当前位置:首页 » 基础知识 » 数学必修五第二章数列知识框架
扩展阅读
流传歌词有哪些 2024-11-08 11:25:27
趣味小知识问答 2024-11-08 11:23:55

数学必修五第二章数列知识框架

发布时间: 2022-12-10 10:18:11

❶ 高一数学必修五知识点总结

高一是我们进入高中时期的第一阶段,我们应该完善己身,好好学习。而数学也是我们必须学习的重要课程之一,我为各位同学整理了高 一年级数学 必修五知识点 总结 ,希望对你有所帮助!

高一数学 必修五知识点总结1

【差数列的基本性质】

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).

⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.

⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.

⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.

【等比数列的基本性质】

⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.…..

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0.

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.

高中数学必修五:等比数列前n项和公式S的基本性质

⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=

也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论.

⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=.

⑶若S是以q为公比的等比数列,则有S=S+qS.⑵

⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列.

⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列

万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)

升幂公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2

降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;

(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα

(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα

(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα

(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα

(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,

tan(π/2+α)=-cotα,cot(π/2+α)=-tanα

(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,

tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα

(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,

tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z

注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;

当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变;

用角(k·π/2±α)所在的象限确定等式右边三角函数的正负.例:tan(3π/2+α)=-cotα

∵在这个式子中k=3,是奇数,因此等式右边应变为cot

又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα.三角函数在各象限中的正负分布

sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。

高一数学必修五知识点总结2

(一)、映射、函数、反函数

1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

(二)、函数的解析式与定义域

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:

(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:

①分式的分母不得为零;

②偶次方根的被开方数不小于零;

③对数函数的真数必须大于零;

④指数函数和对数函数的底数必须大于零且不等于1;

⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.

已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.

2、求函数的解析式一般有四种情况

(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.

(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.

(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.

(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.

(三)、函数的值域与最值

1、函数的值域取决于定义域和对应法则,不论采用何种 方法 求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

(四)、函数的奇偶性

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

高一数学必修五知识点总结3

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零

2.构成函数的三要素:定义域、对应关系和值域

再注意:

(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.

(2)画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数(参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。


高一数学必修五知识点总结相关 文章 :

★ 高中数学学霸提分秘籍:必修五知识点总结

★ 高中数学必修5数列知识点总结

★ 高一数学必修五数列知识点

★ 高中数学必修5公式总结

★ 高中数学必修5全部公式

★ 高一数学等比数列知识点总结

★ 高一数学必修五等比中项必考知识点

★ 高一数学必修一知识点总结

★ 高中数学必考知识点归纳整理

★ 高中数学推理知识点总结

❷ 高一数学必修五数列的知识体系。

数列
一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式。如
(1)已知 ,则在数列 的最大项为__
(答: );
(2)数列 的通项为 ,其中 均为正数,则 与 的大小关系为___
(答: );
(3)已知数列 中, ,且 是递增数列,求实数 的取值范围
(答: );
(4)一给定函数 的图象在下列图中,并且对任意 ,由关系式 得到的数列 满足 ,则该函数的图象是 ()
(答:A)

A B C D
二.等差数列的有关概念:
1.等差数列的判断方法:定义法 或 。如
设 是等差数列,求证:以bn= 为通项公式的数列 为等差数列。
2.等差数列的通项: 或 。如
(1)等差数列 中, , ,则通项
(答: );
(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______
(答: )
3.等差数列的前 和: , 。如
(1)数列 中, , ,前n项和 ,则 =_, =_
(答: , );
(2)已知数列 的前n项和 ,求数列 的前 项和
(答: ).
4.等差中项:若 成等差数列,则A叫做 与 的等差中项,且 。
提醒:
(1)等差数列的通项公式及前 和公式中,涉及到5个元素: 、 、 、 及 ,其中 、 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…, …(公差为 );偶数个数成等差,可设为…, ,…(公差为2 )
三.等差数列的性质:
1.当公差 时,等差数列的通项公式 是关于 的一次函数,且斜率为公差 ;前 和 是关于 的二次函数且常数项为0.
2.若公差 ,则为递增等差数列,若公差 ,则为递减等差数列,若公差 ,则为常数列。
3.当 时,则有 ,特别地,当 时,则有 .如
(1)等差数列 中, ,则 =____
(答:27);
(2)在等差数列 中, ,且 , 是其前 项和,则
A、 都小于0, 都大于0
B、 都小于0, 都大于0
C、 都小于0, 都大于0
D、 都小于0, 都大于0
(答:B)
4.若 、 是等差数列,则 、 ( 、 是非零常数)、 、 ,…也成等差数列,而 成等比数列;若 是等比数列,且 ,则 是等差数列. 如
等差数列的前n项和为25,前2n项和为100,则它的前3n和为 。
(答:225)
5.在等差数列 中,当项数为偶数 时, ;项数为奇数 时, , (这里 即 ); 。如
(1)在等差数列中,S11=22,则 =______
(答:2);
(2)项数为奇数的等差数列 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数
(答:5;31).
6.若等差数列 、 的前 和分别为 、 ,且 ,则
.如
设{ }与{ }是两个等差数列,它们的前 项和分别为 和 ,若 ,那么 ___________
(答: )
7.“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前 项和的最小值是所有非正项之和。法一:由不等式组 确定出前多少项为非负(或非正);法二:因等差数列前 项是关于 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性 。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如
(1)等差数列 中, , ,问此数列前多少项和最大?并求此最大值。
(答:前13项和最大,最大值为169);
(2)若 是等差数列,首项 ,
,则使前n项和 成立的最大正整数n是
(答:4006)
8.如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究 .
四.等比数列的有关概念:
1.等比数列的判断方法:定义法 ,其中 或
。如
(1)一个等比数列{ }共有 项,奇数项之积为100,偶数项之积为120,则 为____
(答: );
(2)数列 中, =4 +1 ( )且 =1,若 ,求证:数列{ }是等比数列。
2.等比数列的通项: 或 。如
设等比数列 中, , ,前 项和 =126,求 和公比 .
(答: , 或2)
3.等比数列的前 和:当 时, ;当 时, 。如
(1)等比数列中, =2,S99=77,求
(答:44);
(2) 的值为__________
(答:2046);
特别提醒:等比数列前 项和公式有两种形式,为此在求等比数列前 项和时,首先要判断公比 是否为1,再由 的情况选择求和公式的形式,当不能判断公比 是否为1时,要对 分 和 两种情形讨论求解。
4.等比中项:若 成等比数列,那么A叫做 与 的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个 。如已知两个正数 的等差中项为A,等比中项为B,则A与B的大小关系为______(答:A>B)
提醒:(1)等比数列的通项公式及前 和公式中,涉及到5个元素: 、 、 、 及 ,其中 、 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…, …(公比为 );但偶数个数成等比时,不能设为… ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为 。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)
5.等比数列的性质:
(1)当 时,则有 ,特别地,当 时,则有 .如
(1)在等比数列 中, ,公比q是整数,则 =___
(答:512);
(2)各项均为正数的等比数列 中,若 ,则
(答:10)。
(2) 若 是等比数列,则 、 、 成等比数列;若 成等比数列,则 、 成等比数列; 若 是等比数列,且公比 ,则数列 ,…也是等比数列。当 ,且 为偶数时,数列 ,…是常数数列0,它不是等比数列. 如
(1)已知 且 ,设数列 满足 ,且 ,则 .
(答: );
(2)在等比数列 中, 为其前n项和,若 ,则 的值为______
(答:40)
(3)若 ,则 为递增数列;若 , 则 为递减数列;若 ,则 为递减数列;若 , 则 为递增数列;若 ,则 为摆动数列;若 ,则 为常数列.
(4) 当 时, ,这里 ,但 ,这是等比数列前 项和公式的一个特征,据此很容易根据 ,判断数列 是否为等比数列。如若 是等比数列,且 ,则 =
(答:-1)
(5) .如设等比数列 的公比为 ,前 项和为 ,若 成等差数列,则 的值为¬¬_____
(答:-2)
(6) 在等比数列 中,当项数为偶数 时, ;项数为奇数 时, .
(7)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列,故常数数列 仅是此数列既成等差数列又成等比数列的必要非充分条件。如设
数列 的前 项和为 ( ), 关于数列 有下列三个命题:①若 ,则 既是等差数列又是等比数列;②若 ,则 是等差数列;③若 ,则 是等比数列。这些命题中,真命题的序号是
(答:②③)
五.数列的通项的求法:
⑴公式法:①等差数列通项公式;②等比数列通项公式。如已知数列 试写出其一个通项公式:__________
(答: )
⑵已知 (即 )求 ,用作差法: 。如
①已知 的前 项和满足 ,求
(答: );
②数列 满足 ,求
(答: )
⑶已知 求 ,用作商法: 。如数列 中, 对所有的 都有 ,则 ______
(答: )
⑷若 求 用累加法:
。如已知数列 满足 , ,则 =________
(答: )
⑸已知 求 ,用累乘法: 。如已知数列 中, ,前 项和 ,若 ,求
(答: )
⑹已知递推关系求 ,用构造法(构造等差、等比数列)。特别地,(1)形如 、 ( 为常数)的递推数列都可以用待定系数法转化为公比为 的等比数列后,再求 。如①已知 ,求 (答: );②已知 ,求 (答: );(2)形如 的递推数列都可以用倒数法求通项。如①已知 ,求 (答: );②已知数列满足 =1, ,求 (答: )
注意:(1)用 求数列的通项公式时,你注意到此等式成立的条件了吗?( ,当 时, );(2)一般地当已知条件中含有 与 的混合关系时,常需运用关系式 ,先将已知条件转化为只含 或 的关系式,然后再求解。如数列 满足 ,求 (答: )
六.数列求和的常用方法:
1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式: , , .如
(1)等比数列 的前 项和Sn=2n-1,则 =_____
(答: );
(2)计算机是将信息转换成二进制数进行处理的。二进制即“逢2进1”,如 表示二进制数,将它转换成十进制形式是 ,那么将二进制 转换成十进制数是_______
(答: )
2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. 如求: (答: )
3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法). 如
①求证: ;
②已知 ,则 =______
(答: )
4.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前 和公式的推导方法).
如(1)设 为等比数列, ,已知 , ,①求数列 的首项和公比;②求数列 的通项公式.(答:① , ;② );
(2)设函数 ,数列 满足:
,①求证:数列 是等比数列;②令
,求函数 在点 处的导数 ,并比较 与 的大小。(答:①略;② ,当 时, = ;当 时, < ;当 时, > )
5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
① ; ② ;
③ , ;
④ ;⑤ ;
⑥ .
如(1)求和:
(答: );
(2)在数列 中, ,且Sn=9,则n=_____
(答:99);
6.通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。如
①求数列1×4,2×5,3×6,…, ,…前 项和 =
(答: );
②求和:
(答: )
七.“分期付款”、“森林木材”型应用问题
1.这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.
2.利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金 元,每期利率为 ,则 期后本利和为:
(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款) 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分 期还清。如果每期利率为 (按复利),那么每期等额还款 元应满足: (等比数列问题).

❸ 数学必修五知识点

1-------三角形
1\内角和定理
2、正弦定理
3、余弦定理
4、三角形面积公式
5、解三角形应用
2-------数列
1.数列的通项、数列的项数,递推公式与递推数列,数列的通项与数列的前n项和公式的
关系
2.等差数列
3.等比数列{}na
4.等差数列与等比数列的联系
5.数列求和的常用方法:
3------不等式
1.(1)求不等式的解集,务必用集合的形式表示;
不等式解集的端点值往往是不等式对应
方程的根或不等式有意义范围的端点值
(2)解分式不等式
(3)含有两个绝对值的不等式(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2.利用重要不等式等求函数的最值时,务必注意等号成立时的条件是积ab或和a+b其中之一应是定值(一正二定三相等)
3.常用不等式:
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合
法、分析法
5.含绝对值不等式的性质
6.不等式的恒成立问题

❹ 大家好、谁能帮我把高中数学必修5知识点给总结一下啊!谢谢

1、等差数列:从第二项起,每一项与它的前一项的差是同一个常数,这样的数列为等差数列。
通项公式:
求和公式: 中间项 项数,是一个没有常数项的二次函数形式。
2、等比数列:从第二项起,每一项与它的前一项的比是同一个常数,这样的数列为等比数列。
通项公式:
求和公式: , 时, ,即常数项与 项系数互为相反数。
3、常见的求通项与求和方法:
(1) 形式, 便于求和,方法:迭加;
例如:
有:

(2) 形式,同除以 ,构造倒数为等差数列;
例如: ,则 ,即 为以-2为公差的等差数列。
(3) 形式, ,方法:构造: 为等比数列;
例如: ,通过待定系数法求得: ,即 等比,公比为2。
(4) 形式:构造: 为等比数列;
(5) 形式,同除 ,转化为上面的几种情况进行构造;
因为 ,则 ,若 转化为(1)的方法,若不为1,转化为(3)的方法
(6)求和:倒序相加,具备等差数列的相关特点的,倒序之后和为定值;
(7)求和:错位相减,适用于通项公式为等差的一次函数乘以等比的数列形式,如: ;
(8)求和:裂项相消,适用于分式形式的通项公式,把一项拆成两个或多个的差的形式。如: , 等;
(9)求和:分组求和,适用于通项中能分成两个或几个可以方便求和的部分,如: 等。
(10)另外,可以使用求前多少项找规律的方法,但这种方式不适用于解答题。
4、 与 的关系:
5、等差数列常用性质:
(1) 若 ,A, 成等差数列,那么A叫做 与 的等差中项,且A=
(2) 在等差数列中,若m+n=p+q,则, (m, n, p, q ∈N ) ;
(3) 下角标成等差数列的项仍是等差数列;
(4) 连续m项和构成的数列成等差数列。
6、等比数列常见性质:
(1)若 ,G, 成等比数列,那么A叫做 与 的等比中项,且G=
(2)在等比数列中,若m+n=p+q,则, (m, n, p, q ∈N )
(3)下角标成等差数列的项仍是等比数列;
(4)连续m项和构成的数列成等比数列。

❺ 高一数学数列知识点

在现实竞争如此激烈的社会环境里想获得成功,你得先学会默默地做好自己的事,专注于某一点或某一方面,用经历和阅历积累,丰富自己的思想和知识,正如你羡慕别人在某些方面的特长,你可知道他们从小接受了这方面多少系统的训练,克服了多少训练中的困难。我高二频道为你整理了《高 一年级数学 必修五数列知识点》,希望可以帮到你更好的学习!



高一数学 数列知识点

1.数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想 方法 ,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。

2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。

数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。

3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列递推公式特点:

(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

注:数列中的项必须是数,它可以是实数,也可以是复数。

高一数学数列知识点

1.等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

2.等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3.前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4.等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

三、若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

高一数学数列知识点

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

3.数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N或它的有限子集{1,2,…,n}为定义域的函数的表达式.

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.

如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.

4.数列的图象

对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:

序号:1234567

项:45678910

这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.

由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.

数列是一种特殊的函数,数列是可以用图象直观地表示的.

数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.

把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.

5.递推数列

一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①

数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1


高一数学数列知识点总相关 文章 :

★ 高一数学知识点总结

★ 高一数学等比数列知识点总结

★ 高中数学必修5数列知识点总结

★ 高一数学必修五数列知识点

★ 高一数学知识点汇总大全

★ 高一数学知识点全面总结

★ 高一数学常考知识点总结

★ 高一数学必修一知识点总结

★ 高一数学知识点总结(人教版)

❻ 高二数学必修五教学知识点

人是在失败中长大,每一个名人背后都有不为人知的 故事 寒窗苦的读圣贤书,既然我们没在哪社会而感到高兴,既然古人为我们创造知识何必不去珍惜古人的汗水。下面是我给大家带来的 高二数学 必修五教学知识点,希望能帮助到你!

高二数学必修五教学知识点1

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言。

判定 方法 有:定义法(作差比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:

定义:注意区间是否关于原点对称,比较f(_)与f(-_)的关系。f(_)-f(-_)=0f(_)=f(-_)f(_)为偶函数;

f(_)+f(-_)=0f(_)=-f(-_)f(_)为奇函数。

判别方法:定义法,图像法,复合函数法

应用:把函数值进行转化求解。

周期性:定义:若函数f(_)对定义域内的任意_满足:f(_+T)=f(_),则T为函数f(_)的周期。

其他:若函数f(_)对定义域内的任意_满足:f(_+a)=f(_-a),则2a为函数f(_)的周期.

应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

平移变换y=f(_)→y=f(_+a),y=f(_)+b

注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2_)经过平移得到函数y=f(2_+4)的图象。

(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

对称变换y=f(_)→y=f(-_),关于y轴对称

y=f(_)→y=-f(_),关于_轴对称

y=f(_)→y=f|_|,把_轴上方的图象保留,_轴下方的图象关于_轴对称

y=f(_)→y=|f(_)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

伸缩变换:y=f(_)→y=f(ω_),

y=f(_)→y=Af(ω_+φ)具体参照三角函数的图象变换。

一个重要结论:若f(a-_)=f(a+_),则函数y=f(_)的图像关于直线_=a对称;

高二数学必修五教学知识点2

一、集合、简易逻辑(14课时,8个)

1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)

1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)

1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)

1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)

1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)

1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)

1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

九、直线、平面、简单何体(36课时,28个)

1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。

十一、概率(12课时,5个)

1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

十三、极限(12课时,6个)

1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。

十四、导数(18课时,8个)

1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。

十五、复数(4课时,4个)

1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。

高二数学必修五教学知识点3

考点一:求导公式。

例1.f(_)是f(_)13_2_1的导函数,则f(1)的值是3

考点二:导数的几何意义。

例2.已知函数yf(_)的图象在点M(1,f(1))处的切线方程是y

1_2,则f(1)f(1)2

,3)处的切线方程是例3.曲线y_32_24_2在点(1

点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C:y_33_22_,直线l:yk_,且直线l与曲线C相切于点_0,y0_00,求直线l的方程及切点坐标。

点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知f_a_3__1在R上是减函数,求a的取值范围。32

点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6.设函数f(_)2_33a_23b_8c在_1及_2时取得极值。

(1)求a、b的值;

(2)若对于任意的_[0,3],都有f(_)c2成立,求c的取值范围。

点评:本题考查利用导数求函数的极值。求可导函数f_的极值步骤:

①求导数f'_;

②求f'_0的根;③将f'_0的根在数轴上标出,得出单调区间,由f'_在各区间上取值的正负可确定并求出函数f_的极值。

考点六:函数的最值。

例7.已知a为实数,f__24_a。求导数f'_;(2)若f'10,求f_在区间2,2上的值和最小值。

点评:本题考查可导函数最值的求法。求可导函数f_在区间a,b上的最值,要先求出函数f_在区间a,b上的极值,然后与fa和fb进行比较,从而得出函数的最小值。

考点七:导数的综合性问题。

例8.设函数f(_)a_3b_c(a0)为奇函数,其图象在点(1,f(1))处的切线与直线_6y70垂直,导函数

(1)求a,b,c的值;f'(_)的最小值为12。

(2)求函数f(_)的单调递增区间,并求函数f(_)在[1,3]上的值和最小值。

点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。


高二数学必修五教学知识点相关 文章 :

★ 高二数学必修5知识点总结

★ 高二数学必修五知识点

★ 高二数学必修五知识点总结

★ 高中数学必修5数列知识点总结

★ 高中数学必修5全部公式

★ 高二数学必修5等差数列知识点

★ 必修五数学知识点

★ 高二数学必修5数列知识点

★ 高中数学学霸提分秘籍:必修五知识点总结

★ 高二数学必修五不等式知识点总结

❼ 高二数学必修五知识点总结

我们在学习当中认真预习好新的课程,上课专心听讲;不懂的及时请教老师或者同学。放学回来要认真把老师布置的作业完成,并且把课堂上学过的知识好好温习一遍;这样才能把学过的内容牢牢地记在脑子里。以下是我给大家整理的 高二数学 必修五知识点 总结 ,希望能帮助到你!

高二数学必修五知识点总结1

1.等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

2.等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3.前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4.等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

高二数学必修五知识点总结2

一、不等关系及不等式知识点

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

3.不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2).

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

一种 方法

待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

高二数学必修五知识点总结3

解三角形

1、三角形三角关系:A+B+C=180°;C=180°-(A+B);

2、三角形三边关系:a+b>c; a-b3、三角形中的基本关系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222

4、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R. 接圆的半径,则有sin?sin?sinCsin

5、正弦定理的变形公式:

①化角为边:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R

a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化边为角:sin??6、两类正弦定理解三角形的问题:

①已知两角和任意一边,求其他的两边及一角.

②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))

7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?, 222222c2?a2?b2?2abcosC.

b2?c2?a2a2?c2?b2a2?b2?c2

8、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)

10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C

的对边,则:

①若a?b?c,则C?90;②若a?b?c,则C?90;

③若a?b?c,则C?90.

高二数学必修五知识点总结相关 文章 :

★ 高二数学必修5知识点总结

★ 高二数学必修五知识点总结

★ 高中数学学霸提分秘籍:必修五知识点总结

★ 高中数学必修5数列知识点总结

★ 高二数学必修5等差数列知识点

★ 高中数学必修5全部公式

★ 高二数学必修五知识点

★ 高二数学知识点总结

★ 高二数学必修五不等式知识点总结

★ 高二数学必修5数列知识点