影响程度最大的是运用数概念的能力,其次是空间关系的知觉能力,再次是基本能力(概括和推理)。

第一,加强小学三年级学生运用“数概念”的能力培养。

有不少小学数学的教学中,常只重算法,忽视数概念的掌握和算理的理解。因而只能机械地应用学过的东西,或简单地模仿做过的例题,不能在变化了情况下迁移;或者只知道一些定义,而不能全面掌握属于这一概念的东西。

例如,学生能说出什么是圆的半径,但在作图或解题时又常常只能举出垂直方向上的半径,不能反转过来去解决逆向问题,没有纳入到一般的范畴或嵌入数概念体系的认知结构中去。所以在小学数学教学中,不仅要重视算法和演算过程,尤其要重视数概念的掌握和算理的理解,加强小学生运用数概念的能力培养。三年级数学中,会出现长度单位的认识,什么千米、毫米、厘米,很多孩子总是无法记清楚,怎么办呢?请大家伸出自己的右手,手心面向自己,从小拇指到大拇指,依次为:毫米、厘米、分米、米、千米。两指之间的距离大小表示进率的大小。你们看,小指、无名指、中指、食指每相临的两指间的距离相等,也就表示毫米、厘米、分米、米每相临两个单位间的进率相等,都是10。而毫米与分米、厘米与米间的进率为100,毫米与米之间的进率为1000,食指与大拇指之间的距离较大,也是1000。记住单位对应的拇指,这个换算就变得十分简单而且准确了。

第二,重视和加强发展小学三年级学生“空间关系”的知觉能力。

数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。例如三年级下册如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。

第三,观察活动:

所谓观察是指学生对客观事物或某种现象的仔细察看,因而是一种有意注意。培养的途径是:教师提供的“客观事物或某种现象”特征有序、背景鲜明,而且要给出一些观察的思考题。这样有助于学生明确观察目标,进而使他们边观察,边思考,边议论,边作观察记录,以发现数学规律、本质。

“乘法分配律”的教学,根据例证得到三个等式:

(5+3)×2=5×2+3×2

(6+4)×30=6×30+4×30

(25+9)×4=25×4+9×4

教师要求学生结合下面的两个思考题观察上面的三个等式都具有什么相同点(即规律)。①竖里观察,等式的左边都有什么特点?等式右边又有什么特征?②横里观察,等式的左边与右边有怎样的关系?

教师再要求学生把记录的文字:两个加数的和与一个数相乘,两个积的和,两个加数分别与一个数相乘……整理一下就得到了“乘法分配律”。

四年级知识点和重难点

(一)数与计算

(1)亿以内数的读法和写法。

计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。

(2)加法和减法。

加法,减法。

接近整十、整百数的加、减法的简便算法。

加、减法算式中各部分之间的关系。求未知数x。

(3)乘、除数是三位数的乘、除法。

乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。

_乘、除计算的简单估算。

乘数接近整十、整百的简便算法。

乘、除法算式中各部分之间的关系。求未知数x。

(4)四则混合运算。

中括号。三步计算的式题。

(5)整数及其四则运算的关系和运算定律。

自然数与整数。十进制计数法。读法和写法。

四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。

运算定律。简便运算。

(6)小数的意义、性质,加法和减法。

小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值

加法和减法。加法运算定律推广到小数。

(注:小数如果分段教学,可以把小数的初步认识安排在前面的适当年级)。

(二)量与计量

年、月、日。平年、闰年。世纪。24时计时法。

角的度量。

面积单位。

(三)几何初步知识。

直线的测定。测量距离(工具测、步测、目测)。

射线。直角、锐角、钝角、平角、_周角。垂线。画垂线。平行线。画平行线。

三角形的特征。_三角形的内角和。

(四)统计初步知识

简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。

(五)应用题列综合算式解答比较容易的三步计算的应用题。

四年级数学 学习方法

四年级的学生思维正处在从直观思维向抽象 逻辑思维 过渡的阶段,因此,通过练习巩固所学知识只是其中的一个方面,而通过比较、概括、推理、综合等思维方法的学习运用发展其逻辑思维是这个年龄段学生的一个重要任务,除了注意学生思维方法的掌握,最明显的表现是培养学生画概念图和线段图,促进其知识系统化和思维能力的发展。)

在数学知识中,数学概念又是数学知识的基础,数学原理、数学方法也是由数学概念构成。概念的清晰性、稳定性、可辨性以及概念之间的关联性极大地影响数学知识的质量。概念图包括节点、连线、层级和命题四个基本要素。根据小学四年级学生思维发展水平,引导学生思考如何更好建构自己的概念图,掌握这种方法。数学知识就像~张纵横交错的网,每个知识点都是一个网点,网点上的一条条知识,连接起了一个个的网点,从而形成一张密密的“知识网”。培养学生自己去“织网”能力应该是新课改对教师的要求之一,而且对于小学四年级的教师来说,在学生思维折的关键时期,有意识地通过让学生画概念图的方法来培养思维能力也是行之有效的法之一。

“线段图”是指由有一定意义的线段、箭头、数字符号等构成的图式,它的特点是形象直观,能够引起学生的注意和兴趣。利用线段图将题中蕴涵的抽象的数量关系以形象、直观的方式表达出来,化 抽象思维 为形象思维,符合小学生特别是中高年级学生的认知特点。小学数学各种类型的应用题:如分数应用题、行程问题、工程问题等用线段图扳书分析数量关系,易化繁为简,化抽象思维为形象思维。四年级教材中的路程问题(第七册59—61页),很容易通过例题中的线段图理解问题。对于第七册第64页的习题5,学生们也能轻松地把情景图用线段图表示出来;第八册“解方程一”(第95页)的练习2,即使学困生也很容易列出方程,我所教的两个班的学生能把一些方程用线段图画出来,比如97页的练习l、2,通过这种 思维训练 ,学生的表征能力得到提高,实现《标准》提出的“能从具体情境中抽象出数量关系和变化规律,并用符号来表示:理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”

五年级知识点和重难点

小数乘法,小数除法,简易方程,多边形的面积,统计与可能性等是本册教材的重点教学内容。

在数与代数方面,这一册教材安排了小数乘法、小数除法和简易方程。小数的乘法和除法在实际生活中和数学学习中都有着广泛的应用,是小学生应该掌握和形成的基础知识和基本技能。这部分内容是在前面学习整数四则运算和小数加、减法的基础上进行教学,继续培养学生小数的四则运算能力。简易方程是小学阶段集中教学代数初步知识的单元,在这一单元里安排了用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。

在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置;探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。

在统计与概率方面,本册教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性;在平均数的基础上教学中位数,使学生理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。

在用数学解决问题方面,教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。培养学生的符号感,及观察、分析、推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。

五年级数学 学习方法

(一)数与代数

1、第一单元“倍数与因数”:结合具体情境,经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数,知道质数、合数;经历 2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力;

2.第三单元“分数”:进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

3.第四单元“分数加减法”:理解异分母分数加减法的算理,并能正确计算;能理解分数加减混合运算的顺序,并能正确计算;能把分数化成有限小数,也能把有限小数化成分数;能结合实际情境,解决简单分数加减法的实际问题。

(二)在学习《空间与图形》可采用数、形结合的方式,以及类比法等教学

1.第二单元“图形的面积(一)”:知道比较面积大小方法的多样性;经历探索平行四边形、三角形、梯形面积计算方法的过程,并能运用计算的方法解决生活中一些简单的问题;在探索图形面积的计算方法中,获得探索问题成功的体验。

2.第五单元“图形的面积(二)”:在探索活动中,认识组合图形,并会运用不同的方法计算组合图形的面积;能正确运用计算组合图形面积的方法,解决相应的实际问题;能估计不规则图形的面积大小,并能用不同方法计算面积。

六年级数学

(一)数与计算

(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。

(2)分数四则混合运算。分数四则混合运算。

(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。

(二)比和比例

比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。

(三)几何初步知识

圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。

(四)统计初步知识

统计表。条形统计图,折线统计图,_扇形统计图。

(五)应用题

分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。

(六)实践活动

联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。

(七)整理和复习

六年级数学学习方法:

进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

总结比较,理清思绪

知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。

在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。

学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。2、分数乘分数是求一个数的几分之几是多少。

例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?

这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率_工作时间=工作总量

在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是 折纸 实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)

在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。

在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种 思维方式 就是划归法。