1. 四年级上册数学小知识 短点的 急需啊!!!!!!!!!!
1.<找千克和克>
国庆假期中,我和妈妈一起去超市购物,准备找找千克和克.走进超市,首先来到了饼干柜旁,这么多琳琅满目的饼干中,我选择了我最喜欢闲趣饼干,我仔细看了看,终于在角落里找到了"净含量100克",说明这包饼干不含袋子的重量是100克,那要是有10包这样的饼干不就是1千克了.
接着我们又来到买米的地方,我发现一袋米要10千克,如果我们家每天吃2千克的话,我家每个月就要吃60千克,也就是这样的6袋米了.
后来我又看到了16个鸡蛋大约有1千克,一个菠萝大约2千克,一个西瓜大约3千克
今天,我收获真多啊,我感受到了数学中学到的千克和克这个知识,在生活中数学真的很重要.
2.<一个小小的数学误会>
很多人都以为阿拉伯数字是阿拉伯人发明的,可是我一直对他很怀疑,果不出我所料,今天数学课上老师介绍了阿拉伯数字的真正的来历.原来这是一个误会!阿拉伯数字真正的发明者是印度人,因为当时阿拉伯人的航海业很发达 ,他们把数字从印度传到了阿拉伯,欧洲人从他们的书上了解了这种简便的记数方法,就认为是他们发明的,所以称它为阿拉伯数字,后来这个误会又传到了中国.
最后,我很想对印度人说:"谢谢你们给我们人类带来了这么大的方便,就因为这样,我很喜欢数学.不仅数字王国很神奇,而且数学的历史知识更是丰富.
5.<发现> 三(4) 何超
今天,我在家发现了一个数学问题.
我发现一杯可乐800克,一杯绿茶500克,一杯冰红茶不知道多少克,于是我又补充了一个信息-------冰红茶比可乐少200克,要求三杯一共多少克呢?于是,我按照老师教的方法算:800-200=600,再600+500=1100,最后1100+800=1900,所以一共1900克.
我认为在日常生活中还有许许多多的数学问题,希望小朋友们能多多观察身边的数学问题.
6.<巧妙的加法和减法>
加法和减法在我们的生活中是缺一不可的.身边有许多事情都要用到加法和减法.比如在学校里,统计分数,统计认数-------生活中,妈妈上街买菜付钱;在家里,计算一个月的开支也要用加减法.这一切的一切都与加减法有关,所以加减法在我们生活中起了十分重要的作用.
加法与减法真奇妙啊!
7.<去天目湖的途中> 三(4) 壮怡
现在,我们数学课正在解决两步计算的实际问题.
今天是星期天,我们全家去天目湖玩,在去天目湖的路上,我就想到了这样一个问题.
当公交车靠第一站时,我看见有8个人上了车,而第二站上了3个人,那如果第三站上车的人数是第一站和第二站人数的两倍,那第三站一共上了几个人呢?
小朋友们,你们会解决这个问题吗?用我们学到的知识试一试吧.
8.<24时记时法> 三(3) 叶飞洋
24时记时法真是无所不能,不信就看看下面我是怎样过周末的吧::首先,7:30起床,然后7:45---8:00洗脸,8:00---8:15吃早饭,8:15---9:15做作业,9:15---10:30看电视,10:30---11:00吃中饭,11:00---15:00睡午觉,15:00---16:00玩,16:00---17:30看动画片,17:30---18:00吃晚饭,18:00---20:00看电视,20:00---21:00打电脑,21:00睡觉.24时记时法是不是很伟大呢?如果你也有这样的想法,也一定要写一篇这样的日记哦!
9.积少成多
今天下午,我和妈妈来到超市买东西。
当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,就是40角,等于4元,而整包的要4.30元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑。
数学报
今天,我们又发了小学生数学报,这期报纸真的很精彩。
上面讲了怎样让书香伴你左右,茅以升如何苦练记忆力的和阿拉伯数字的由来等数学小常识,翻开一面,有许多数学的小窍门,如:如何找规律,怎样牢记知识,翻开另一面有一些数学小故事,从中我获得了很多课堂上学不到的内容。
所以,我觉得每一次看数学报都能让我掌握到更多的知识,我很喜欢它。
《数学的奥妙》 湖塘桥中心小学 张娜
数学在我们的生活中是无处不在的。比如:在菜市场买菜要付多少元钱?在超市里买东西一共要付多少元?......还有,认识了千克和克,你就可以自己算一算称的东西的价钱了。怎么样,数学是不是很重要?
所以,我要提醒你---一定要学好数学哦!
数学又是很奥妙的,它可以让我们知道一些未知数。所以有的小朋友觉得数学有点难,有时还要请家教。
但是数学也是很灵活的。除了我刚才提到的以外,生活中的数学还有很多种呢!
《宝贝丁丁背口诀》 湖塘桥中心小学三(2)班 李昊岚
星期天,宝贝丁丁在背口诀,当他背到“三八”时,却打住了。
这时正巧姐姐走过来,丁丁连忙问:“请问:三八?……”
姐姐气呼呼的说道:“你才‘三八’呢!还没多大就学会骂人了!”
正在厨房做饭的妈妈闻声答道:“三八妇女节呀”。
我在一旁偷偷的笑了,其实她们都误会了:丁丁既不是在骂人,也不是在记节日,而是在背口诀呀:)
哈哈……..
《比一比,谁用的单位多?》 湖塘桥中心小学三(2)班 曹可斐
早上,我从长大约2米的床上爬起来;
拿起一枝长大约6厘米的牙刷开始刷牙;
接着,拿起一块长40厘米,宽20厘米的毛巾开始洗脸。
洗漱结束后,我拿了一只重大约100克的碗盛满稀饭;
吃完后,我背着重大约2千克的书包来到学校,开始了40分钟的早读课;
两节课后,我们都站在高大约7米的国旗杆下做操。
好了,我就说这么多,你能比我说得更多更流利吗?
《称体重》 湖塘桥中心小学三(1)班 盛徐婕
今天是10月15日星期六,我和爸爸到南大街逛商场。
早上8点多钟,我们就乘车来到了南大街。正巧,站台边有一位老爷爷,他的身边有一台“会说话”的秤。
看到我走过来,老爷爷笑着说:“小朋友,称体重吗?
我有点好奇地问:“称一次要多少钱呀?”
老爷爷爽快的回答:“称一次只要1元,而且还可以量出身高呢!”
我想:这真是一举两得呀!
于是,我在秤上站稳。老爷爷把开关打开,只觉得有个软软的东西往我的头顶上一碰,随后,机器上打印出一张小长方形的纸条,上面写着:“体重:27.0公斤 身高132.5厘米”呀!这半年我长高了4厘米,可是体重呢?
这时,我记起数学课上老师说过,“千克”还有一个名字就叫“公斤”,没想到今天被我遇见了,而且我知道我的体重增加了2千克呢!
回来的路上,我好开心啊!我一定要把身体锻炼的棒棒的!
有趣的数学题
三(3) 苏逸
今天,我从书上看到一道很有意思的题目,现在介绍给小朋友.
小赵、小丁、小张分别是教师、医生和律师,只知道:(1)小赵比教师年纪大;(2)小张和教师不同岁;(3)小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗?
根据(1)小赵比教师年纪大和(3)小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据(2)小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。
这道题目很简单,我运用了排除法,比如:根据条件(1)和(3)就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。
运动中的数字 三(3) 朱 皓
11月24日,我校迎来了一年一度的运动会。
田径有24米往返跑,60米,100米,200米,400米,800米,1200米,1500米,2000米,还有垒球和跳远。我发现它们都是用时间和长度做单位计算的,输和赢都是靠数字来决定的。
运动也离不开数学呀!
<看书的收获>
今天,我看了一本书<科学的故事>,心里感到很沉重.
里面讲了一个数学家,他家很穷,但很好学,就把他送到学校里去读书,可他不认真,一直玩,一天老师找他谈话:"你吃的饭,上学所花的钱,都是你父亲辛辛苦苦的劳动成果,你现在不好好学习,对得起谁啊?"他受到了很多的启发,他想:长大了,我要当一个天文学家,文学家.
但后来,他受到了一位从日本留学回来的老师的影响,又把兴趣转到了数学上,你们知道他是谁吗?
他就是我国着名的数学家苏步青.
吸烟有害健康 爸爸每天抽一报香烟,每包香烟20支,我了解到每支香烟能使人缩短寿命3分钟,那每天就会缩短
20X3=60分钟=1小时的寿命,每年就要缩短365天X1小时=365小时的寿命.所以,我对爸爸说:"吸烟有害健康啊------."
自我介绍
Hi!大家好!我叫长方形,我的身体长得长长的,我有4条边,4个直角.
Hello!大家好!我叫正方形,我的身体长的方方的,我也有4条边,可是,我的4条边相同,我还有4个直角.
我们长的有很多相同的地方:都有4条边,对边都相等,都有4个直角;长的有点不同之处是:正方形的每条边都相等.
瞧,我们长的多漂亮啊!
长方形和正方形
生活中有许多长方形和正方形.
桌子的面是正方形,我家的床的面也是正方形,钟的面还是正方形.......
再来说说长方形,书的面是长方形,门的面是长方形,椅子的面还是长方形.....
你们瞧,长方形和正方形在我们生活中多么的常见,如果你和我一样,去观察一下周围,你会发现许多有趣的数学小知识的,不信,你试试.
周长的作用
生活中有许许多多的长方形和正方形,他们都有周长,那周长有什么作用呢?
我发现,在我们的生活中它的本领可真大.比如,我们要为长方形的花坛造个篱笆,如果不知道周长的话,工人们就需要去围一围,这样一次又一次,如果太短还得加长,如果太长,还得重来,你们看这样多浪费啊!所以只要知道周长,量一下,一次就行了,既节省时间,又节省木材,多方便啊!
如果你对周长感兴趣的话,自己也可以去生活中找找看,把它记录下来,和其他小朋友们一起分享!
各种各样的图形
我们世界上有着各种各样的图形,有三角形,正方形,长方形,圆形,梯形等等.
在日常生活中,有的图形都有着不同的特点,譬如:正方形,它的四条边都是相等的,而且它的四个角都是直角.生活中正方形的物品很多,如电视机的面,窗户的面,柜子的面.还有三角形,也有很多种,其中比较特殊的是直角三角形,就是我们的一副三角尺:我发现一个三角形,它两条边相等,一个角是直角;另一个三角形,有一条边是另一条边的一半,一个角也是直角.在日常用品中,我发现三角形的东西要比正方形,长方形的少,我在家只找到空调架子和花架是三角形的.
你们会把这些不同的图形组成什么有趣的图形吗?试试看,你会发现很有趣的.
我们家的书房
我们家的书房是长方形的,它的长有7米,宽有4米,坐南朝北呈列着.
一进门,正对着的是一张大的紫红色的书桌,它也是长方形的,大约长有2.5米,宽有1.2米,那是我爸爸的书桌,旁边还有一张小一点的长方形的书桌,大约长2米,宽1米,我妈妈经常在这看书.
另外靠着墙边有一排沙发和一个茶几,墙角是一个空调和一个饮水机和书柜,它们也都是长方形的
最后,我发现我在我们家的书房中竟然没有看到一个正方形,真奇怪!
这就是我家的书房,欢迎小朋友来我家玩!
2. 三、四年级的数学小知识或一些数学名人的资料。
古今中外数学名人介绍(国内部分)
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成着名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学着作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名着,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中着名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其着作甚多。
他着名的数学书共五种二十一卷。着有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式
在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主 任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。 曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解 析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积 分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这 一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈 代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专着《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论着作之 一。其专着《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部着作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专着和科普性着作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等着作。
三年级的数学小知识可以到下面的网站查询
3. 数学四年级小知识
少年得到北大学霸的数学培优课(四年级)(标清视频)网络网盘
链接:
若资源有问题欢迎追问~
4. 四年级数学知识要点
总:一、亿以内数的认识1.一(个),十,百、千、万……亿都是计数单位.2.每相邻两个计数单位之间有什么关系?每相邻两个计数单位的进率都是“10”.3.求近似数的方法叫“四舍五入”法.4.是“舍”还是“入”要看省略的尾数部分的最高位数是小于5还是大于5.5.表示物体个数的1,2,3,4,5,6,7,8,9,10,11,……都是自然数.一个物体也没有用0表示.0也是自然数.6.最小的自然数是0,没有最大的自然数,自然数的个数是无限的.7.每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法.二、角的度量 1.像手电简、汽车灯和太阳等射出来的光线,都可以近似地看成是射线.射线只有一个端点,可以向一端无限延伸.2.直线没有端点、可以向两端无限延伸.3.直线、射钱与线段有什么联系和区别?联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸,射线只有一个端点,长度无限,向一方无限延伸,线段有两个端点,长度有限.4.直线和射线都可以无限延伸.线段可以量出长度.5.从一点引出两条直线所组成的图形叫做角.6.角的计量单位是“度”,用符号号“°”表示.把半圆分成180等份,每一份所对的角的大小是1度,记作1°.7.锐角、钝角、直角,平角和周角之间有什么关系?直角=90度,钝角大于直角小于平角,平角=180度,周角=360度,锐角小于90度。
单元概括:
第一单元 亿以上数的认识 姓名:
一、亿以内数的读法:○1先读万级,再读个级。○2万级的数,要按照个级的读法来读,再在后面加一个“万”字。○3每级末尾不管有几个0都不读;中间有一个或连续几个0都只读一个零。 二、亿以内数的写法:○1先写万级,再写个级。○2哪一个数位上一个单位
也没有,就在哪一位上写0。○
3一定要先分级再来读数或写数。 三、比较数的大小的方法:○1位数不同时,位数多的数大。○2位数相同时,从最高位比起,哪个数最高位上的数大,这个数就大;如果最高位上的数字相同,就比较下一位上的数字,直到比较出大小为止。
四、整万数改写成用“万”作单位的数的方法;将万位后面的4个0省略,换成一个“万”字。
五、用“四舍五入”法求近似数的方法:求一个数的近似数,主要是看它的省略的尾数,如果省略的尾数最高位上的数是0、1、2、3、4,就把尾数都舍去,改写成“0”,如果省略的尾数最高位上的数是5、6、7、8、9,就把尾数省略,并向前一位进1。
六、用“四舍五入”法求近似数的关键:找准尾数的最高位,如果省略万位后面的尾数,就看千位;如果省略千位后面的尾数,就看百位;如果省略百位后面的尾数,就看十位„„
七、表示物体个数的0、1、2、3、4、5、6、7、8、9„„都是自然数,0是最小的自然数。没有最大的自然数,自然数的个数是无限的。
八、每相邻两个计数单位之间的进率是十,这种计数法叫做十进制计数法。 九、亿以上数的读法与亿以内数读法相同:先分级,从最高位读起,一级一级往下读,读亿级时按照个级读法来读,再在后面加一个“亿”字。
十、亿以上数的写法与亿以内的写法相同:先分级,从最高位写起,一级一级往下写,每一级的写法与个级的写法一样。 十一、读数和写数关键都是“先分级”。
十二、对整亿数的改写:直接省略亿位后面的8个0,再加上一个“亿”字。 十三、不是整亿数的用“四舍五入”法省略亿位后面的尾数再改写:先分级再在尾数最高位“千万位”上进行“四舍五入”,用“”写出得数,不要忘记写“亿”字。
十四、算盘上每一档代表一个数位,记数前先要确定某一档作个位,向左依次是十位、百位、千位„„。每一档的上珠代表5,下珠代表1。 十五、电子计算器操作键的功能。
符号 名称 功能 ON/C 开启键 开或消除输入的内容 OFF 关闭键 关闭 CE 消除键 只消除上一次刚输入的内容
第二单元 角的度量
一、直线、射线、线段的联系和区别
联 系 区 别 都是直的 端点个数 延长情况 长短
直线 无 可以向两端无限延长 无
射线 1 可以向一端无限延长 无
线段 2 不能向一端延长 有长短
二、从一点出发可以画无数条射线,经过一点只能画无数条直线,经过两点只能画一条直线。
三、量角器由中心点,0刻度线,内圈刻度,外圈刻度组成,在量角时注意:(1)量角器的中心点与角的顶点重合.(2)使量角器的内面0刻度(外面的0刻度)与角的一条边重合.(3)角的另一边指向哪,就根据内圈(外圈)刻度读数.(4)要注意从0刻度读起,做到“0对内读内,0对外读外”。
四、角的大小与角的两边长短无关与两边叉开的大小有关,角的两边叉开越大角就越大.
五、小于900的角叫锐角,大于900而小于1800
的角叫钝角.
六、1平角1800
=2直角
1周角=3600
=2平角=4直角
七、锐角<直角<钝角<平角<周角
八、画指定度数的角,注意做到两重合:量角器的中心点与顶点重合;0刻度线与所画的角的一条边重合;还要看准度数,“0对内读内,0对外读外”所画的边对应的0刻度在内圈,就看内圈的刻度。
第三单元 三位数乘两位数
一、口算整数或整千数乘一位数,都可以先把0前面的数相乘,再在积的末尾添上相应个数的0。
二、三位数乘两位数的笔算方法,先用两位数个位上的数去乘三位数,得数的末位与两位数的个位对齐,再用两位数十位上的数去乘三位数得数末位和两位数的十位对齐,然后把两次乘的结果加起来。
三、因数末尾有0的简便算法:先把0前面的数相乘,再看两个因数末尾一共有几个0,则在积的末尾添写几个0。
四、速度是指单位时间内所走的路程。其表示方法是所行路程/时间单位。如:120千米/时,50米/分,计算方法是用路程÷时间=速度。
五、路程=时间×速度 速度=路程÷时间 时间=路程÷速度
六、积的变化规律:两数相乘,一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几(0除外)。乘法估算必须符合两个要求:一是接近准确值(符合实际);二是计算方便。
七、乘法估算通常情况下是按照“四舍五入”法来估算,即把两个因数看成是整十、整百或几百几十的数;但有时也要根据实际情况来分析,如估钱够不够要往大估。
第四单元 平行四边形和梯形
1、在同一平面内不相交的两条直线叫做平行线,它们的关系叫做互相平行。如果两条直线相交成直角,这两条直线互相平行,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
2、平行线的要点有:(1)在同一平面;(2)永不相交;(3)两条直线。 3、平行线的基本性质:(1)经过直线外一点有并且只有一条直线与已知直线平行。(2)与一条直线距离相等的平行线可以画两条,如与已知直线相距5厘米的平行线有上和下各一条。(3)在同一平面内,如果两条直线与另一条直线平行,哪么这两条直线也一定互相平行。
4、垂线的基本性质:(1)经过直线外一点,有并且只有一条直线与已知直线平行;(2)从直线外一点到这条直线的所有线段中,与直线垂直的线段最短;(3)在同一平面内,如果两条直线 与另一条直线垂直,哪么这两条直线一定互相平行。 5、两条直线在同一平面内的关系有:(1)平行:不相交的两条直线;(2)相交:相交成直角就是垂直。
6、用三角板和直尺来画平行线的方法:○1放三角尺,○2靠直尺,○3沿着直尺边推三角尺,○4画平行线。(总结为一放、二靠、三推、四画)
7、两组对边分别平行的四边形叫做平行四边形;只有一组对边平行的四边形叫做梯形。 8、平行四边形的特征:(1)两组对边平行且相等;(2)四个内角的和等于360度;(3)相对的角相等;(4)相邻的角互补。梯形的特征:(1)只有一组对边平行但不相等;(2)四个内角的和也等于360度;(3)最少有一个锐角和一个钝角。
9、平行四边形具有不稳定性,也就是说长方形可以拉成平形四边形,平行四边形可以变成长方形。长方形拉成平行四边形后,周长不变,高变小,面积会变小。 10、平行四边形和梯形的高都有无数条。
11、平行四边形和梯形高的画法,相当于过直线外一点画已知直线的垂线。梯形的高只能从相互平行的两条边中任一边上的一点向它的对边画垂线,而不能在梯形的腰上画高。 12、从平行四边形一条边上的任意一点,到对边引一条垂线,这点到垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。两腰相等的梯形叫做等腰梯形。 13、从组合图形中数平行四边形或梯形的个数,也要按从小到大的顺序来数,先给每个最小的图标出序号,然后一个个的数,两个两个数,再三个三个数„„以此类推。 14、所有的四边形的内角和都等于360度。三角形的内角和都等于180度。
第五单元 除数是两位数的除法
16、除数是两位数的口算除法,可以用想乘法算除法和表内除法计算的方法进行口算。 17、除法估算一般是把算式中不上整十的数用“四舍五入”法估算成整十数,再进行口算。 18、除数是两位数的除法,要先看被除数的前两位,如果前两位不够商1,就看前三位数,除到被除数的哪一位,商就写在哪一位的上面,余数一定要比除数小。
19、如果除数是一个接近整十数两位数,就用“四舍五入”法把除数看作与它接近整十数的两位数的笔算除法,既可以按照“四舍五入”法试商,也可以把除数看作和它接近的几十五,再利用一位数乘法直接确定商。
20、判定商是几位数,先看被除数与除数的前几位(取决于除数是几位数), 如果除数是两位数,就先看被除数的前两位。
注意:每一步商的位置要正确,每求出一位商,余下的数必须比除数小。 21、当除数不变时商与被除数变化正好相同。(0除外) 当被除数不变时,商与除数的变化正好相反。(0除外)
当除数与被除数同时乘(或除以)相同的数时,商不变。 22、总数量=每份数×份数 每份数=总数量÷份数
份数=总数量÷每份数
23、总价=单价×数量 单价=总价÷数量 数量=竞价÷单价 24、被除数=商×除数+余数 商=(被除数-余数)÷除数 除数=(被除数-余数)÷商
25、除数不接近整十数时可看作个位是5的数来试商。
15×2=30 15×3=45 15×4=60 15×5=75 15×6=90 15×7=105 15×8=120 15×9=135
25×2=50 25×3=75 25×4=100 25×5=125
5. 四年级数学手抄报小知识
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的“从一加到一百”,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的“二次互逆定理”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (几个不同“费马质数”的乘积),k = 0,1,2,…
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为“代数学基本定理”(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。
这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍“同余”(Congruent)的概念。“二次互逆定理”也在其中。
二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为“谷神星”(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。
高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法” (Method of Least Square)。
1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。
1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。
1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。
1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的“微分几何”。
在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。
1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。
1835年高斯在天文台里设立磁观测站,并且组织“磁协会”发表研究结果,引起世界广大地区对地磁作研究和测量。
高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。
1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。
高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:“宁可发表少,但发表的东西是成熟的成果。”许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:
to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。
早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。
美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:
在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡梦中安详的去世了......
1客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
答案:10秒.
2 计算1234+2341+3412+4123=?
答案:11110
3 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同余方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 请问数2206525321能否被7 11 13 整除?
答案:能
7现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
答案:一分币51`枚.二分币32枚.5分币17枚.
8 找规律填数:
0 , 3,8,15,24,35,___,63 答案: 48
9 100条直线最多能把平面分为几个部分?
答案:5051
10 A B两人向大洋前进,每人备有12天食物,他们最多探险___天
答案:8天
11 100以内所有能被2或3或5或7整除的自然数个数
答案:78个
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 从1,2,3,......2003,2004这些数中最多可取几个数,让任意两数差不等于9?
答案:1005
14 求360的全部约数个数. 答案: 24
15 停车场上,有24辆车,汽车四轮,摩托车3轮,共86个轮.三轮摩托车____辆. 答案:10辆.
16 约数共有8个的最小自然数为____. 答案:24
17求所有除4余一的两位数和 答案;1210
6. 四年级有趣的数学知识。
探索与发现(-)(有趣的算式)
知识点:
第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)
第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)
第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。
第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。
总结:本文介绍的是“四年级数学知识点:有趣的算式”,数学的学习也是非常有意思的,相信大家都能学好数学。
7. 四年级数学的知识重点有哪些
第一单元【大数的认识】
1、亿以内数的认识:
10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
2、亿以内数的读法:
小结:①、从高位数读起,一级一级往下读。
②、万级的数要按照个级的数的读法来读,再在后面加一个万字。
③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。
3、亿以内数的写法:
小结:①、从高级写起,一级一级往下写。
②、当哪一位上一个计数单位也没有,就在哪一位上写0 。
4、比较亿以内数的大小:
小结:①、位数多的时候,这个数就比较大。
②、当这两个数位数相同的时候,我们就应该从左起的第一位比起,也就是从最高位开始比,哪
个数最高位上的数大,这个数就大。
③、如果碰到最高位上的数相同的时候,就再比下一位,以此类推,直到我们比较出相同的数位上的那个数,哪个数大的时候,我们就可以断定这个数比较大。
5、“万”做单位的数:
小结:有时候,为了读写方便,我们把整万的数改写成有“万”做单位的数。
6、求近似数:
小结:这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于
5 还是等于或大于5 。
7、表示物体个数:1 2 3 4 5 6 ……. 自然数
一个物体也没有:用0来表示。 0也是自然数。
最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
1
8、十进制计数法:每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
9、亿以上数的读法:
小结:亿以上的数也是从高位读起,一级一级往下读,级末尾的0不读,中间连续有几个0都只读一个0
10、亿以上数的写法:
小结:1、从高级写起,一级一级地往下写。2 、当哪一位上一个计数单位也没有,就在哪一位上写0。 11、“万”做单位的数:
小结:省略亿后面的尾数,改写成用亿作单位的数,就要看千万位进行四舍五入。
12、计算工具的认识:算盘,计算器
13、1亿有多大? 100张纸的厚度是1厘米,一亿=一百万个100, 1厘米×一百万=1000000厘米=1万米
第二单元【角的度量】
1、直线、射线、角
小结:没有端点,可以向两端无限延伸,这种线叫直角。
只有一个端点,向一端无限延伸,这种线叫射线。
直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端,点。
2、角大小的比较:
2
角的计量单位是“度”,用符号“ °”表示。把半圆平分成180 等份,每一份所对的角的大小是l 度。记做1°
角的大小与角的两边画出的长短没关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。
3、角的分类:
锐角<90°, 直角=90°,90°<钝角<180°,平角=180°=2个直角,周角=360°=2个平角=4个平角
4、画角步骤:
①画一条射线,使量角器的中心和封线的端点重合,0 刻度线和射线重合。
②在量角器65°刻度线的地方点一个点。
③以画出的射线的端点为端点,通过刚画的点,再画一条射线。
第三单元 【三位数乘两位数】
1、口算乘法:
2、笔算乘法1:
3、笔算乘法2:
3
4、笔算乘法3:
5、行程问题:
小结:在上面的例题中,特快列车每小时行的路程叫做速度,可以写成160千米/时。普通列车的速度可以写成106千米/时。
“小林步行的速度是60米/分,就是说小林每分钟走60米。” 速度、时间与所行的路程之间的关系:速度×时间=路程
6、积的变化规律:
小结:一个因数不变,另一个因数扩大或缩小若干倍,积也扩大或缩小相同的倍数。
7、乘法估算:
4
第四单元 【平行四边形和梯形】
1、垂直与平行:
互相平行。
图一:“直线A和直线B是平行线;直线A的平行线是直线B”
②如果两条直线相交成直角,就说这两条直线互相垂直
,其中一条直线叫做另一条直线的垂
图二:“直线A和直线B相互垂直;直线A是直线B的垂线;点C是垂足。”
2、画垂线:
①
例一:过直线上一点画这条直线的垂线方法?
答:把三角尺的一条直角边靠近直线,
三角尺上的直角顶点靠近直线上的点, 然后用
笔沿另一条直角边画出直线就可以了。
②
例二:过直线外一点画这条直线的垂线方法?
答:把三角尺的一条直角边靠近直线,三角尺上的另一条边靠近直线外的点,然后用笔
沿这条边画直线就可以了。
③ 例三:把直线外一点A与直线上任意一点连接,所画线段哪个最短?
小结:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。 即“点A到直线所画的垂直线段最短;点A
到这条直线的距离是10厘米”
8. 四年级数学小知识
0.618 黄金比
圆周率 3.141592657....
黄金分割 1.618
勾股定理 3*3+4*4=5*5
黄金比
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"斐波那契数列",这些数被称为"菲斐波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列 1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论着。
9. 小学四年级生活中的数学知识
1、加法:把两个数合并成一个数的运算.
2、减法:已知两个数的和与其中一个加数,求另一个加数的运算.
3、乘法:求相同加数和的简便计算.
4、除法:已知两个因数的积和其中一个因数,求另一个因数的运算.
小数四则运算的运算顺序和整数四则运算顺序相同.
分数四则运算的运算顺序和整数四则运算顺序相同.
10. 四年级数学小知识20字
小数点向右移动,原数扩大10倍;小数点向左移动,原数缩小10倍。
补充:
小数的乘法:先不管小数点,直接做乘法,然后将得到的数的小数点向左平移两个相乘的数小数位之和。
小数点后依次为:十分位,百分位,千分位……题目要求你保留到某位时注意下一位的四舍五入
小数的除法:将两个数同时扩大若干倍使其为整数,然后做除法