1. 八年级上册语文 数学 英语 物理复习提纲 人教版
八年级上册物理第一章 物体的运动
一、科学之旅:
1、物理学的研究对象:声、光、热、电、力。
2、物理学的性质:以观察和实验为基础的学科。
3、初识探究:伽俐略对摆动的探究。(探究过程、探究结论)
二、运动的描述:
1、普遍现象:运动是绝对的。
2、机械运动:物体位置的变化
3、参照物:在研究物体是运动还是静止时被选作标准的物体。
4、运动和静止的相对性:运动和静止的描述是相对参照物而言的,参照物可任意选择。与生活中运动和静止的概念有所不同。生活中一般是默认地面做参照物。 三、速度:
1、物理意义:速度是表示物体运动快慢的物理量。(比较物体运动快慢的两种方法)
2、定义:速度等于物体在单位时间内通过的路程。(单位时间、时间单位;意义、定义的区别)
3、公式:(1)公式和变形公式 (2)应用题解题要求和方法
4、单位:m/s 和km/h 他们之间的关系和换算。
5、运动的分类:匀速和变速 直线和曲线
6、测量:
(1)长度测量:工具、单位、方法
(2)时间测量:单位、工具
(3)误差:误差的定义、减小误差的方法、误差与错误的区别
(4)速度的测量:实践性实验课:提出问题、设计实验、表格设计、数据分析
第二章 声现象
一、声音三环节:
1、声音的产生:发声体的振动(振动也震动、运动与有所区分)
2、声音的传播:介质、声波、声速、回声
3、听觉的产生:两条路径――空气传声和骨传声
二、乐音三特征:
1、音调:(1)声音的高低;(2)是由频率决定的,什么是频率?(3)声音可分为:超声、次声和可听声。
2、响度:(1)声音的强弱(2)声音的响度是由振幅决定的。(距离发声体的远近)
3、音色:(1)未见其人,先闻其声 (2)与发声体的材料结构有关。
三、声音二种类:
1、乐音:发音体做有规则振动时发出的声音。
2、噪声:(1)定义:从物理角度和环保角度分别给出定义。(2)等级划分:DB(3)危害(3)防止噪声危害的途径。
四、声音二利用:
1、传递信息:会举例
2、传递能量:会举例
第三章 光现象
一、光的三条规律: (一)光的直线传播规律:
1、光源:定义、人造光源、自然光源。
2、光沿直线传播的条件:同种均匀介质中
3、光沿直线传播的应用:激光准直、影子的形成、小孔成像、日食月食、排队等。
4、光线:箭头――传播方向;直线――光沿直线传播
5、光速:(1)真空中的光速是宇宙中最快的速度。(2)光在真空和空气中的速度为多少?(3)光在玻璃和水中的速度分别为多少?
6、光年:光在一年内通过的距离。
(二)光的反射规律:
1、反射现象和定义:回到原介质
2、反射光路图:(1)各部分名称(2)会做光路图
3、反射定律:(1)三线共面(2)两线分居(3)两角相等
4、、可逆性:在反射现象中,光路是可逆的。(从镜中看到别人眼睛的问题)
5、镜面反射和漫反射:(1)定义(2)都遵守反射定律(3)月光积水问题
(三)光的折射规律:
1、折射现象:从一种介质进入另一种介质
2、折射定义:光从一种介质斜射入另一种介质时,传播方向发生偏折,这种现象叫做光的折射。
3、偏折规律:空气进入其他:折射光线靠近法线;其他进入空气:折射光线远离法线。
4、折射定律:(1)三线共面(2)两线分居(3)两角相等(4)两角变化(5)垂直入射
5、可逆性:在折射现象中光路是可逆的。
6、解释:碗底变浅,筷子变弯,从水中看陆上,从陆上看水中,海市蜃楼,早见太阳。
二、光的应用:
(一)平面镜:
1、成像规律:等大、等距、连线垂直
2、物相关系:上下方向相同,左右方向相反
3、成像性质:正立的、等大的虚像。
4、成像原理:反射光线的反向延长线的交战组成的。
5、反射镜:(1)包括平面镜和球面镜 (2)凸面镜和凹面镜对光线的作用。
1、色散和光谱:
2、红外线:(1)定义:在光谱的红端以外,有一种我们看不到的光,叫红外线。(2)作用:三条。
3、紫外线:(1)定义:在光谱的紫端以外,有一种我们看不到的光,叫紫外线。(2)作用:三条(3)危害。
第四章 透镜及其应用
一、认识透镜
名称 名词 构造 对光线的作用 应用
凸透镜 主光轴 光心焦点 焦距 中间厚边缘薄 会聚作用 远视镜
凹透镜 中间薄边缘厚 发散作用 近视镜
二、凸透镜成像规律
物距 像的性质 像距 应用
U>2f 倒立的、缩小的实像 2f>v>f 照相机
U=2f 倒立的、等大的实像 U=2f 判断焦距
2f>u>f 倒立的、放大的实像 U>2f 投影仪
U=f 不成像 无 得平行光
U<f 正立的、放大的虚像 无 放大镜
三、凸透镜的应用:
(一)眼睛和眼镜
1、物体――角膜和晶状体(凸透镜)――视网膜(倒立缩小的实像)
2、睫状体――晶状体的厚度――改变焦距――远近物体都能在视网膜上成清晰的像
(二)显微镜和望远镜
1、 显微镜:物体――放大的实像(物镜)――放大的虚像(目镜)
2、 望远镜:物体――缩小的实像(物镜)――放大的虚像(目镜)
四、光现象小结
现象 规律 应用
直线传播 影子形成日食、月食 同种、均匀介质中沿直线传播 激光准直小孔成像 光的反射 人们能看到本身不发光的物体 1、三线共面2、两线分居3、两角相等 反射镜:平面镜球面镜
光的折射 筷子变弯碗底变浅 1、前提 2、三线共面3、两线分居 4、两角关系5、角的变化 6、垂直入射 折射镜:凸透镜凹透镜
第五章 质量和密度
一、 列表对质量和密度的知识进行归类记忆:
二、其他几个重要知识点:
1、天平的使用:
(1)观察:秤量和感量(A、秤量:砝码盒中所有砝码的总质量加上标尺上的最大示数。B、感量:标尺上相邻两刻度线之间所表示的质量)。
(2)调节:将天平放在水平台;将游码放在标尺左端的零刻线处;调节横梁两端的平衡螺母(左沉右调,右沉左调),使天平横梁平衡(天平平衡的标志:A、横梁静止时,指针指在分度盘的中线处;B、指针在分度盘中线两侧左右摆动的幅度相等)。
(3)使用:把物体放在左盘里,用镊子向右盘中加减砝码(先大后小),并调节标尺上的游码,直至天平再次平衡。
(4)读数:右盘中砝码的总质量,加上标尺上游码所对的刻度(标尺示数以游码左端所对刻线为准)。
(5)注意:A、潮湿物体和化学药品不能直接放到天平盘中测量。
B、用镊子夹取砝码。
C、认准秤量和感量。
D、左物右码。(如果误将被测物体和砝码放错位置,可用砝码质量减游码所对刻度来计算物体的质量。)
E、调节平衡的天平移动位置后使用,仍要调节横梁平衡,不能直接使用。
F、在衡量过程不能再移动平衡螺母;
G、调节平衡的天平左右两盘不能互换。
2、几个常用的密度值:水的密度如无特殊说明可当作常数来运用。其他的几个重要密度最好也记下来,如铜、铁、铝,水银、酒精、煤油等。
3、密度的计算:ρ=m/v,m=ρv,v=m/ρ。
4、密度的测量:(1)测量液体密度的标准方法。(2)测量过程中要本着尽量减小误差的原则进行。
5、密度与社会生活:
(1)温度能够改变物质的密度,是因为物体有热胀冷缩的性质。比如空气受热膨胀可形成风。水具有反常膨胀的特点。以4℃为界,无论升温还是降温均膨胀,体积增大。
(2)密度与物质鉴别。密度可以用来鉴别物质;但是有些不同物质密度不同,所以其鉴别存在局限性;在新材料的开发过程中,材料的密度仍然是科学家研究的核心问题之一。
语文
杜甫诗三首 (望岳 春望 石壕吏 )
诗四首 归园田居 (陶渊明)
使至塞上 (王 维)
渡荆门送别 (李 白)
登岳阳楼 (陈与义)
课外古诗词 长歌行 (少壮不努力)
(汉乐府)
早寒江上有怀 (孟浩然)
野望 (王 绩)
送友人 (李 白)
黄鹤楼 (崔 颢)
秋词 (刘禹锡)
鲁山山行 (梅尧臣)
浣溪沙 (苏 轼)
十一月四日风雨大作 (陆 游)
望洞庭湖赠张丞相 (孟浩然)
文言文重点:要求:会重点实词的解释,尤其注意通假字和一词多意现象;会一些名句的翻译;会在整体把握课文的基础上,回答一些重点问题
桃花源记 (陶渊明)
短文两篇 陋室铭 (刘禹锡)
爱莲说 (周敦颐)
三峡 (郦道元)
短文两篇 答谢中书书 (陶弘景)
记承天寺夜游 (苏 轼)
现代文重点:要求:在整体把握课文的基础上,会就一些重点文段回答一些重点问题;会记叙文、说明文、小说的一些知识点和考点
新闻两则 人民解放军百万大军横渡长江(毛泽东)
(新闻知识点)
芦花荡(孙犁)
(环境描写的作用,人物描写对人物性格塑造的作用)
阿长与《山海经》
(鲁迅)(写作手法,人物描写对人物性格塑造的作用以及人物形象性格分析;作者的感情态度)
背影(朱自清)
(写作顺序,人物描写对人物性格塑造的作用,重点分析父亲动作、语言和外貌描写;作者的心理活动反应出的作者的感情变化)
五篇说明文重点掌握说明文的顺序,说明方法及作用;语言的特点——
中国石拱桥 (茅以升)
苏州园林 (叶圣陶)
故宫博物院 (黄传惕)
大自然的语言 (竺可桢)
奇妙的克隆 (谈家桢)
名着导读(要求:1、背熟作者、主人公姓名;2、每本书至少掌握3个以上经典故事情节;3、对人物性格的把握和评价4、这本书的主要内容和特色等)
《朝花夕拾》《骆驼祥子》《钢铁是怎样炼成的》
其他
1——4单元的重点字词
自渎文言文中要求掌握的重点词语翻译
课文(老师讲过的审题、立意、选材、如何写出文学语言的方法;一些素材的准备)
数学
第一章一元一次不等式和一元一次不等式组;第二章分解因式;第三章分式;第四章相似图形;第五章数据的收集与处理;第六章证明(一).复习时,要对所学的重点知识熟练掌握.
本册书应重点掌握的知识点有:1.会解一元一次不等式(组),会列一元一次不等式(组),解决简单的实际问题;2.了解分解因式的意义,会用提公因式法、平方差公式和完全平方差公式分解因式;3.了解分式、分式方程的概念,熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会解可化为一元一次方程的分式方程,会检验分式方程的根,能解决一些与分式、分式方程有关的实际问题.4.了解线段的比、成比例线段、黄金分割,知道相似三角形的对应角相等、对应边成比例,周长的比等于相似比、面积的比等于相似比的平方,掌握两个三角形相似的条件;5.了解总体、个体、样本等概念,理解频数、频率等概念,了解频数分布直方图的意义和作用,会画相应的频数分布图,掌握极差、方差和标准差的概念,会计算一组数据的极差、方差和标准差;6.了解定义、命题、定理的含义,会区分命题的条件和结论,知道反例的意义和作用,初步掌握证明的格式,会证明两直线平行的有关判定定理和性质定理、三角形内角和定理及其推论.
附:
一次函数的图象和性质
一、知识要点:
1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:
(2)增减性:
k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
英语
Unit One
1. How often do you exercise ? → How often + 助动词do(does或did) + 主语 + do sth. ? 疑问词how often是问频率(多经常), 在这里助动词do(does或did) 是起帮助构成疑问的作用
Every day / Once a week / Twice a month / Three times a month / Three or four times a month .
2. What do you usually do on weekends ? 第一个do 为助动词, 在这起帮助构成疑问的作用;而第二个 do 则是实义动词。 I usually play soccer .
3. What’s your favorite program ? It’s Animal World .
4. What do students do at Green High School ? 第一个do 为助动词, 在这起帮助构成疑问的作用;而第二个 do 则是实义动词。
5. As for homework , most students do homework every day . as for...意思是“至于;关于”,常用于句首作状语,其后跟名词、代词或动词的-ing形式(即动名词)。如:
As for him,I never want to see him here. 至于他,我永远不希望在这里见到。
As for the story,you'd better not believe it. 关于那故事,你最好不要相信。
6. The results for “ watch TV ” are interesting .
7. Mom wants me to get up at 6:00 and play ping-pong with her . → want to do sth.意思是“想要做某事”;want sb. to do sth.意思是“想要某人做某事”。如:
Do you want to go to the movies with me?你想和我一起去看电影吗?
The teacher doesn't want us to eat hamburgers.老师不想让我们吃汉堡包。
8. She says it’s good for my health . → be good for...表示“对……有益(有好处)”。其反义为:be bad for...。(这里for 是介词,后跟名词、代词或动名词)如:
It's good for us to do more reading. 多读书对我们有好处。
Reading in bed is bad for your eyes.在床上读书对你的眼睛有害。
9. How many hours do you sleep every night ?
10. I exercise every day , usually when I come home from school .
11. My eating habits are pretty good . 这里pretty相当于very 。
12. I try to eat a lot of vegetables , usually ten to eleven times a week . → try to do sth.表示“ 尽力做某事 ” ,不包含是否成功的意思 / try doing sth. 表示“ (用某一办法)试着去做某事”。 如:You’d better try doing the experiment in another way. 你最好试试用另一种方法做这个试验。
13. My healthy lifestyle helps me get good grades . → help sb.(to) do sth.帮助某人做某事
14. Good food and exercise help me to study better . → help sb. (to) do sth.帮助某人做某事 / 这里better是well的比较级,而不是good的比较级
15. Is her lifestyle the same as yours or different ? =Is her lifestyle the same as your lifestyle or is her lifestyle different from your lifestyle ? → be the same as … / be different from …
16. I think I’m kind of unhealthy . kind of = a little / a kind of 意思是“一种”
17. What sports do you play ?
18. A lot of vegetables help you to keep in good health . keep in good health = keep healthy = stay healthy
19. You must try to eat less meat . → try to do sth. 表示“ 尽力做某事 ” , 不包含是否成功的意思 / less是little的比较级
20. That sounds interesting. 这是“主语+系动词+表语”结构的简单句。sound(听起来),look(看起来),smell(闻起来),taste(尝起来),feel(觉得),seem(好象),grow(变得) , get(变得)等词在英语中可用作系动词,后跟形容词作表语。如:
It tastes good. 这味道好。
The music sounds very sweet. 这音乐听起来很入耳。
The smoke grew heavier and heavier. 烟雾变得越来越浓了。
Unit Two
1. What’s the matter ? What’s the mater with you ? with为介词,后跟名词、代词或动名词。人称代词必须用它的宾格。
I have a cold / have a sore back / have a stomachache
2. You should lie down and rest / drink hot tea with honey / see a dentist / see a doctor .
3. I’m not felling well . 这里well表示身体状况,不能用good代替
4. When did it start ? About two days ago .
5. That’s too bad .
6. I hope you fell better soon . 这里better是well的比较级
7. Traditional Chinese doctors believe we need a balance of yin and yang to be healthy . 这里 to be healthy是动词不定式短语,作目的状语
8. Maybe you have too much yin . too much后跟不可数名词,而too many后跟可数名词复数
9. It’s easy to have a healthy lifestyle ,and it’s important to eat a balanced diet . → It’s easy to do sth . 做某事容易 / It’s important to do sth . 做某事重要
10. Everyone gets tired sometimes . 这里get连系动词,tired是形容词作表语,属系表结构
11. A sore throat can give you a fever . → give sb. sth . = give sth. to sb. 把某物给某人
12. Don’t get stressed out. It’s not healthy . 在这里get是连系动词,stressed out是表语
13. I have a toothache . I need to see a dentist . → need意思为 “需要” ,作实义动词时,后跟动词不定式,否定式为don’t /doesn’t / didn’t need (to do sth.) ;作情态动词时,只能用于否定句或疑问句中,否定式为needn’t(do sth.) ,除有过去式外,没有其它的形态变化
14. Eat a balanced diet to stay healthy . to stay healthy是动词不定式短语,作目的状语
15. I’m not feeling very well at the moment . at the moment = now
Unit Three
1. What are you doing for vacation ? I’m babysitting my sister .
Where are you going for vacation ? Italy .
这是现在进行时的一种比较特殊的用法,用来表示按计划或安排要做的事情,现在还没有去做。
2. Who are you going with ? I’m going with my parents . with my parents是介词短语,在这里作伴随状语,起修饰谓语动词are going的作用
3. When are you going ? I’m going on Monday .
4. What are you doing there ? I’m going hiking in the mountains .
5. How long are you staying ? Just for four days . I don’t like going away for too long .疑问词hwo long是对时间长短或事物的长度提问,在这里是对时间的长短进行提问。
6. Have a good time . = Enjoy oneself . 玩得开心、愉快
7. Show me your photos when we get back to school . → show sb. sth. = show sth. to sb. 把某给某人看
8. I’m going to Hawaii for vacation . for vacation是介词短语,在这里作目的状语,起修饰谓语动词的作用
9. What’s it like there ? 这里like是介词,而不是动词
10. Can I ask you some questions about your vacation plans ? → ask sb. sth . 问某人某事
11. Ben Lambert , the famous French singer , is taking a long vacation this summer ! → take a vacation 度假
12. He thought about going to Greece or Spain , but decided on Canada . → think about 考虑 / decide on 决定 这里的about和on都是介词
13. “ I always take vacation in Europe ,” he said . “ This time I want to do something different .” → (1). want to do sth. (2). 修饰不定代词(something , nothing , anything等)的定语常放在不定代词的后面
14. He plans to have a very relaxing vacation . → plan to do sth. 计划做某事
15. I’m planning to spend time in the beautiful countryside .
16. I just finished making my last movies . → finish doing sth. 完成做某事
17. I hear that Thailand is a good place to go sightseeing . to go sightseeing是动词不定式短语,作a good place的后置定语
18. She’s leaving for Hong Kong on Tuesday . → leave A for B 离开A地去B地
19. I want to ask you about places to visit China . to visit China是动词不定式短语,作places的后置定语
20. I’m planning my vacation to Italy this weekend . to Italy是动词不定式短语,作my vacation的后置定语
21. What should tourists take with them ? with them是介词短语,在这里作伴随状语,起修饰谓语动词take的作用
22. Where are you leaving from ? leave from 离开某地(注:from是介词)
Unit Four
1. How do you get to school ? 疑问词how 在这里是对方式进行提问
I ride my bike / walk / take the subway . By bike / bicycle / bus / train / subway / taxi / air / plane / ship / boat . On foot .
How do I get there ? 因there是副词,所以不能说get to there Don’t worry . Let me look at your map . Ok , first … , next … . Then … .
2. How long does it take ? 疑问词hwo long是对时间长短或事物的长度提问
It takes about 25 minutes to walk and 10 minutes by bus .
How long does t take you to get from home to school ?
It takes twenty-five minutes . → take sb. some time to do sth. 花费某人……时间做某事
3. Lin Fei’s home is about Kilometers from school .
4. How far is it from your home to school ? It’s three miles .
How far do you live from school ? I live 10 miles from school .
疑问词how far在这里是对距离进行提问
5. In other parts of the world , things are different .
6. In China , it depends on where you are . → depend on 视……而定;决定于
7. That must be a lot more fun than taking a bus .
8. In North America , not all students take the bus to school . not all是部分否定,意思是并不是所有的;不是全部的
9. Other parts of the world are different from the United States .
10. A small number of students take the subway . → a number of = many 许多
11. What do you think of the transportation in your town ? → think of 对……有某种看法
12. When it rains I take a taxi .
13. I have a map but in Chinese .
14. If you have a problem , you can ask a policeman .
Unit Five
1. Can you come to my party ?
Sure , I’d love(like) to . / I’m sorry , I can’t . I have to help my parents .
Can you play tennis with me ?
情态动词can在这里起征求对方意见的作用。
2. I have too much homework this weekend . too much后跟不可数名词;too many后跟可数名词复数
3. That’s too bad .
4. Maybe another time .
5. Thanks for asking . for介词,后跟名词,代词或动名词
6. Come and have fun . / Come and join us .
7. On Wednesday , I’m playing tennis with the school team .
8. I have to study for my science test on Thursday . have to强调客观原因;而must强调主观原因
9. Please keep quiet ! I’m trying to study . → try to do sth. 表示“ 尽力做某事 ” , 不包含是否成功的意思
10. Do you want to come to my birthday party ? → want to do sth.意思是“想要做某事”
11. Li Lei is going fishing with grandpa the whole day . the whole day = all day 整天
12. Can you come over to my house ?
13. I’m free till 22:00 .
2. 八年级数学上知识点归纳
有智慧的人未必先天就很聪明,反而更多的是通过后天毕生的努力。只要勤奋努力学习八年级数学知识点,希望就在面前。我整理了关于八年级数学上知识点归纳,希望对大家有帮助!
八年级数学上知识点归纳第11-12章
第十一章 全等三角形
知识概念
1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章 轴对称
知识概念
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
八年级数学上知识点归纳第13-14章
第十三章 实数
1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。
第十四章 一次函数
知识概念
1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
4.已知两点坐标求函数解析式:待定系数法
一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。
八年级数学上知识点归纳第15章
第十五章 整式的乘除与分解因式
1.同底数幂的乘法法则: (m,n都是正数)
2.. 幂的乘方法则:(m,n都是正数)
3. 整式的乘法
(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3).多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:
5.完全平方公式:
6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的.
④运算要注意运算顺序.
7.整式的除法
单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法
分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。
3. 八年级上册人教版:语文数学英语物理政治地理历史生物复习提纲!急用啊!我只要重点!全一点!
(1)19世纪60至70年代英国、俄国想夺取新疆1865年,阿古伯率军侵入新疆,1871
4. 初二上学期数学所有知识点归纳
初二数学知识点
第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。
第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法
初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差
5. 八年级数学重要知识点
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二下册数学知识点归纳北师大版
第一章分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
初二数学下册知识点归纳
【直角三角形】
◆备考兵法
1.正确区分勾股定理与其逆定理,掌握常用的勾股数.
2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.
3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.
4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.
5.折叠问题是新中考 热点 之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间 想象力 ,注意折叠过程中,线段,角发生的变化,寻找破题思路.
【三角形的重心】
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1.重心和三角形3个顶点组成的3个三角形面积相等。
2.重心到三角形3个顶点距离的平方和最小。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3
4重心到顶点的距离与重心到对边中点的距离之比为2:1。
5.重心是三角形内到三边距离之积的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
初二数学 学习 经验 心得
学好初中数学课前要预习
初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。
初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。
2学习初中数学课上是关键
初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,提醒大家,初中数学课上的时候尽量不要记笔记。
你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。
3课后可以适当做一些初中数学基础题
在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。
但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并 总结 ,
数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.
八年级数学重要知识点相关 文章 :
★ 八年级数学知识点整理归纳
★ 八年级数学知识点整理
★ 初二数学上册知识点总结
★ 八年级数学知识点归纳
★ 八年级数学知识点归纳总结
★ 初二数学知识点总结
★ 八年级数学知识点总结
★ 八年级数学知识点总结归纳
★ 初二数学知识点复习整理
6. 八年级上册数学一单元知识点
八年级是一个至关重要的学年,大家一定认真复习,接下来看看数学网为大家推荐的人教版八年级上册数学一单元知识点,会有很大的收获哦!
一、定义
1、全等形:形状大小相同,能完全重合的两个图形。
2、全等三角形:能够完全重合的两个三角形。
二、重点
1、平移,翻折,旋转前后的图形全等。
2、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。
3、全等三角形的判定:
SSS三边对应相等的两个三角形全等[边边边]。
SAS两边和它们的夹角对应相等的两个三角形全等[边角边]。
ASA两角和它们的夹边对应相等的两个三角形全等[角边角]。
AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]。
HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]。
4、角平分线的性质:角的平分线上的点到角的两边的距离相等。
5、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
拓展: 八年级上册数学第一单元知识点
一、勾股定理
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。
a2+b2=c2
2221、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。
2222、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股数)。利用勾股数可以构造直角三角形。
二、平方根
1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。
2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。
3、求一个数a的平方根的运算,叫做开平方。
4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。
三、立方根
1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。
2、求一个数a的立方根的运算,叫做开立方。
3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。
四、实数
1、无限不循环小数称为无理数。
2、有理数和无理数统称为实数。
3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。
五、近似数与有效数字
1、例如,本册数学课本约有100千字,这里100是一个近似似数。
2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
怎么样才能打好初二数学基础
第一,重视初二数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对初二数学概念的`理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,初二学生缺乏对概念的理解。
还有一部分初二同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?
第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么初二的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初二数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初二学生不会做到这一点那么久而久之,不会的数学题目还是不会。
7. 八年级上册数学第一章知识点
因式分解
1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的公约数?相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+ b)(a- b);
(2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的.最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:
(1)换位整理,加括号或去括号整理;
(2)提负号;
(3)全变号;
(4)换元;
(5)配方;
(6)把相同的式子看作整体;
(7)灵活分组;
(8)提取分数系数;
(9)展开部分括号或全部括号;
(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式? ”.
分式
1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.
2.有理式:整式与分式统称有理式;即.
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则:.
8.分式的乘方:.
9.负整指数计算法则:
(1)公式:a0=1(a≠0), a-n= (a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式:,;
(4)公式:(-1)-2=1,(-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.
12.同分母与异分母的分式加减法法则:.
13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
8. 八年级数学上册第一二章的知识点整理
八年级数学上册第一二章知识点整理
4、已知P,Q均为质数,切满足5P2 +3Q=59.则以P+3,1-P+Q,2P+Q-4为边长的三角形是什么三角形?
5、如图,△ABC中三条角平分线交于点O,已知AB<BC<CA,求证:OC>OA>OB。
6、将长为2n(n为自然数且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边长分别是a,b,c且满足a<b<c的一个三角形,就n=6的情况,分别写出所有满足题意的(a,b,c)所构成的三角形是什么三角形?
7、如图,RT△ABC中,D是AC中点,DE⊥AB与E,求证:BE2-AE2=BC2
实数
一、思维导图
1.无理数定义:无限不循环小数
2.实数的分类:分为有理数和无理数。有理数分为:正有理数、负有理数、零
3.算术平方根:若一个正数x的平方等于a,即x=a,则这个正数x为a的算术平方根。a的算术平方根记作 ,读作“根号a”,a叫做被开方数。规定:0的算术平方根为0。
4.平方根:如果一个数x的平方等于a,即x=a,那么这个数x就叫做a的平方根。
5.二次根式的定义:一般形如(a≥0)的代数式叫做二次根式,其中,a 叫做被开方数,被开方数必须大于或等于0。
6.最简二次根式满足:①.分母中不含根号=根号下没有分母=根号下没有分数
②.根号下不含可以开得尽方的数
7.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8. ( ) 2=a (a≥0) =a(a≥0)
①二次根式的乘法法则: × (a≥0,b≥0)
两个二次根式相乘,把被开方数相乘,根指数不变.
②积的.算术平方根的性质: (a≥0,b≥0)
两个非负数的积的算术平方根,等于这两个因数的算术平方根的乘积.
③二次根式的除法法则: = (a≥0,b>0)
两个二次根式相除,把被开方数相除,根指数不变.
④商的算术平方根的性质: = (a≥0,b>0)
二、易错题
1.已知:= x- +2 ,求 - .
解:∵x-2≥0, 2-x≥0
∴x=2, = ×2-0+0=1
将x=2,=1代入所求式,得
原式= =3-3=0
2、下列说法:①只有正数才有平方根;②-2是4的平方根;③5的平方根是 ;④± 都是3的平方根;⑤ 的平方根是-2,其中正确的是( )
A.①②③ B.③④⑤ C.③④ D.②④
解:错误原因①:0的平方根为0
③:5的平方根为±
⑤: 的平方根是2(任何非负数的平方根为非负数)
故选D
3、若 与 互为相反数,求 的值.
解:∵ ≥0, ≥0.
又∵ 、 互为相反数
∴ = =0
即 a-b+2=0 b=
a+b-1=0 解得 a=-
代入原式,得
原式= = =-2
答:所求式的值为-2
4、已知0
解:原式可化为
∵01
∴x-<0
∴原式=x+ +x- =2x
5、先化简,再求值. - ,其中x=4,=27.
解:原式=6
=-
6、已知,2+1的平方根是±3, 的算数平方根是2,求+2n的平方根.
解:由题意,得
2+1=
=
解得,=4,n=18
∴+2n=40
故+2n的平方根为 .
7、使 + 有意义的x的取值范围是( )
A.x≥0 B.x≠2 C.x>2 D.x≥0且x≠2
解:使 有意义的x的取值范围是x≥0,
使 有意义的x的取值范围是x-2≠0,x-2>0.
综上,使 + 有意义的x的取值范围是x>2.
8、 已知 ,且 ,求x+的值.
解:∵ ≥0, ≥0
又∵
∴ =2, =1
又∵ ,即x-≤0
∴ 或 .
∴x+=-1或2
9、 下列各式计算正确的是( )
A、
B、
C、
D、 (x>0,≥0)
解:错因:A.应为 B.应为 C.应为 故选D
10、 是否存在正整数a、b(a
解:存在.
,因为只有同类二次根式才能合并,所以 是同类二次根式.
设
所以+n=6,又a ,b ,a
解得
=
即
=
可得 .
三、思考题
1. 设x、为正有理数, , 为无理数,求证: + 为无理数。
2. 设x,及 + 为整数,证明: , 为整数。
3. 若实数x,满足3 +5︱︱=7,求S=2 -3︱︱的取值范围。
4. 有下列三个命题:
(甲) 若a,b是不相等的无理数,则ab+a-b是无理数。
(乙) 若a,b是不相等的无理数,则 是无理数。
(丙) 若a,b是不相等的无理数,则 + 是无理数。
其中正确命题的个数为( )
(A)0 (B)1 (C)2 (D)3
5.2 =
6.计算
7.计算
8.已知整数x,满足 ,那么整数对(x,)的个数是
9.已知a,b,c为正整数,且 为有理数,证明: 为整数。
10.已知实数x,满足( ,求证:x+=0。
9. 八年级上册期中考试各科(语文,数学,英语,物理,政治,历史,地理,生物)知识点复习
语文:第一单元到第二单元不带*号的课文;21课到25课;课后古诗前5首
英语:第一单元到第三单元的单词,词组和语法
数学:第十一章,实数,三线合一的性质
政治:把所学的都多看几遍
物理:作图,凸透镜,声现象,平面镜成像,紫外线
地理,历史,生物好像期中不考耶
OK?