⑴ 参加数学建模需要学习哪些方面的知识
参加数学建模需要学习以下方面的知识。
首先,需要弄清楚建模的过程。建议找本数模历年的论文看看,理清思路,步骤等。
其次,看点数学的知识。重点是优化、统计。几乎每年都会有题目是关于优化的。
第三、看一下算法相关的。当然与上面的第二条有所重复了。并用MATLAB maple等实现以下。
第四、学习一下编程的知识,比如C++,MATLAB,lingo等。
第五、找到两个跟你互补的人,组成团队,有人侧重编程,有人侧重论文,有人侧重数学等等。
数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
资料来源:网络—数学建模
⑵ 数学建模需要掌握哪些知识
在数学建模中主要运用的软件是matlab和linggo二个软件。对于matlab要懂的编程。对于编程主要是画图和数值计算二大部分。对linggo要懂得计算。这是对于软件的熟练。在建模比赛之前多一下往年的优秀论文,看他们是如何建立模型的,和论文的格式。同时自己要懂得一下模型的建立。在这些机基础上最重要的是在比赛的三天如何合理的安排任务。你现在可以都数学中国网站上去关注,里面有高手!
⑶ 学习数学建模需要有哪些基础知识
刚参加完今年的全国建模竞赛
建模,要么就是自己创新模型,要么就是利用已有的成熟模型,无论哪一种,都对基本知识的要求较高,即使是已有的模型,如果以前未曾使用,仅是在网上查资料发现可以用,如果没有基本知识,在比赛时的短短三天掌握纯熟是不可能的
线性代数只要求掌握矩阵的基本运算就足够了,C和MATLAB组员中的一个必须熟练掌握,lingo语言也是
其他方面,概率论与数理统计要掌握,高数的微分,差分要掌握,计算方法的插值,拟合等要掌握,还有,数学物理方程,这个太难了,不知道你学过没有,要保证自己看得懂,不必掌握很好
最近的建模题貌似对专业知识要求较高,不知道你学什么,但基本的大学物理还是要掌握的
暂时想到这么多了
⑷ 学习数学建模要有哪些基础知识
学过高数,会用电脑就很好啦!会教一些数模的求解软件。 哈哈,不怕不怕,中文系的都能学,只要有兴趣就行了。我上学期就选了数模,虽然很难,可是我还是很喜欢的,有些是会弄不明白,但是影响不大。。。。我们的老师说其实不用神马基础的。
⑸ 数学建模要做哪些准备,基础的知识要那些,请具体点
数学知识是必须的,数学模型构建能力
还有编程,就是能用自己熟悉的一门语言熟练编程
好多人喜欢用MATLAB,可能是因为简单吧
和论文的写作能力
基本就这些吧
不过数学建模一般都是三个人一组
所以不必每个人什么都会
关键是一个小组要搭档合理
---------------------------------
我参加过一次,需要的数学知识也不好说是哪一块
比赛前虽然突击了很多东西,比赛时也没用上
关键是自己构建数学模型时用什么知识,
比赛前多看一下往年优秀论文的构建模型思路,我觉得很有必要
所谓数学建模,就是实际问题数学化,让实际复杂的问题变成可以度量的数学模型,这个过程要求你对相关的数学知识必须很熟悉。
我建议你还是多阅读一些论文,培养自己构建模型的能力
数学知识千万不要贪多嚼不烂,一知半解的数学知识
是很难用到数学建模里面去的。
⑹ 数学建模的基础知识
那就找本数学建模的书来看看了哦,那就是基础;
⑺ 数学建模都需要学什么知识和课程
你可以先去【绘学霸】网站找“3d建模”板块的【免费】视频教程-【点击进入】完整入门到精通视频教程列表: www.huixueba.net/web/AppWebClient/AllCourseAndResourcePage?type=1&tagid=307&zdhhr-10y22r-296768980
想要系统的学习可以考虑报一个网络直播课,推荐CGWANG的网络课。老师讲得细,上完还可以回看,还有同类型录播课可以免费学(赠送终身VIP)。
自制能力相对较弱的话,建议还是去好点的培训机构,实力和规模在国内排名前几的大机构,推荐行业龙头:王氏教育。
王氏教育全国直营校区面授课程试听【复制后面链接在浏览器也可打开】: www.huixueba.com.cn/school/3dmodel?type=2&zdhhr-10y22r-296768980
在“3d建模”领域的培训机构里,【王氏教育】是国内的老大,且没有加盟分校,都是总部直营的连锁校区。跟很多其它同类型大机构不一样的是:王氏教育每个校区都是实体面授,老师是手把手教,而且有专门的班主任从早盯到晚,爆肝式的学习模式,提升会很快,特别适合基础差的学生。
大家可以先把【绘学霸】APP下载到自己手机,方便碎片时间学习——绘学霸APP下载: www.huixueba.com.cn/Scripts/download.html
⑻ 数学建模需要哪些基础知识 有哪些辅导资料
需要数学知识、计算机知识、最好找个字迹漂亮的队友。
过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
数学建模资料
竞赛参考书
l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998). 2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998). 3、数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).
国内教材、丛书
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3、数学模型选谈(走向数学从书),华罗庚,王元着,王克译,湖南教育出版社;(1991). 4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5、数学模型,濮定国、 田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7、数学模型,陈义华编着,重庆大学出版社,(1995) 8、数学模型建模分析,蔡常丰编着,科学出版社,(1995). 9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12、数学模型基础,王树禾编着,中国科学技术大学出版社,(1996). 13、数学模型方法,齐欢编着,华中理工大学出版社,(1996). 14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996). 15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社. 17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998). 19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998). 20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编着,华南理工大学出版社,(1999). 21、数学模型讲义,雷功炎编,北京大学出版社(1999). 22、数学建模精品案例,朱道元编着,东南大学出版社,(1999), 23、问题解决的数学模型方法,刘来福,曾文艺编着、北京师范大学出版社,(1999). 24、数学建模的理论与实践,吴翔,吴孟达,成礼智编着,国防科技大学出版社, (1999). 25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京). 26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000). 27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000). 28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).
国外参考书(中译本)
1、数学模型引论, E.A。Bender着,朱尧辰、徐伟宣译,科学普及出版社(1982). 2、数学模型,[门]近藤次郎着,官荣章等译,机械工业出版社,(1985). 3、微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988). 4、政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996). 5、离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996). 6、生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996). 7、模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 着,萧礼、张志军编译,科学出版社,(1996). 8、数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等着,叶其孝、吴庆宝译,世界图书出版公司,(1997)
专业性参考书
(这方面书籍很多,仅列几本供参考) : 1、水环境数学模型,[德]W.KinZE1bach着,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987). 2、科技工程中的数学模型,堪安琦编着,铁道出版社(1988) 3、生物医学数学模型,青义学编着,湖南科学技术出版杜(1990). 4、农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990). 5、系统科学中数学模型,欧阳亮编着, E山东大学出版社,(1995). 6、种群生态学的数学建模与研究,马知恩着,安徽教育出版社,(1996) 7、建模、变换、优化--结构综合方法新进展,隋允康着,大连理工大学出版社, (1986) 8、遗传模型分析方法,朱军着,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)
⑼ 数学建模需要哪些基础知识
数学建模有29个基本模型,可以参考,需要的工具很广泛,编程的,画图的等等,matlab spss cad可是说针对不同的题目,不同领域的建模问题用到不同的的工具也不一样。在建模前应该会有建模培训,到时候好好学学。希望可以帮到你
⑽ 数学建模具体要学会什么基本的知识
要学的东西挺多的,一、软件方面,需要学习matlab、lingo以及sas软件,各有各的用处,其中matlab是综合性的,功能很强大;lingo是针对优化问题占优,用于求解线性规划和非线性规划问题;sas是统计分析软件,也是这三个中最难学的。二、算法,数学建模中有十大算法,具体可以网络一下。三、要培养读论文和搜索文献资料的能力;四、也是很重要的,当然提高分析问题(审题)的能力和建模的能力,还要提高写论文的水平!